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The innate immune system is the first line of host defense against infection and is com-
prised of humoral and cellular mechanisms that recognize potential pathogens within
minutes or hours of entry. The effector components of innate immunity include epithe-
lial barriers, phagocytes, and natural killer cells, as well as cytokines and the complement
system. Complement plays an important role in the immediate response against microor-
ganisms, including Streptococcus sp. The lectin pathway is one of three pathways by
which the complement system can be activated. This pathway is initiated by the binding
of mannose-binding lectin (MBL), collectin 11 (CL-K1), and ficolins (Ficolin-1, Ficolin-2, and
Ficolin-3) to microbial surface oligosaccharides and acetylated residues, respectively. Upon
binding to target molecules, MBL, CL-K1, and ficolins form complexes with MBL-associated
serine proteases 1 and 2 (MASP-1 and MASP-2), which cleave C4 and C2 forming the C3
convertase (C4b2a). Subsequent activation of complement cascade leads to opsonization,
phagocytosis, and lysis of target microorganisms through the formation of the membrane-
attack complex. In addition, activation of complement may induce several inflammatory
effects, such as expression of adhesion molecules, chemotaxis and activation of leuko-
cytes, release of reactive oxygen species, and secretion of cytokines and chemokines. In
this chapter, we review the general aspects of the structure, function, and genetic poly-
morphism of lectin-pathway components and discuss most recent understanding on the
role of the lectin pathway in the predisposition and clinical progression of Rheumatic Fever.

Keywords: lectin pathway, complement system, MBL, ficolins, gene polymorphisms

COMPLEMENT SYSTEM: AN OVERVIEW
The high complexity of the human immune system provides
not only effective defense against an impressive number of
pathogens but also protection to undesirable response against
self-components. The immune system is classically divided in two
parts, the innate and the adaptative, which are wide-ranging and
interconnected. The innate immune system provides an immedi-
ate and non-specific first line defense through humoral, cellular,
and mechanical processes, playing a vital role in protection against
pathogenic challenge (1). The complement system is an essential
part of the innate immune system, with three overlapping roles:
defense against infection, clearance of immune complexes and cell
debris, and link between innate and adaptative immunity (2).

The complement system consists of more than 35 plasma
proteins and cell surface complement receptors and regulatory
proteins. Most of the soluble proteins circulate in functionally
inactive forms as proenzymes or zymogens (3). Upon proteolytic
cleavage, inactive molecules become activated resulting in a prote-
olytic cascade that elicits a number of effector functions including
phagocytosis, inflammation, cell lysis, and guidance of the adap-
tative immune response (Figure 1) (4). Since activation of com-
plement leads to potentially destructive effects, several inhibitors
tightly regulate this system in order to protect host tissues (5).
Thus, an effective performance of the complement system depends

on balancing regulatory and activation mechanisms, focused on
destroying invading microorganisms and limiting damage of host
cells and tissues. The imbalance on this fine equilibrium leads to
harmful effects to the host, with potentially severe outcomes (2).

The activation of complement can take place on the surface
of pathogens or damaged/infected cells by three distinct but con-
verging cascade pathways: classical, alternative, and lectin. All three
pathways are initiated by multiple stimuli independently from each
other and subsequently the proteolytic cascades converge toward
the activation of the major component C3, which results in the
assembly of the membrane-attack complex (MAC) (Figure 2) (5).
The activation of the classical pathway is initiated on immune
complexes by the binding of C1q to Fc portion of IgM or IgG (6,
7). On the other hand, the activation of the alternative pathway
occurs by spontaneous hydrolysis of C3 in plasma (6). Similarly
to the alternative pathway, the lectin pathway may be activated in
the absence of immune complexes. It is initiated by the binding of
pattern-recognition plasma molecules such as mannose-binding
lectin (MBL), collectin 11 (CL-K1), or ficolins to carbohydrates or
acetylated residues present on microorganisms or to aberrant gly-
cocalyx patterns on apoptotic, necrotic, or malignant cells (7). The
lectin pathway also plays a role in the coagulation system through
the binding of MBL–MBL-associated serine proteases (MASPs) or
ficolin–MASPs complexes to fibrinogen or fibrin (8).
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FIGURE 1 | Biological functions of the complement system.
Inflammation: the activation of the complement system generates many
anaphylatoxins, among which C3a, C4a, and C5a. The binding of C3a, C4a,
and C5a to receptors on mast cells and basophils leads to the release of
histamine and other vasoactive mediators. In response to the activation by
anaphylatoxins, neutrophils release prostaglandins (PG), reactive oxygen
and nitrogen species (ROS and RNS, respectively) as well as increase the
expression of adhesion molecules, and chemokinesis. Monocytes and
macrophages show similar response and secrete interleukins 1 and 6 (IL-1
and IL-6). Phagocytosis: iC3b, C4b, and mainly C3b coat microorganisms
and immune complexes, having opsonizing activity. Neutrophils and
macrophages express complement receptors (CR1, CR2, and CR4), which
bind C3b, C4b, and iC3b. This promotes the adherence of the
microorganism to phagocytic host cells leading to phagocytosis. B cell
activation and differentiation: the recognition of C3-tagged antigen plays

