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Next-generation sequencing (NGS) technology has rapidly advanced and generated themassive data volumes. To align andmap the
NGS data, biologists often randomly select a number of aligners without concerning their suitable feature, high performance, and
high accuracy as well as sequence variations and polymorphisms existing on reference genome. This study aims to systematically
evaluate and compare the capability of multiple aligners for NGS data analysis. To explore this capability, we firstly performed
alignment algorithms comparison and classification. We further used long-read and short-read datasets from both real-life and in
silico NGS data for comparative analysis and evaluation of these aligners focusing on three criteria, namely, application-specific
alignment feature, computational performance, and alignment accuracy. Our study demonstrated the overall evaluation and
comparison of multiple aligners for NGS data analysis. This serves as an important guiding resource for biologists to gain further
insight into suitable selection of aligners for specific and broad applications.

1. Introduction

With a very high speed, large-scale sequencing reads, and
drastically reduced costs available, next-generation sequenc-
ing (NGS) technology has appeared to be very fashion-
able [1]. There are a large number of studies that have
successfully used NGS technology for their investigations
under biological contexts of interests. For instance, in the
nucleotide level, NGS technology is effectively used for
genome evolution and genetic variation studies [2, 3]. In
the transcription level, it is often applied for microRNA
discovery and genomewide expression analysis [4, 5]. For
the protein level, ChIP-sequencing technology is efficiently
used for the identification of transcription factor binding
sites [6] and histone modification patterns [7, 8]. Through
a number of studies mentioned, undoubtedly, NGS repre-
sents a great powerful technology today which allows the
massive number of sequencing reads to become available
for only a short period and routinely be used for various

genomewide association studies by aligning and mapping on
the reference genome [9]. In recent years, there are several
different aligners developed and further used for aligning
and mapping for NGS data analysis. For examples, there
are Mapping and Assembly with Qualities (MAQ) developed
by Li et al. [10], Basic Oligonucleotide Alignment Software
(BOAT) developed by Zhao et al. [11], Periodic SeedMapping
(PerM) developed by Chen et al. [12], Short Oligonucleotide
Analysis Package (SOAPv2) developed by Li et al. [13, 14], and
GlobalAlignment Short Sequence Search Software (GASSST)
developed by Rizk and Lavenier [15].

In order to align and map NGS data using aligners,
biologists often randomly select aligner without concerning
to its feature, performance, and accuracy. Sequence variations
and sequencing errors usually exist in the reference genome
(e.g., repetitive regions and polymorphisms); hence, NGS
reads frequently showed poor aligning and mapping [16].
In this case, if an unsuitable aligner is selected with exist-
ing repetitive regions and polymorphisms, the results may
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Figure 1: Aligners based on algorithms classification across different
NGS platforms. Rectangles with different gray scales represent hash
table-based algorithm, BWT-based backtracking algorithm, and
other algorithms, individually. Aligners for specific types of data
generated by different sequencing platforms are separately shown in
three columns, namely, Roche 454, Illumina, and ABI SOLiD.

then convey error messages and mislead interpretation of
biological outcome. It is therefore valuable for the biologists
to consider the capability of individual software tool in
terms of its feature, performance, and accuracy [5, 17]. This
study is aimed to systematically evaluate and compare the
capability of multiple aligners for NGS data analysis. Initially,
we classified multiple aligners based on their developed
algorithms. Here, hash table-based algorithm and Burrows-
Wheeler Transform- (BWT-) based backtracking algorithm
were considered. Under these two algorithms, we then
selected favorable aligners for comparative analysis and
further evaluation focused on three criteria (i.e., application-
specific alignment feature, computational performance, and
alignment accuracy). Literature searching and our own pro-
gramming implementationwere performed in order to evalu-
ate different application-specific alignment features. Real-life
datasets sampled from different organisms, including long-
read datasets fromRoche 454 sequencing platform and short-
read datasets from Illumina sequencing platform, were used
for comparative analysis of multiple aligners for computa-
tional performance evaluation. To further evaluate alignment
accuracy, our generated in silico short-read and long-read
datasets based on varying sequencing characteristics were
used for comparison of multiple aligners. Through the end,
the overall evaluation and comparison of multiple aligners
with respect to the three criteria could guide the biologists for
suitable selection of aligners for NGS data analysis for proper
interpretation through different biological questions.

