
materials

Article

High-Performance UV-Vis Light Induces Radical
Photopolymerization Using Novel
2-Aminobenzothiazole-Based Photosensitizers

Alicja Balcerak 1,* , Janina Kabatc 1 , Zbigniew Czech 2,* , Małgorzata Nowak 2 and Karolina Mozelewska 2

����������
�������

Citation: Balcerak, A.; Kabatc, J.;

Czech, Z.; Nowak, M.; Mozelewska,

K. High-Performance UV-Vis Light

Induces Radical Photopolymerization

Using Novel 2-Aminobenzothiazole-

Based Photosensitizers. Materials

2021, 14, 7814. https://doi.org/

10.3390/ma14247814

Academic Editor: Gerard Lligadas

Received: 19 November 2021

Accepted: 13 December 2021

Published: 17 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Organic Chemistry, Faculty of Chemical Technology and Engineering, Bydgoszcz University
of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland; nina@pbs.edu.pl

2 International Laboratory of Adhesives and Self-Adhesive Materials, Department of Chemical Organic
Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian
University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
nowak.malgorzata@zut.edu.pl (M.N.); karolina_mozelewska@zut.edu.pl (K.M.)

* Correspondence: alicja.balcerak@pbs.edu.pl (A.B.); psa_czech@wp.pl (Z.C.)

Abstract: The popularity of using the photopolymerization reactions in various areas of science and
technique is constantly gaining importance. Light-induced photopolymerization is the basic process
for the production of various polymeric materials. The key role in the polymerization reaction is
the photoinitiator. The huge demand for radical and cationic initiators results from the dynamic
development of the medical sector, and the optoelectronic, paints, coatings, varnishes and adhesives
industries. For this reason, we dealt with the subject of designing new, highly-efficient radical
photoinitiators. This paper describes novel photoinitiating systems operating in UV-Vis light for
radical polymerization of acrylates. The proposed photoinitiators are composed of squaraine (SQ) as
a light absorber and various diphenyliodonium (Iod) salts as co-initiators. The kinetic parameters
of radical polymerization of trimethylolpropane triacrylate (TMPTA), such as the degree of double
bonds conversion (C%), the rate of photopolymerization (Rp), as well as the photoinitiation index (Ip)
were calculated. It was found that 2-aminobenzothiazole derivatives in the presence of iodonium
salts effectively initiated the polymerization of TMPTA. The rates of polymerization were at about
2 × 10−2 s−1 and the degree of conversion of acrylate groups from 10% to 36% were observed. The
values of the photoinitiating indexes for the most optimal initiator concentration, i.e., 5 × 10−3 M
were in the range from 1 × 10−3 s−2 even to above 9 × 10−3 s−2. The photoinitiating efficiency of
new radical initiators depends on the concentration and chemical structure of used photoinitiator.
The role of squaraine-based photoinitiating systems as effective dyeing photoinitiators for radical
polymerization is highlighted in this article.

Keywords: UV-Vis light photoinitiators; 2-aminobenzothiazole derivatives; squaraine dyes;
iodonium salts; radical polymerization

1. Introduction

Currently, a large number of polymer materials is produced by photopolymeriza-
tion [1]. Generally, photochemically induced polymerization is defined as a process in
which reactive species (radicals or ions) formed from light-activated molecules, called
photoinitiators (PI), initiate a series of chemical reactions and as a result transform liquid
monomers into cross-linked polymer structures.

The photopolymerization is considered as one of the most widespread, modern and
rapidly developing technologies used in the chemical industry [2–4]. Photoinitiated poly-
merization reactions show a huge potential in the simple and fast synthesis of polymeric
materials with specified features. In comparison with the conventional curing techniques,
the interest towards photochemically initiated polymerization is constantly gaining impor-
tance [5]. The increasing popularity of photopolymerization is related to numerous unique
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advantages, such as low economic costs [6,7], high efficiency [8,9], the possibility of spatial
and temporal control over the process [10,11] and a fast-curing rate [12]. These techniques
are referred to as eco-friendly because of the possibility of using solvent-free polymerizable
compositions with zero or a very low index of volatile organic compounds (VOCs), which
are one of the major sources of environmental pollution. Moreover, there is the possibility
of the easy recycling of waste generated during the production of process [13,14].