an important role in B cell activation and differentiation. Cross-linking
between complement receptor 2 (CR2) and B cell receptor (BCR) through
C3d–antigen complexes lowers the threshold of B cell activation leading to
migration, T cell/B cell interaction and antibody class-switch. Cell lysis:
specific antibodies, MBL/ficolins, and spontaneous hydrolysis of C3 activate
the complement on the surface of infectious microorganisms and lead to
the formation of membrane-attack complexes (MAC), which cause their
lysis. Immune complex clearance: immune complexes activate the
complement system. The generated C3b binds to the complexes and to
CR1 present on the surface of erythrocytes. During erythrocyte traffic
through sinusoids in liver and spleen, resident phagocytes remove bound
immune complexes leading to their clearance. Apoptotic cell removal:
Mannose-binding lectin, ficolins and C1q bind debris of apoptotic cells,
which are subsequently removed through binding to the C1qR and CR1
receptors on phagocytic cells.

LECTIN PATHWAY OF COMPLEMENT ACTIVATION
The lectin pathway is initiated when pattern-recognition mole-
cules (MBL, CL-K1, and ficolins) bind to the so-called pathogen-
associated molecular patterns (PAMPs) (D-mannose, N-acetyl-D-
glucosamine, or acetyl groups), on the surface of pathogens or to
apoptotic or necrotic cells (9).

Circulating MBL, CL-K1, and ficolins form complexes with
two dimers of MASPs, MASP-1 and MASP-2. After the binding of

MBL/MASPs, CL-K1/MASPs, or ficolin/MASPs complexes to their
targets, MASP-1 can auto-activate and trigger MASP-2 (10), lead-
ing to C4 and C2 cleavage. This allows the assembly of the C3 and
C5 convertases, with subsequent activation of C3 and C5, respec-
tively, and generation of C3a and C5a, two pro-inflammatory
anaphylatoxins that increase the inflammatory response. The frag-
ment C3b binds covalently to hydroxyl and amino groups on the
surface of target molecules of all three pathways. In the absence of
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FIGURE 2 |The three pathways of complement activation: classical,
lectin, and alternative pathways. The classical pathway is initiated via
binding of C1 complex (which consists of C1q, C1r, and C1s molecules)
through its recognition molecule C1q to antibody complexes on the surface
of pathogens. Subsequently, C1s cleaves C4, which binds covalently to the
pathogen surface, and then cleaves C2, leading to the formation of C4b2a
complex, the C3 convertase of the classical pathway. Activation of the lectin
pathway occurs through the binding of the complex of mannose-binding
lectin (MBL), CL-K1 or ficolins, and MBL-associated serine proteases 1 and 2
(MASP-1 and MASP-2, respectively) to various carbohydrates or acetylated
residues on the surface of pathogens (PAMP, pathogen-associated
molecular pattern). Like C1s, MASP-2 leads to the formation of the C3
convertase, C4b2a, but its activation is dependent on MASP-1. MASP-1 also
cleaves C2 and C3. Activation of the alternative pathway depends on
spontaneous low-grade hydrolysis of C3 in plasma leading to the formation

of C3b. This C3b binds factor B (homologous to C2) to form a C3bB
complex. The cleavage of factor B by factor D form the alternative pathway
C3 convertase, C3bBb. Properdin stabilizes this complex. The C3
convertases cleave C3 to C3b, which binds covalently next to the site of
complement activation (opsonization). This amplifies the cascade and
mediates phagocytosis, as well as adaptative immune responses. The
addition of further C3b molecules to the C3 convertase forms C5
convertases (C3bBbC3b for the alternative pathway or C4bC2aC3b for both
classical and lectin pathways), initiating the assembly of the
membrane-attack complex (MAC) by cleavage of C5 to C5a and C5b.
Whereas C5a functions as a potent anaphylatoxin, C5b forms a complex
with C6 and C7, which is inserted in the cell membrane. Thereafter, C8 and
10–18 C9 molecules (80×55 Å each) bind to this complex, resulting in a fully
functional MAC (C5b-9). The three pathways converge to this common
terminal pathway, culminating with cell lysis and death.

complement regulatory proteins, a powerful amplification in the
number of surface-bound C3b molecules takes place through the
alternative pathway. In this amplification loop, factor B binds to the
attached C3b and is cleaved by factor D generating the alternative

pathway C3 convertase C3bBb, which leads to accelerated C3b
formation (11, 12). C3b tags antigens/pathogens for opsonization
and antigen presentation or killing by phagocytes through the
interaction with complement membrane receptors CR1, CR2,
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CR3, and CR4, and the immunoglobulin superfamily member
CRIg (13). Finally, the complement cascade culminates with the
formation of the multiprotein complex (C5b, C6, C7, C8, and
C9n) known as terminal complement complex or MAC, which are
inserted as pores of up to 11 nm into the cell membrane induc-
ing loss of membrane integrity and ultimately cell death (14, 15)
(Figure 2).