2. Results and Discussion

2.1. Algorithm-Based Classification of Multiple Aligners. Cur-
rently, three NGS platforms, namely, Roche 454, Illumina,
and ABI SOLiD, are employed at large extent, of biomedical
researches. SOLiD platform generated two-base encoding
data to discriminate between sequencing errors and SNPs
[18], while Roche 454 platform has the ability to generate
reads with length up to 500 nt or even longer, which is
especially specific for de novo sequencing and resequencing
[16]. Illumina platform is capable of producing hundreds of
millions of much shorter reads at faster speed and lower
cost than others. In addition, Roche 454 platform is more
likely to have higher sequencing error rate of insertions and
deletions, while Illumina platform typically possesses higher
sequencing error rate of mismatches [19]. To adapt to high-
throughput data from three NGS platforms, multiple aligners
were designed with various algorithms. According to two
main strategies employed behind the multiple algorithms,
multiple aligners for NGS data were classified as the hash
table-based algorithm and the BWT-based backtracking
algorithm. As presented in Figure 1, we show 19 aligners
based on these two algorithms for the three NGS plat-
forms. According to the popularity of multiple aligners (see
Supplementary File 3 in Supplementary Material available
online at http://dx.doi.org/10.1155/2014/309650), the aligners,
like RMAP, SeqMap, MAQ, SHRiMP2, BWA, SOAP2, and
Bowtie, are popular for Illumina platform. RMAP, SHRiMP2,
BWA, SOAP2, Bowtie, and SSAHA2 are widely applied for
Roche 454, while RMAP,MAQ, SHRiMP2, BWA,Bowtie, and
SSAHA2 are favorable for SOLiD platform.

To describe the hash table-based algorithm, initially, this
algorithm accurately aligns massive data volumes produced
by the present sequencing machines following an essential
multistep strategy, called seed-and-extend [20]. To quickly
identify limited subset of possible read mapping locations
in the reference genome, the first step in the hash table-
based algorithm is an attempt to localize the common k-
mer substrings shared by both reads and genome sequences
through the hash tables, called seeds detection. This step is
specifically designed for accelerating high-throughput short
reads. To determine the exact locations of the reads in
the reference genome, the second step is subsequently to
perform an extended alignment of seeds with slower and
more accurate dynamic programming algorithm, such as
Smith-Waterman [21] or Needleman-Wunsch algorithm.The
aligners for NGS data analysis which were classified together
in the hash table-based algorithm include SeqMap [22], PASS
[23], MAQ [10], GASSST [15], RMAP [16], PerM [12], RazerS
[24, 25], microread Fast Alignment Search Tool (mrFAST)
[26], microread (substitutions only) Fast Alignment and
Search Tool (mrsFAST) [27], GenomeMapper [28], and
BOAT [11].

However, diverse strategies for seeds detection cause a
distinction among multiple alignment algorithms. To han-
dle the reads alignment with errors (e.g., mismatches and
indels), RMAP, MAQ, SeqMap, and SOAP2 are based on the
pigeonhole principle to chop the reads into small pieces to be
perfectly matched to the reference genome for noncandidate
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filtration during seeds detection process [10, 16, 22, 29].
Meanwhile, SHRiMP2 [30, 31] and RazerS are implemented
from another similar strategy, called q-gram filter. This is an
extension of the pigeonhole principle to chop the reads into
overlapping pieces to be matched for noncandidate filtration
[24, 30].

Furthermore, the capability to align reads with many
errors existing is also important bottleneck because pieces
of reads are chopped so small with increased errors that
lead to multiple match locations in the reference genome
[32]. Thus, the algorithm based on the idea of spaced seeds,
which is utilizing seeds with nonconsecutive matches in seed
detection phase [12, 15, 30, 33, 34], has been used, for instance,
in PerM, SHRiMP2, RazerS, BOAT, and GASSST.