The following topics will cover the main components of the
lectin pathway, their functions, polymorphisms, and relevance on
the susceptibility to rheumatic fever (RF) and rheumatic heart
disease (RHD).

MANNOSE-BINDING LECTIN
Mannose-binding lectin is a central recognition molecule of the
lectin pathway, synthesized in liver cells and secreted into blood-
stream as high molecular weight multimeric complexes (16). It
is a member of the collectin family of proteins, sharing collagen,
and carbohydrate-recognition domains (CRD). MBL is known as
a C-type lectin due to the ability to recognize sugar moieties in
a Ca2+-dependent manner, and is also referred as “defense colla-
gen” because of the important role in the innate immunity and
pathogen clearance (17).

Mannose-binding lectin is basically formed by a trimer of
identical polypeptide chains, each containing a cysteine-rich N-
terminal domain, a collagen-like region, an alpha-helical coiled-
coil neck domain, and a C-terminal CRD (18). The three chains
are associated by disulfide bonds and form the structural unit of
MBL, which, in turn, polymerize into higher-order MBL oligomers
(19) (Figure 3). Single MBL trimers are not fully functional, in
contrast to dimers and higher-order oligomers, with tetramers
predominating in the circulation (20). The recognition and bind-
ing of MBL to its ligands occurs through the CRD domain, and
the oligomeric configuration confers multivalent and high avidity
binding to targets (21, 22).

Mannose-binding lectin recognizes repetitive arrays of car-
bohydrate structures on pathogenic organisms such as viruses,
bacteria, fungi, protozoans, and multicellular parasites as well as
on apoptotic/tumoral cells (23–27). And despite its name, MBL
does not bind selectively only mannose or its multimers, but rather
recognizes sugars with 3- and 4-OH groups placed in equatorial
plane of the sugar ring, which include glucose, L-fucose, N -
acetylmannosamine (ManNAc), and N -acetylglucosamine (Glc-
NAc), but not galactose (28). MBL can further bind phospholipids
(29), nucleic acids (30), and non-glycosylated proteins (31).

After binding to targets, MBL induces several biological
effects such as complement activation by the lectin pathway,
opsonophagocytosis, modulation of inflammation, and recogni-
tion of altered self-structures (32). In addition, MBL may modu-
late cytokine production at both mRNA and protein levels (33).

Mannose-binding lectin also plays a role in the clearance of
apoptotic cells by recognizing damage-associated molecular pat-
terns (DAMPs) (34). By binding to terminal sugars of cytoskeletal
proteins in apoptotic cells, MBL mediates their recognition and
phagocytosis by macrophages leading to their clearance. In fact,
both C1q and MBL facilitate the binding of apoptotic cells to
immature dendritic cells as well as to macrophages (27). Defects
in the clearance of apoptotic cells have been implicated in the
pathogenesis of some autoimmune conditions, although the pre-
cise role of MBL in this process remains unknown. Experiments
using MBL-deficient mice showed impaired removal of apoptotic
cells but no relation to autoimmune disease (35).

MBL SERUM LEVELS AND MBL2 GENE POLYMORPHISMS
Mannose-binding lectin is encoded by the MBL2 gene, located
on the long arm of chromosome 10 (10q11.2–q21) (36). It is
considered an acute-phase reactant (37), whose levels can increase
up to threefold during the acute-phase response, mainly due to
up-regulation by acute-phase mediators (38). MBL serum levels

FIGURE 3 | Structural subunits of mannan-binding lectin (MBL) and
ficolins. Both MBL and ficolins contain a short N-terminal cysteine-rich region
followed by a collagen-like sequence [length given in number of amino acids
(aa)]. The C-terminal region is a carbohydrate-recognition binding domain for
MBL (shown as oval forms) and a fibrinogen-like domain for ficolins (shown as
tulip forms). The polypeptides interact through its collagen-like region forming

triple helices (trimers), which further associate into higher oligomeric
arrangements (tetramers to hexamers). Despite the very different structures,
ficolin polypeptides and trimers interact in the same way as MBL, forming
high oligomeric forms (tetramers). MBL-associated serine proteases interact
with the collagen-like region, thereby activating the lectin pathway of
complement.
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range from a few nanogram per milliliter to more than 10 µg/ml,
with a mean value of around 0.8 µg/ml (39). However, MBL levels
are largely dependent on MBL2 genetic polymorphisms, which are
responsible for inter-individual variations of up to 10-fold on cir-
culating MBL levels (40, 41). Besides genetic variation, MBL levels
may also vary significantly during lifetime (42–44).

Mannose-binding lectin deficiency is fairly common, affect-
ing approximately 8–10% of individuals and usually defined as
≤100 ng/ml in the circulation (45, 46). MBL deficiency is more
harmful when there are additional co-existing immune defects
(47), since the majority of MBL-deficient individuals are essen-
tially healthy (48). MBL deficiency has been associated with upper
respiratory tract infections in young children and with the sus-
ceptibility to severe infections in patients receiving chemotherapy
(45). However, it may be beneficial in infections due to intracellu-
lar pathogens, such as Mycobacterium spp. and Leishmania chagasi,
which use C3 opsonization and C3 receptors to invade host cells
(49–52).

MBL2 is a highly polymorphic gene, exhibiting variants respon-
sible for large variations in both MBL levels and functional activity
(53–57). These variants include SNPs located in the first exon of
MBL2 gene, being at least one synonymous SNP (on codon 44 for
asparagine) and eight non-synonymous variants (including B, C,
and D, which are detailed in the next paragraph). At least other
three SNPs located in the promoter region of the MBL2 gene also
have influence on MBL levels, called MBL2*H and L alleles (due
to a polymorphism located at −550 bp), X and Y alleles (a SNP
at−221 bp) and P and Q alleles (a non-coding SNP at+4 bp), all
positions counted from the transcription start site (58, 59).

In 1991, Sumiya et al. sequenced the complete MBL2 gene
in three British children with recurrent bacterial infections and
low MBL levels. All of them had the B allele (an exon 1 point
mutation at codon 54, changing GGC to GAC and causing an
amino acid change of glycine to aspartic acid – p.Gly54Asp) (60).
Others subsequently found two other deficiency-causing common
substitutions, allele D in codon 52 (CGT to TGT ), changing argi-
nine to cysteine (p.Arg52Cys) and allele C, in codon 57 (GGA to
GAA), substituting glycine for glutamic acid (p.Gly57Glu) (61)
(Figure 4). Exon 1 mutations dramatically reduce protein assem-
bly and stability, increasing the amount of poorly oligomerized
MBL with reduced capacity of complement activation and ligand
binding in homozygous (e.g., B/B) or compound heterozygous
(e.g., B/C) carriers (18). The wild allele at these loci is called A,
whereas D, B, and C alleles have been collectively called 0. While
0/0 individuals have near undetectable levels of high-order MBL
oligomers, A/0 individuals may present reduced plasma protein
levels (61, 62). In addition, a promoter variant 221 bp before the
start of transcription site, with X and Y alleles (g.602G > C),
markedly decreases levels of otherwise fully functional MBL
proteins.

FICOLINS
Similarly to MBL, ficolins are pattern-recognition receptors
that are able to associate with MASPs and activate the com-
plement system through the lectin pathway, having an essen-
tial role in the immune defense against clinically important
pathogens. Besides activating complement, they limit infection

FIGURE 4 | Common polymorphisms in the MBL2 gene and its
corresponding locations in the MBL protein. Only the functional
polymorphisms in the promoter and non-synonymous mutations are shown
[SNP database and Boldt et al. (161)]. Exons are numbered. Exons, introns,
and protein domains are not in scale. N, N-terminal region; COL,
collagen-like region; CRD, carbohydrate-recognition domain.

by stimulating the secretion of interferon gamma (IFN-γ), IL-17,
IL-6, tumor necrosis factor alpha (TNF-α), and nitric oxide (NO)
by macrophages (63).

Ficolins form oligomers of four structural subunits joined
together via disulfide bridges at the N-terminal regions, similarly
to MBL, but higher or smaller oligomers seem to be less common
for ficolins (21). They should not be referred as lectins (mean-
ing that carbohydrates are the preferred ligands for lectins), since
they target acetylated compounds relatively independently of the
structure of the acetylated molecule (64).

Three human ficolins have been described, each encoded by
its own gene. Ficolin-1 can be found attached to cell membrane
or soluble in plasma, with a concentration of 0.05–1.0 µg/ml.
It is also found in the secretory granules of monocytes, gelati-
nase granules of neutrophils, and type II alveolar epithelial cells
(65–68). Ficolin-1 recognizes common acetylated compounds,
including GlcNAc and GalNAc (63, 67, 69, 70) binding to several
microorganisms including Gram-positive (Staphylococcus aureus)
and Gram-negative bacteria (Salmonella typhimurium LT2) (67,
69). It is the only human ficolin able to bind to sialic acid, found
on capsular polysaccharides of some pathogens such as Strepto-
coccus agalactiae as well as on the surface of immune cells. Thus,
Ficolin-1 is supposed to play a role in the modulation of immune
cell interaction (71) and in blood coagulation and/or fibrinoly-
sis (72). Importantly, Ficolin-1 and pentraxin-3 heterocomplexes
act as non-inflammatory signals, promoting clearance of altered
self-cells and modulating IL-8 production (73).

FCN1 gene is located on chromosome 9q34 (74) and con-
tains nine exons. Among the several SNPs described for the FCN1
gene, at least eight are associated with Ficolin-1 levels, four of
them located in the promoter and in the first exon (74). These
polymorphisms are partly responsible for the wide range (up

www.frontiersin.org January 2015 | Volume 2 | Article 148 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Pediatric_Cardiology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Beltrame et al. Lectin pathway and rheumatic fever

to 15-fold) of inter-individual variability in Ficolin-1 plasma
concentrations (66). FCN1 polymorphisms were associated with
increased fatal outcome in patients with systemic inflammation
(75) and to the susceptibility to rheumatoid arthritis (76). Low
Ficolin-1 levels have been associated with a 12-fold increased risk
of fatal necrotizing enterocolitis, and with need for mechanical
ventilation (77), as well as with occurrence of severe infections in
cancer patients undergoing chemotherapy (78).