In contrast, the BWT-based backtracking algorithm
aligns the entire reads instead of the seeds of reads against
the substrings sampled from the reference genome. To enable
rapid read searching, this algorithm stores all the suffixes of
reference genome sequence based on a certain representation
of data structure, including prefix/suffix tree, suffix array, and
Ferragina-Manziniuse algorithm-based index (FM index)
[35]. This strategy is also used to solve alignment to multiple
identical copies in the reference genome sequence efficiently,
which is superior to the hash table-based algorithm. To
reduce thememory occupation of the data structures asmen-
tioned above, BWT [36–38], a reversible data compression
algorithm, has been used to reorder the reference genome
sequence for data structure compression. Thus, BWT-based
backtracking algorithm retrieves thewhole BWT-based suffix
array for reads aligning and mapping with rapid searching
and few memory requirements. Currently, SOAP2, BWA
[39, 40], and Bowtie [37] were classified together in the
BWT-based backtracking algorithm. For example, Bowtie
employs BWT algorithm to compress FM index, while BWA
constructs BWT-based suffix array for rapid subsequence
search. In conclusions, the hash table-based algorithm and
BWT-based backtracking algorithm showed contradiction
of the alignment algorithms. To further compare individual
aligner with these two alignment algorithms mentioned
above, we performed evaluation and comparative analysis
of these aligners in terms of computational performance,
alignment accuracy, and application-specific features. The
results are described as follows.

2.2. Application-Specific Features of theMultiple Aligners. Ap-
plication-specific features were mined and collected through
literature searching and our own programming implemen-
tation (see Section 4). Interestingly, we found that most of
the aligners could support paired-end alignment for repet-
itive regions mapping excluding BOAT, GASSST, Gnumap
[41], GenomeMapper, and SeqMap. With regard to gapped
alignment, it was clearly shown that only 5 aligners lacked
the function for SNPs and structural variation discovery,
namely, Bowtie, mrsFAST, MAQ, RMAP, and SSAHA2 [42].
For bisulfite alignment used in ChIP-Seq data analysis, only
Gnumap,mrsFAST,Novoalign (http://www.novocraft.com/),
RMAP, and Segemehl [19] were demonstrated to support
this function. To summarize, it was clear that Novoalign

and Segemehl beneficially supported wide applications of
multiple alignment features analysis, namely, gapped align-
ment, paired-end alignment, and bisulfite alignment. Table 1
described different application-specific features among mul-
tiple aligners.

2.3. Computational Performance Evaluation Using Real-Life
Datasets. To evaluate computational performance of individ-
ual aligner, we considered three factors that were computa-
tion time,maximummemory usage, andmapped read counts
as follows.

2.3.1. ComputationTimeComparison. As the results shown in
Figure 2(a), computation time is plotted against the favorable
multiple aligners. The short-read datasets sampled from var-
ious organisms, namely, virus PhiX174, bacteria Escherichia
coli, yeast Saccharomyces cerevisiae, fruit fly Drosophila
melanogaster, plant Oryza sativa, and human Homo sapiens,
were used to assess the impact of reference genome size on
computation time. Clearly, most of aligners showed a linear
relationship between the computation time and the size of
reference genome. Besides the genome size, the count of
reads had impact on computation time as clearly seen from
2 short-read datasets of Homo sapiens with different read
counts. Noticeably, it should be stressed that computation
time of Novoalign showed more dependence on the count of
reads than reference genome size. The detailed information
for real-life short-read datasets and reference genomes was
listed in Table 2. In such a case of comparison between plant
genome (i.e., O. sativa) and human genome (i.e., H. sapiens),
we observed that the computation time of plant genome (>5
hours) was slower than human genome (1.5 hours).

From overall results with short-read datasets produced
by Illumina sequencing platform as shown in Figures 2(a)
and 2(b), we observe that the computation speed for Bowtie,
SOAP2, BWA, and PerM was significantly faster than the
other aligners regardless of different reference genome sizes
and read counts. These results may be explained by BWT-
based backtracking algorithm behind Bowtie, SOAP2, and
BWAwhich probably impacted on reduction of computation
time. In particular, PerM obviously showed an outstanding
computation speed due to simultaneous utility of available
multiple threads. On the other hand, BOAT and RazerS
required significant amounts of computation time. Their
computation speed was extremely slower than the others
under the same computational conditions (see Section 4).
Once multiple threads are utilized, computation speed was
dramatically increased, such as BOAT (see Figure 2(b)).
For the other aligners, apart from Segemehl, Gnumap, and
SHRiMP2 [30], the major of aligners obtained ideal compu-
tation speed during small reference genome analysis process
(e.g., virus, bacteria, etc.). With multiple threads utilized,
computation time of the aligners was significantly reduced,
such as PASS, GASSST, SHRiMP2, and Segemehl.The results
are shown in Figure 2(b). In addition, Figure 2(c) shows a
plot of computation time against multiple aligners, regard-
ing long-read datasets generated by Roche 454 sequencing