Ficolin-2 is a plasma protein, which is mainly produced in
the liver (79), but low mRNA levels were also found in the
bone marrow, intestine, tonsils, and fetal lung (80). In Europeans,
the median plasma concentration is around 5 µg/ml, with inter-
individual variations ranging from 1 to 12 µg/ml (81). Ficolin-2 is
able to bind N -acetylated molecules, such as Acetyl-d-glucosamine
(GlcNAc), N-acetylgalactosamine, and N -acetyllactosamine (71,
82), as well as artificially acetylated compounds (83). It binds also
N -acetylneuraminic acid present on encapsulated opportunistic
pathogens such as Group B streptococci (Streptococcus agalactiae)
(84), bacterial peptidoglycan (PGN), fungal 1,3-beta-D-glucan
(85), and envelope glycoproteins of hepatitis C virus (86). In addi-
tion, Ficolin-2 was shown to bind to Mycobacterium bovis (87) and
flagellated protozoa including Giardia intestinalis (88) and Try-
panosoma cruzi (89) and to interact with C-reactive protein, sta-
bilizing its binding to bacteria and thereby activating complement
(63, 90).

FCN2 gene is located on chromosome 9q34.3 (79), with three
SNPs in the promoter region and one in exon 8 being associated
with variation in Ficolin-2 plasma levels:−986G > A,−602G > A,
and −4A > G and p.Ala258Ser, while two other SNPs, at posi-
tions−557 and−64, appear not to influence gene expression (91,
92). Ficolin-2 insufficiency (<1,200 ng/ml) (93) has been associ-
ated with bronchiectasis and respiratory infection especially when
co-existing with atopic disorders (94–96), but did not affect sus-
ceptibility to invasive pneumococcal disease (97). Low Ficolin-2
levels were also related with prematurity, low birth weight, and
perinatal infections in neonates from Poland (98) and with the
susceptibility to chronic Chagas disease (99). And although not
associated with the development of malaria, children with severe
malaria presented higher levels of Ficolin-2 than children with
the mild form of the disease (100). On the other hand, FCN2
polymorphisms associated with normal Ficolin-2 levels had a
protective effect against the susceptibility to leprosy (101).

Ficolin-3 is the most abundant recognition molecule of
the lectin-pathway with a mean plasma concentration around
18.4 µg/ml (102), varying approximately 10-fold among individ-
uals (3–54 µg/ml) (103). Ficolin-3 was found highly expressed in
the liver and lung tissues, indicating its significance in both activa-
tion of the lectin pathway and pulmonary host defense (80, 104).
For that reason, Ficolin-3 is considered to play an important role in
both systemic and local innate immune responses (80, 105, 106).
Ficolin-3 was shown to recognize acetyl groups present in a wide
range of microorganisms, including Salmonella typhimurium, Sal-
monella minnesota, Escherichia coli, and Aerococcus viridans (107,
108). It was also shown to share binding sites with Ficolin-2 and
MBL on the surface of Giardia intestinalis (88). Furthermore,
Ficolin-3 may mediate the clearance of late apoptotic cells and
may have a beneficial role against autoimmunity (109, 110).

FCN3 gene is located on chromosome 1p36.11 and is highly
conserved in humans. Five amino acid exchanges were described,
all with allele frequencies below 5%: p.Leu12Val, p.Leu117fs,
p.Thr125Ala, p.Glu166Asp, and p.Val287Ala (80). This high con-
servation indicates that Ficolin-3 might exert crucial function in
the immune response. Indeed, Ficolin-3 insufficiency is extremely
rare (111) and was found associated with necrotizing enterocolitis
in premature neonates (112).

MBL-ASSOCIATED SERINE PROTEASES
MBL-associated serine proteases act as activators of the lectin path-
way upon binding of MBL, ficolins, and CL-K1 to carbohydrates
or acetyl groups on the surface of pathogens or altered self-tissues
(4). So far, five proteins have been identified, including three MASP
enzymes (MASP-1, MASP-2, and MASP-3) and two truncated pro-
teins, MAp19 and MAp44, which lacks the serine protease domain
and consequently, functional activity (113, 114). All MASPs are
capable to associate with MBL, ficolins, and CL-K1 in the presence
of Ca2+, forming a proteolytic complex (39).

Both MASP-1 and MASP-2 play a crucial role in the activation
of lectin pathway. Recent studies showed that MASP-1 can auto-
activate and lead to MASP-2 activation (115, 116). MASP-2 can
also auto-activate, but under physiological conditions, MASP-1 is
the essential MASP-2 activator (39). MASP-2 is a protease that
cleaves very efficiently C4 and C2, generating C3 convertase (113,
117). On the other hand, MASP-3 seems to attenuate the lectin-
pathway activity due to competition for MASP binding sites on
the recognition molecules (118). In addition, MASP-3 occurs pre-
dominantly complexed with Ficolin-3 and is thought to have an
inhibitory effect on complement activation mediated by Ficolin-3
(119). MASP-3 also participate on developmental processes (120).
The roles of MAp19 and MAp44 are still not well understood,
but MAp44 was shown to negatively regulate the lectin pathway
by competing for the same binding sites of MASP-2 and MASP-1
(121, 122).

MASP-1 was the first MASP to be reported (123). While MASP-
1 and MASP-2 are produced mainly in the liver and present in
plasma at 11 and 0.4 µg/ml, respectively (124, 125), MASP-3 is
produced in several other tissues besides the liver (118). All three
MASPs are structurally similar to each other and to both C1r and
C1s. MASP-1, MASP-3, and MAp44 are codified by MASP1 gene
on chromosome 3q27–q28 and MASP-2 and MAp19 are encoded
by MASP2 gene located on chromosome 1p36.23–31 (119, 121,
126, 127). Some polymorphisms on MASP1 and MASP2 genes lead
to changes in serum levels and functions of MASPs, thereby influ-
encing complement activation by the lectin pathway (128, 129).
Ammitzbøll et al. found 10 SNPs in the MASP1 gene that were asso-
ciated with serum levels of MASP-1, MASP-3, and MAp44 (130).

MASP1 polymorphisms were associated with 3MC syndrome
(131–133) and to Pseudomonas aeruginosa colonization in cystic
fibrosis patients (134). Moreover, MASP levels (MASP-1, MASP-
2, and MASP-3) were shown as a predictor for infection and
prolonged dependency of intensive care in critically ill children
(135). On the other hand, MASP2 polymorphisms were associated
with the susceptibility to leprosy (136), human T lymphotropic
virus infection (137), malaria (138), Chagas disease (139), bacte-
rial infections (140), and hepatitis C (141). MASP-2 levels have
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been related also with a number of diseases, including schizo-
phrenia (142), septic shock (143), acute lymphoblastic leukemia,
non-Hodgkin lymphoma, central nervous system tumors (144),
colorectal cancer (145, 146), among others. Taken together, these
studies have provided evidence for an emerging and important
biological role of MASPs in human diseases.

LECTIN PATHWAY IN RF AND RHD
The lectin pathway appears to be involved in the pathophysiology
of different cardiac conditions (147), sometimes with opposite
roles or even ambiguous functions. Although low MBL pro-
ducing genotypes were associated with coronary artery disease
in American Indians (148), elevated MBL levels were associated
with an increased risk of future coronary artery disease in men,
but not in women, in the United Kingdom (149). In addition,
MBL was shown to have an ambiguous role in the development
of coronary artery lesions in Kawasaki disease, being protec-
tive in infants but potentially harmful in older patients (150).
A protective role for high MBL levels were reported in myocar-
dial infarction, particularly in diabetes (151), and MBL2 variants
related to functional MBL deficiency were shown to increase by
twofold the risk of myocardial infarction in healthy individuals
(152). Also, MBL levels measured 1 month after acute myocar-
dial infarction were inversely associated with the incidence of
reinfarction, suggesting that low MBL levels could predispose
to ischemic events (153). However, experimental studies showed
involvement of MBL in ischemia/reperfusion injury, probably due
to its ability to recognize altered self-structures, thereby mediating
complement activation (154, 155). Absence of MBL/MASP path-
way activation has protected against tissue damage and preserve
cardiac function in these disease models (154). In addition, inhi-
bition of MBL by monoclonal antibodies decreased significantly
the infarcted size and tissue injury by limiting neutrophil infiltra-
tion and gene expression of pro-inflammatory mediators (155). In
fact, increasing evidence is indicating a pro-inflammatory role for
MBL in chronic diseases and situations where there is undesirable
complement activation and tissue injury (49–51).

Ficolins and MASPs were found to play a role as well in myocar-
dial infarction. Ficolin-2 and Ficolin-3 levels were associated with
left ventricular dilatation after myocardial infarction (156) and
with advanced heart failure and outcome, respectively (157).
Recent study involving all MASPs showed that MASP-1 levels
were highest in subacute myocardial infarction and lowest in acute
stroke patients, while MASP-2 levels were low in both conditions
and MASP-3 and MAp44 levels did not differ between the groups.
On the other hand, MASPs and MAp44 levels were associated
with cardiovascular risk factors including dyslipidemia, obesity,
and hypertension in patients with stable coronary artery disease
(158). Moreover, MASP-2 levels were found significantly reduced
in myocardial infarction, probably due to the activation of the
lectin pathway during acute myocardial ischemia (159).

Despite the important role of the lectin pathway in complement
activation and host defense against infection and autoimmunity,
studies on the significance of components of this pathway in RF
and RHD are still scarce. Different groups investigated the role
of MBL and ficolins in the innate immunity against streptococ-
cal infection. MBL binds strongly to N-acetyl-β D-glucosamine

on the streptococcal cell wall and thereby promotes complement
deposition and opsonization in vitro (160). Thus, MBL could play
an essential role in the first steps of immune defense against
streptococci infection, leading to complement activation, and
pathogen phagocytosis (161). In addition, Ficolin-2 binds molec-
ular patterns such as lipoteichoic acid on Gram-positive bacteria
cell wall, including Streptococcus pyogenes (162), also mediating
bacteria opsonization and elimination (79). Moreover, a critical
role for ficolins in the protection against Streptococcus pneumo-
niae infection was shown in experimental models using ficolin
deficient mice, supporting the contribution of these pattern-
recognition molecules in the immune defense during streptococci
infection (163).