http://www.novocraft.com/
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Figure 2: Bar graph illustrates a comparison of different computation time plots against multiple aligners. In this Figure, 𝑧-axis is log value
of the computation time, 𝑦-axis represents real-life datasets, and 𝑥-axis represents multiple aligners under this comparison. Based on real-
life short-read datasets sampled from various organisms by Illumina sequencing platform, (a) displays computation time comparison in
single-thread mode, (b) displays computation time comparison for both in single-thread mode and in three-thread mode, and (c) displays
computation time comparison in single-thread mode based on real-life long-read datasets by Roche 454 sequencing platform. (∗) represents
the results for aligners supported multiple threads function evaluated in three-thread mode.

Table 2: Detailed information for reference genomes and real-life short-read datasets from Illumina sequencing platform.

Genome Reads ID Reads length (bp) Read count Genome size Genome version (ID)
PhiX ERR007488 36 4516934 <1Mbp NC 001422.1 (NCBI)
E. coli SRR023978 51 9575373 5Mbp NC 000913.2 (NCBI)
S. cerevisiae SRX011891 36 10995605 12Mbp sacCer2 (UCSC)
D.melanogaster SRR001815 36 10760364 172Mbp dm3 (UCSC)
Oryza sativa DRR000023 32 18443432 388Mbp NCBI
Homo sapiens SRR037152 35 4761769 3263Mbp hg18 (UCSC)
Homo sapiens SRX003935 32 18424533 3263Mbp hg18 (UCSC)
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Figure 3: Graphical representation shows a comparison of various memory usage plots against multiple aligners. With real-life short-read
datasets sampled from various organisms by Illumina sequencing platform, (a) shows the memory usage requirements of multiple aligners in
single-thread mode, (b) shows the memory usage requirements of multiple aligners in three-thread mode, and (c) shows correlations among
read count, genome size, and memory usage. Two short-read datasets (e.g., 5 million reads and 18 million reads) fromH. sapienswere chosen
to perform comparative analysis. In addition, (d) shows the memory usage requirements of multiple aligners with real-life long-read datasets
produced by Roche 454 platform.

Table 3: Information for reference genomes and real-life long-read datasets from Roche 454 platform.

Genome Reads ID Read length (bp) Read count Genome size Genome version (ID)
S. cerevisiae SRR001091 100–200 323986 12Mbp sacCer2 (UCSC)
S. cerevisiae SRR001092 100–200 409212 12Mbp sacCer2 (UCSC)
S. cerevisiae SRR001093 100–200 430794 12Mbp sacCer2 (UCSC)

platform sampled from yeast S. cerevisiae. The detailed infor-
mation for real-life long-read datasets was listed in Table 3.
We observed that SSAHA2, Segemehl, and PASS required
significant amounts of computation time; in contrast to
Bowtie, SOAP2, RazerS, and GASSST relatively showed high
computation speed.

2.3.2. Maximum Memory Usage Comparison. For memory
usage comparison, we quantified variation of maximum
memory usage by cross-comparisons among multiple align-
ers against maximum memory usage percentage (%) of the
server. As illustrated in Figure 3(a), several bottom spots in
the plot are clearly pointed out to represent the aligners with
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Figure 4:Graphical representation shows a comparison for different
mapped reads count plots against multiple aligners with real-life
short-read datasets and long-read datasets, respectively.

relatively minor memory usage during short-read datasets
aligning process, which were Bowtie, BOAT, SOAP2, BWA,
and mrsFAST. The maximum memory usage occupations
of these aligners were relatively low and not dependent on
the genome size analyzed. It was clearly seen in analysis of
human genome as a reference that the maximum memory
usage percentages of these aligners were 6.0%, 4.9%, 15.8%,
7.2%, and 15.4%, respectively. Thus, if even low hardware
capacity was used, these aligners could not be any problem
and could run with full usage on the PC computers. Yet,
BOAT had dramatically increased in memory usage when
multiple threads were applied (see Figure 3(b)). These results
may be explained from the root of data structure constructed,

such as bitmap index and prefix tree data structure in BOAT.
For PerM,Novoalign, GASSST, and PASS, lowmemory usage
was occupied with small reference genome analyzed, but
a sharp increase in memory usage appeared with human
genome analyzed in comparison with others, namely, 43.0%,
25.3%, 30.8%, and 54.7%, respectively. Moreover, in case of
human genome analyzed, memory usages of GenomeMap-
per, SHRiMP2, Gnumap, and Segemehl were out of the
limitation of the servers.