Inherited MBL insufficiency, which leads to impaired innate
immune function and enhanced susceptibility to infection, is
essentially caused by three structural variants in exon 1 of MBL2
gene. These polymorphisms include the previously mentioned
variations in the collagenous tail, with the alleles being designated,
respectively, D, B, and C (collectively termed “0”). In addition,
another promoter variant identified as X/Y (g.602G > C) is known
to significantly reduce circulating levels of functional MBL. In an
initial study in 2001, there was no association between the A, B,
C, and D alleles and RHD in Chinese patients (164). However, the
authors suggested a putative role for MBL deficiency in the pro-
gression of RHD, by considering the age of onset of heart disease.
The mean age of onset of cardiac symptoms of patients with the
deficient B allele was significantly lower compared with patients
with MBL2 genotype A/A (30± 14 vs. 37± 11 years, p < 0.05).
These results supported the hypothesis that MBL deficiency caused
by the B allele could facilitate the development of RHD in younger
people and accelerate the progression of RHD. Another study
reported lower MBL serum levels in RHD patients from Yemen,
compared with blood donors (165).

On the other hand, Schafranski et al. showed that MBL levels
were significantly high in patients with RHD from South Brazil
and that MBL deficiency was more prevalent among controls. The
authors suggested that high MBL levels could be a cause of unde-
sirable complement activation in RHD patients, contributing to
the pathogenesis of rheumatic cardiomyopathy (166). Subsequent
analysis on MBL2 polymorphisms in the same cohort of patients
showed that MBL2 genotypes associated with high MBL levels
were also significantly associated with RHD, if compared with
controls, suggesting a role for high-producing MBL2 genotypes in
the susceptibility to RHD. Moreover, MBL2 A/A genotypes were
significantly associated with higher MBL levels in RHD patients
and not in controls. Homozygosity for the MBL2*A allele as well
as for haplotypes associated with high MBL levels were associated
with increased risk of RHD. Conversely, the frequency of MBL2
variant alleles as well as 0/0 genotypes, which are associated with
MBL deficiency, were lower in patients (167). These findings indi-
cated that both MBL2 alleles and protein levels were associated
with susceptibility to RHD. Since MBL is a key molecule in the
innate host defense against bacterial infection, the authors pos-
tulated that MBL could be considered as a double-edged sword
molecule in the physiopathology of RF and RHD, on one hand
conferring protection against initial infection by rheumatogenic
streptococci, but on the other hand eliciting inflammation and
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complement tissue damage in the chronic stage of the disease
(167). Later on, these findings were confirmed by showing that
high MBL levels (>2,800 ng/ml) increased the risk of RHD and
that genotypes associated with high MBL production (YA/YA and
YA/XA) were associated with both acute and chronic rheumatic
carditis (168). The results led to the conclusion that high MBL
levels and its associated genotypes could be involved in develop-
ment of cardiac manifestation in RF, and the association was due
to genetic influence of MBL2 polymorphisms rather than to an
acute-phase reaction. The authors suggested that genotypes asso-
ciated with high MBL production may represent a risk factor for
development of acute and chronic rheumatic carditis in RF, and
MBL could be involved in the ongoing inflammatory process and
progression to the chronic cardiac form (168). Under stressful
conditions such as inflammatory processes mediated by oxidative
stress, self-cell surfaces may become glycosylated and thereby act-
ing as targets for MBL/ficolin binding. This in turn, would lead
to pathological complement activation and inflammation (169).
In fact, myxomatous tissue rich in hyaluronic acid was observed
in heart valves of RHD patients. Since N -acetyl-d-glucosamine is
a ligand for MBL and a major constituent of hyaluronic acid in

myxomatous tissue, activation of complement in RF may occur
partially due to the binding of MBL to neo exposed ligands in the
heart valves (170). Only the long-term follow-up of patients with
acute RF without valve sequel would answer this question and con-
firm if in fact, high MBL levels and associated genotypes are risk
factors to carditis in RF. Considering that no effective treatment is
currently available for rheumatic carditis, studies exploring anti-
MBL blocking in experimental models of RF and RHD could bring
new insights in to this question and might unveil alternatives for
future treatment of this disease.