In addition, we found that maximum memory usage of
majority of aligners was kept stable with multiple threads
function employed excluding BOAT, PASS, and SHRiMP2.
In particular in BOAT, it was slightly shown to be increased
in memory usage (Figure 3(b)). Because of the differences in
alignment algorithms constructing the index of reads, these
greatly made influences on memory usage occupation. This
is shown in Figure 3(c). Hence, it is apparently illustrated
that the aligners, such as BOAT, MAQ, RMAP, RazerS,
SeqMap, mrFAST, and mrsFAST, showed variable memory
requirements mainly depending on the count of the reads
instead of size of genome, while the aligners, including
Bowtie, SOAP2, BWA, PerM, Novoalign, PASS, and GASSST,
showed constant memory requirements regardless of the
count of reads. Besides, Figure 3(d) shows comparison of
the maximum memory usage of different aligners under the
long-read datasets from Roche 454 sequencing platform. It
was further confirmed that SOAP2, Bowtie, SHRiMP2, and
Segemehl showed constant memory requirements regardless
of the count of reads and the type of reads as well. Moreover,
PASS seemed to show relatively higher requirement for
memory usage when it deal with long-read datasets.

2.3.3. Mapped Read Counts Comparison. For mapped read
counts, it is considered to be another key factor for com-
putational performance evaluation, since it can quantify
relative read density. We calculated the mapped read counts
across different aligners. As shown in Figure 4(a), we observe
that most aligners showed very similar results of mapped
read counts excepting SOAP2, RMAP, and SHRiMP2 which
represented low percentage of mapped read counts with the
short-read datasets used. On the other hand, we compared
the results of mapped read counts with long-read datasets
as well (Figure 4(b)). It was clearly shown that SHRiMP2,
Segemehl, GASSST, SSAHA2, and Gnumap had relatively
better results compared with the rest of aligners. However, we
could not make a judgment for capability and sensitivity of
mapping aligners, since real-life data could not be employed
to evaluate alignment accuracy. Further comparative analysis
with in silico data is described in following.

2.3.4. Alignment Accuracy Evaluation Using In Silico Datasets.
In order to evaluate alignment accuracy of individual aligner,
we calculated sensitivity, precision, and % of multimapped
reads as indicator values for evaluation. Moreover, we took
mismatches, indels, and read lengths into consideration
during aligning and mapping process.

To indicate alignment accuracy evaluation for short-
read datasets with varying error rate existing, the results
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Figure 5: Graphical representation shows alignment accuracy results using in silico short-read datasets with varying error rates. Based on
in silico short-read datasets sampled from chromosome X of H. sapiens with varying error rates (e.g., 0%, 0.2%, 0.5%, 0.8%, and 1.0%, resp.),
(a) and (b) show accuracy evaluation by sensitivity and precision, respectively. Aligners with (∗) in (b) are used to show alignment accuracy
evaluation by precision with consideration of multimapped reads.

are shown in Figure 5(a) for sensitivity and Figure 5(b)
for precision comparison. We could see that most align-
ers showed relatively high sensitivity over 98%, excluding
RMAP and GASSST. For Bowtie, Novoalign, and PerM,
their sensitivity significantly decreased as the error rate
increased (Figure 5(a)). Furthermore, Figure 5(b) also shows
that GASSST possessed outstanding performance for preci-
sion comparison and PerM, Novoalign, PASS, RMAP, and
SOAP2 presented the same level of precision followed behind
GASSST, without consideration of multimapped reads. It
was also noticed that SHRiMP2 had weak performance in

terms of precision.With consideration ofmultimapped reads,
most aligners, excluding PerM, Novoalign, PASS, RMAP,
and SOAP, were slightly increased in precision, especially
SHRiMP2.

As expected, Figure 6 shows alignment accuracy evalua-
tion for short-read datasets with fixed indel frequency (0.1%)
as the average indel sizes vary. Apparently, we found that
GASSST and PerM were confirmed to have weak perfor-
mance in sensitivity (<80%), but SHRiMP2, GenomeMap-
per, and Novoalign had relatively high sensitivity from
overall results (Figure 6(a)). In addition, it can be seen
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Figure 6: Graphical representation shows alignment accuracy results using in silico short-read datasets with varying indel sizes. Based on in
silico short-read datasets sampled from chromosome X of H. sapiens with varying indel sizes (e.g., 2 bp, 4 bp, 7 bp, and 9 bp, resp.), (a) shows
alignment accuracy evaluation by sensitivity and (b) shows alignment accuracy evaluation by precision. Aligners with (∗) as shown in (b) are
used to show alignment accuracy evaluation by precision with consideration of multimapped reads.

in Figure 6(b) that Novoalign, PASS, SOAP2, and GASSST
showed very favorable precision values, while SHRiMP2 pro-
vided the unsatisfactory precision value. However, it can also
been seen that precision was improved by almost 5% among
GASSST, mrsFAST, mrFAST, RazerS, SeqMap, GenomeMap-
per, and SHRiMP2, when multimapped reads were consid-
ered.Meanwhile, it was emphasized thatGenomeMapper and
mrFAST might not be better suited for indel calling due to
their weak accuracy in terms of both sensitivity and precision,
as indel sizes significantlyincreased.

The alignment accuracy evaluation provided by multiple
aligners supported long-read alignment with varying read
length on E. coli genome was primarily highlighted in
Figure 7. As seen in this figure, PASS, SHRiMP2, Segemehl,
and SSAHA2 had the highest sensitivity, while SOAP2,
GenomeMapper, and Bowtie presented relatively low sensi-
tivity and their sensitivity depended strictly on read length
(Figure 7(a)). Moreover, it is also clearly seen in Figure 7(b)
that GASSST showed the highest sensitivity and a significant
increase in sensitivity with increasing read lengths. It seems
that GASSST was the most robust to longer reads and
particularly useful as reads get longer.

For datasets with varying error rates, indel sizes and
read lengths existed; the results are shown in Figure 8. We
evaluated % of total multimapped reads and % of corrected
multimapped reads. As presented in Figure 8, the results
were used to confirm influence of multimapped reads on
alignment accuracy. GASSST, SHRiMP2, GenomeMapper,
SeqMap, RazerS, mrFAST, mrsFAST, Bowtie, and BOAT
could provide relatively high percentage of totalmultimapped

reads (>20%) and high percentage of corrected multimapped
reads as well when dealing with short-read datasets with
varying error rates and indel sizes, especially SHRiMP2
(Figures 8(a) and 8(b)). However, it was indicated that
these aligners could provide more information within mul-
timapped reads, and this might result in missing impor-
tant biological information without consideration of mul-
timapped reads. In contrast, when dealing with long-read
datasets with varying read lengths, the situation showed a
tremendous difference in percentage of total multimapped
reads and correctly mapped multimapped reads. Less infor-
mation was provided by all the aligners within multimapped
reads for long-read aligning and mapping. The results are
shown in Figure 8(c).

3. Conclusions

Currently, optimal aligners have been called for the variety of
applications and specific types of data-basedNGS technology.
This study aims to systematically evaluate and compare the
capability of multiple aligners to provide guiding resource for
choosing suitable aligners dependent on the user’s specific
research aims with NGS data. We evaluated multiple aligners
based on criteria, including application-specific alignment
feature, computational efficiency, and alignment accuracy.
To assess the multiple aligners, real-life short-read datasets
and long-read datasets sampled from various organisms
and in silico datasets with varying error rates, indel sizes,
and read lengths were considered as standard datasets for
different applications and sequencing technologies. Table 4
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Figure 7: Graphical representation shows alignment accuracy results using in silico long-read datasets with varying read lengths. Based on in
silico long-read datasets sampled from E. coli at different lengths of 300 bp, 450 bp, 600 bp, 750 bp, and 1000 bp, evaluated by 8 aligners (e.g.,
GASSST, Bowtie, SOAP2, PASS, SSAHA, SHRiMP2, GenomeMapper, and Segemehl), (a) shows alignment accuracy evaluation by sensitivity
and (b) shows alignment accuracy evaluation by precision.