Another study on patients with chronic severe aortic regurgita-
tion (AR) of rheumatic etiology by Ramasawmy et al. showed that
MBL2*D allele frequency was higher among AR patients than in
controls from São Paulo, Brazil. The B and C alleles had similar
frequencies in both groups, whereas the frequency of the 0/0 geno-
types was significantly different between patients and controls, but
similar in both groups for A/0 heterozygotes. Thus homozygous
or compound heterozygous patients for defective MBL2 alleles
(genotype 0/0) presented higher risk of developing chronic AR.
In this case, the authors postulated that continuous exposure to
Streptococcus group A antigens in MBL-deficient individuals would

FIGURE 5 | Rheumatic fever (RF) and its most severe sequel chronic
rheumatic heart disease (RHD) are chronic inflammations that
follow oropharynx infection by Streptococcus pyogenes, whose
cell wall presents several PAMPs, including M protein, lipoteichoic
acid, and N -acetil-β-D-glucosamine. M protein shares structural
homology with heart proteins such as myosin and tropomyosin, leading
to the formation of cross-reactive auto-antibodies. MBL and Ficolin-2
bind N -acetyl-β-D-glucosamine and lipoteichoic acid, respectively,

inducing complement activation and phagocytosis. Although
conferring protection against the initial infection, MBL may deposit on
the altered valves, eliciting inflammation, and complement tissue
damage in the chronic stage of the disease. The functional importance
of the proteins may vary during infection and disease establishment,
with MBL2 and FCN2 polymorphisms leading to high MBL and low
Ficolin-2 levels, respectively, being associated with increased
susceptibility to RHD.
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lead to subsequent abnormal immune response against heart pro-
teins, leading to rheumatic AR (171). These results were different
than previous reports (167, 168), in which MBL2 wild-type A allele
increased the risk to RHD in patients with mitral valve lesion of
rheumatic etiology, rather than aortic vulvar lesion, as reported for
AR patients. It is worth mentioning that the ancestry of patients
differed significantly between the studies, whereas the AR patients
from São Paulo were of mixed Brazilian ethnicity, those from the
South were mainly Euro-Brazilians.

Some polymorphisms in MASP2 gene were shown to impair
the activation of the lectin pathway. A mutation in exon 3,
g.5620A > G, leads to an amino acid substitution from aspartate to
glycine (Asp120Gly or p.D120G) and disturbs calcium ion binding
site in the first CUB1 domain of the mature protein. This defect
causes loss of MASP-2 binding ability to MBL and ficolins, abol-
ishing complement activation and decreasing MASP-2 circulating
levels. The mutation p.D120G occurs in 0.15–0.3% of European
individuals and has been reported to be the main cause for low
MASP-2 levels in this population, with homozygosity resulting in
MASP-2 deficiency (129, 172, 173).

In two independent studies, partial or total MASP-2 deficien-
cies resulting from p.D120G mutation were not associated with
RF/RHD and severe chronic AR in Brazilian patients, respectively.
No homozygotes but only heterozygotes for the G allele were found
with no significant differences between patients and controls, indi-
cating that the p.D120G variation in the MASP2 gene does not
have a relevant role in the pathogenesis of RF (171, 174). How-
ever, one must consider that the G allele is rare and only studies
with a large number of subjects would have the statistical power
to indicate a possible role for p.D120G in the development of
RF or RHD (171, 172, 174–177). Recently, a number of differ-
ent MASP2 polymorphisms encompassing the promoter region
to exon 12 and MASP-2 levels were investigated in RF and RHD
patients. The authors found that low MASP-2 producing vari-
ants were associated with protection against the development of
RHD and haplotypes sharing intron 9 – exon 12 polymorphisms
increased the susceptibility to RHD, when compared to RF patients
without cardiac disease. In addition, MASP-2 levels were lower in
patients an associated with MASP2 haplotypes. The results sug-
gest a role for MASP2 gene polymorphisms and protein levels in
RHD (178).

The recognition molecules of the lectin pathway, including
Ficolin-2, associate with MASPs in serum, forming complexes able
to activate complement (179). Ficolin-2 presents a wide specificity
for microorganisms, thereby having an important role in the first
line of innate immune defense. Although clinical studies focus-
ing on Ficolin-2 are still in their initial stages, there is evidence
that Ficolin-2 deficiency might increase the risk of respiratory
infections (180). So far, the only study on Ficolin-2 in RF/RHD
investigated polymorphisms in the promoter region of the FCN2
gene (at positions -986, -602, and -4) in patients and controls from
South Brazil. The haplotype-986/-602/-4 G/G/A, associated with
low Ficolin-2 levels, was significantly associated with RHD when
compared to controls, suggesting that this haplotype may play a
role in the progression of RF to its chronic form. On the other
hand, the frequency of the FCN2 haplotype-986/-602/-4 A/G/A
was higher in the controls than in the patients (RF plus RHD),

showing a protective effect against RF and RHD. This data led the
authors to suggest that FCN2 promoter haplotypes are associated
with the susceptibility to RF and its chronic form RHD, with -
986/-602/-4 G/G/A haplotype representing a novel risk factor for
the susceptibility and clinical progression of the disease (181). The
putative role of MBL and Ficolin-2 in RF and RHD is summarized
in Figure 5.

In conclusion, the studies accomplished so far on the proteins
and genes of the lectin pathway of complement pointed to an
important role for the lectin pathway in the susceptibility to RF and
clinical progression to RHD. However, future studies are required
in order to clarify the role of the recognition molecules and serine
proteases of the lectin pathway in RF and RHD.
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