provided the overall summary on aligning and mapping
evaluations in terms of computation speed, memory usage,
and accuracy as well. It is concluded that Bowtie, BWA,
and SOAP2 clearly show high computational efficiency in
single-thread mode and increasing trend of computation
efficiency in multi-thread mode on real-life datasets. How-
ever, PerM and Novoalign show outstanding performance
on improving computation efficiency by adjusting thread
mode automatically and indexing read datasets, respectively.
Indeed we conclude that they can be suitable and efficient
aligners for short-read aligning andmapping. It is also shown
that memory usage requirements of Bowtie, BWA, BOAT,
mrsFAST, and SOAP2 are relatively low both in single-
thread mode and multithread mode and their memory usage
requirements are kept low regardless of the number of reads
and the size of genomes. Moreover, it could be seen that
GenomeMapper, Novoalign, and SHRiMP2 show high sen-
sitivity, while GASSST, Novoalign, PASS, and SOAP2 show
high precision when dealing with mismatch and indel errors
existed in simulated datasets. With high alignment accuracy
evaluation obtained from in silico datasets, we conclude that
GASSST, PerM, Novoalign, PASS, RMAP, and SOAP2 can
be better choices, since they possess high accuracy without
indels for ungapped alignment, while Novoalign, PASS, and
SOAP2 have high accuracy with indels for gapped alignment.

In particular, GASSST can be a candidate aligner for long
reads aligning and mapping. In addition, it is implied that
Novoalign and Segemehl can be representative aligners to
apply for wide applications, such as gapped alignment for
SNPs and structural variation discovery, paired-end align-
ment for mapping of repetitive region, bisulfite alignment
for ChIP sequencing data analysis, and SNPs calling. Finally,
we believe that our evaluation will be a benefit for biolo-
gists engaged in variety of genomics researches. The overall
evaluation and comparison of multiple aligners for NGS data
analysis might serve as an essential recommendation for
suitable selection of aligners.

4. Methods

Thepipeline of the whole procedure in this study is illustrated
in Figure 9. We collected 25 unspliced read aligners devel-
oped for NGS data from different websites and published
articles (Supplementary File 1). Notably, spliced read aligners
were not taken in this evaluation and comparison because
they were primarily used to map the reads from exon-exon
junctions, which were specific algorithm for RNA-Seq [43].
However, the aligners with any extra mandatory, whichmade
them unavailable for most of biologists, were not taken into
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Figure 8: Graphical representation shows impact of totalmultimapped reads and correctedmultimapped reads on alignment accuracy results
using in silico datasets. (a), (b), and (c) show % of total multimapped reads and % of corrected multimapped reads for in silico datasets with
varying error rates, indel sizes, and read lengths, respectively.

account. For example, SOAP3 [44] depended on a CUDA-
enabled GPU, CloudBurst [45] required cloud computing,
and ZOOM [33] was commercial version. Therefore, 19
favorable aligners were eventually considered for further
evaluation and comparison process. Details of the selected

aligners are shown in Supplementary File 2. Supplementary
File 3 shows the number of citation papers associated with
each aligner in order to provide the information of the
popularity. In the following, we describe evaluation and
comparison of the multiple aligners.
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4.1. Evaluation and Comparison of the Multiple Aligners

4.1.1. Literature Searching and Programming Implementation
for Application-Specific Alignment Features Evaluation. To
evaluate application-specific alignment features, at the begin-
ning, we performed literature searching to grasp and compare
the alignment algorithms of 19 favorable aligners. Based on
principal common characteristics of alignment algorithms
sharing by multiple aligners, we then classified these aligners
into two different algorithms applied, namely, hash table-
based algorithm and BWT-based backtracking algorithm.
However, information about important alignment features or
characteristics of the multiple aligners is essential for various
genomewide association studies. To collect and evaluate
application-specific alignment features, we manually mined
literature and other documentation and inspected the source
code for individual aligner. Moreover, we implemented our
own programming for individual aligner according to its
alignment features as well.The application-specific alignment
features were considered as follows: multithread, gapped
alignment analysis, paired-end alignment analysis, trimming
alignment analysis, and bisulfite alignment analysis.

4.1.2. Using Real-Life Data for Accessing Computational Per-
formance. To evaluate computational performance for dif-
ferent practical applications, we used 3 real-life long-read
datasets from Roche 454 sequencing platform and 7 real-
life short-read datasets from Illumina sequencing platform
as representative input. They were sampled from vari-
ous organisms, namely, virus PhiX174 (1 dataset), bacteria

Escherichia coli (1 dataset), yeast Saccharomyces cerevisiae
(4 datasets), fruit fly Drosophila melanogaster (1 dataset),
plant Oryza sativa (1 dataset), and human Homo sapi-
ens (2 datasets). They were downloaded from National
Center for Biotechnology Information (NCBI) Short-Read
Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/). In addi-
tion, the reference genome sequences were obtained from
NCBI (http://www.ncbi.nlm.nih.gov/) and UCSC Genome
Browser Home (http://genome.ucsc.edu/). The description
of real-life datasets from different sequencing platform was
detailed in Tables 2 and 3.

Besides input data used for evaluation, computer hard-
ware requirements and determined parameters setting were
also concerned. For computer hardware platform, we used a
large-memory server with a four-core 2.4GHzAMDOpteron
processor and a maximum of 32GB of RAM. For parameters
setting, two mismatches were allowed within a full read
length without considering any insertions and deletions
(indels) during the mapping process of Illumina short-read
datasets, while gapped alignment was allowed considering
indels during the mapping process of Roche 454 long-
read datasets, since indel frequency is extremely low within
short-read datasets produced by Illumina sequencing plat-
form instead of long-read datasets produced by Roche 454
sequencing platform. In addition to the default parameter
values, the other parameters for each aligner were applied
in an attempt to achieve parameter optimization. To account
for threading when assessing computational efficiency, we
employed all the aligners to perform aligning process in
single-thread mode without any competition and we also

http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/
http://genome.ucsc.edu/
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Table 5: Parameters setting for in silico data: read lengths, error rates, indel sizes, indel freq.

Accuracy Evaluation Read length (bp) Read number Error rate (%) Indel size (bp) Indel freq. (%)
Mismatch factor 50 5000000 0, 0.2, 0.5, 0.8, 1.0 0 0
Indel factor 50 5000000 0 2, 4, 7, 9 0.1
Read-length factor 300, 450, 600, 750, 1000 1000000 0.5 4 0.1

were careful about some aligners supported multiple threads
function to accelerate computation speed; thus these aligners
were evaluated and compared in three-thread mode without
any competition.

Computational performance was evaluated by consider-
ation of three factors: computation time, maximummemory
usage, and mapped read counts. These three factors mainly
used to measure computational efficiency, hardware avail-
ability, and qualified read density. To obtain computation
time, wall-clock time was computed for each computational
process with excluding index time. Since computation time
was slightly affected by computational condition of the
hardware,minor discrepancy appeared definitely during each
computational process. Thus, we chose the set of results
under relatively stable computational process as representa-
tive results across multiple runs.

To record maximummemory usage, we developed a tool
written by Python (Supplementary File 4) to monitor each
programming process and then reported maximummemory
usage percentage of our server’s memory (32G). For mapped
read counts, not only we considered uniquely mapped reads
but also multimapped reads were included in the mapped
reads to provide a rough perspective of alignment sensitivity
for each aligner.

4.1.3. Using In Silico Data for Accessing Alignment Accuracy.
To access capability of individual aligner, we evaluated
not only computational performance but also alignment
accuracy. It has limitations to use real-life data for access-
ing alignment accuracy, since true alignment locations are
unknown.Hereby, we therefore wrote a Perl script to generate
in silico data by computational simulation (Supplementary
File 5). Concerning influence of mismatches, indels, and read
lengths, in silico datasets were therefore generated according
to the characteristics as listed in Table 5. The characteris-
tics included read lengths, read counts, sequencing error
rates, indel sizes, and indel frequency. Once the simulating
completed, 9 in silico short-read datasets from chromosome
𝑋 of H. sapiens were achieved. In addition to short-read
datasets, we also simulated 5 long-read datasets from E. coli
with different lengths. Besides in silico data, computer hard-
ware requirements were similarly determined as previously
described for accessing computational performance section.
Exceptionally during the mapping process, parameters (e.g.,
maximum allowed mismatches and indels) were set upon
own datasets feature. Finally, we measured the alignment
accuracy of different aligners in terms of sensitivity and
precision. The formula is shown as follows:

Sensitivity = TP
FP + FN

Precision = TP
TP + FP

. (1)

In addition, we further tookmultimapped reads into con-
sideration, which were ambiguously mapped. Multimapped
reads existing in alignment results frequently cause difficulty
for the biologists to choose their real locations. This may
result in missing some biological information. Thus, % of
multimapped and % corrected of multimapped are thus
applied as new criteria to access the capability of these
aligners as follows:

% Total multi-mapped reads

=

multimapped reads
multimapped reads + unique mapped reads

,

% Corrected multimapped reads

=

Corrected multimapped reads
multimapped reads

.

(2)
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