Due to many advantages, the light-activated polymerization has a wide range of ap-
plications. This process is used in many areas of science and technology, such as: medicine,
paint and varnish industry, printing, production of adhesives, nanotechnology, electronic
sector and many others [15,16]. Some examples of applications of photopolymerization in
different areas are presented in Figure 1.
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One of the main uses of the photopolymerization process in medicine is the production
of dental fillings. Novel, durable and aesthetic light-cured dental composites displaced the
traditional amalgams and became the basic materials used to fill cavities in teeth. However,
the requirements for new composites are still enormous and pose huge challenges for
designing dental fillings [17,18]. The light-cured dental fillings should show high durability,
attrition strength, as well as chemical and physical resistance factors, such as: salivary
enzymes, acids and bacterial metabolism products and others. Moreover, it is extremely
important that these types of materials exhibit high biocompatibility in relation to oral
tissues, good dimensional stability during crosslinking and resistance for yellowing [19].

The subject of design and the development of new hydrogels is also more and more
popular. These elastic and highly hydrated biomaterials possess great and unique proper-
ties, which enables them usage in regenerative medicine [20]. Especially important features
of hydrogels are: biocompatibility, biodegradability, extreme water-binding capacity and
the ability to adjust the physicochemical properties. Hydrogels exhibit an excellent ability
to heal wounds, which was confirmed by a large group of scientists [21–23].

The photopolymerization is a key process in the production of various types of poly-
mer coatings. Innovative varnishes with excellent antibacterial and antimicrobial properties
for dentistry [24,25], novel paints for the degradation of organic pollutants in water [26],
biocompatible film-forming polymer adhesives activated by natural sunlight [27], and
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programmable shape-shifting 3D structures [28] are just a few examples of new inventions
that represent an important step towards the progress of new technologies.

Notably, in recent years, a dynamic progress of 3D printing technique was observed,
which offers many benefits compared to traditional manufacturing processes of novel
polymer materials [29,30]. First of all, the use of 3D printing techniques enables us to
accelerate the time of introducing novel products to the worldwide market. Moreover, this
technology eliminates the need of expensive apparatus and thus significantly decreases the
production costs. The additional benefits include: accuracy, speed and flexibility towards
manufacturing a wide range of materials. What is important is that 3D printing guarantees
less waste production than traditional methods [31,32]. An interesting work about the
application of these technique was presented in 2021 by Bai and co-workers [33]. A group
of scientists described 3D concrete printing (3DCP), which is a new and promising construc-
tion technology. The researcher group introduced the possibility of using underutilized
solids and waste solid aggregates for the production of concrete. Three-dimensional print-
ing has become extremely important also during the current COVID-19 pandemic, what
is confirmed by numerous publications on this topic [34–37]. The use of this technology
has proved invaluable in eliminating the shortage of basic personal protective supplies
and healthcare equipment for medical personnel. The 3D printing technique is used to
produce medical face shields, respirators, biodegradable mask filters and 3D bioprinted
tissue models for coronavirus research. The dynamics of the research in the field of 3D
printing has become a very important aspect in the fight against the pandemic.

Numerous examples of the use of photopolymerization processes in various areas of
science and technology show how important these topics are and prove the high potential
of this technology in the production of various polymer materials. Hence, searching for
new photoinitiating systems (PISs) and designing new photocurable compositions is a key
aspect for progress in the development of novel techniques such as photopolymerization.

Typical photocurable composition is comprised of monomer or mixtures of monomers
and oligomers, photoinitiator and other ingredients: solvents, fillers, substances improving
the stability of formulations and others [38,39]. Nowadays, a wide variety of monomers is
commercially available. The most commonly used compounds are acrylates and methacry-
lates, epoxides, esters, urethanes, etc. A large number of photoinitiators for radical as
well as ionic polymerization have been already described in the literature. However, a
large number of scientific works is directed towards searching for new, high-performance
photoinitiating systems. Next generation photoinitiators exhibit high activity even under
low intensities of light. Moreover, an increasing number of novel compounds work not
only in the range of ultraviolet (UV), but also in visible light (Vis) [40–42].

The wide group of photoinitiators are systems based on dyes acting as light absorbers.
The introduction of dye molecules into the photoinitiating system enables a shift in the
band of absorption towards longer wavelengths and, significantly, expands the area of
application of the photoinitiator. The dye molecule acts as a sensitizer for other compounds,
such as co-initiators, which work as electron donors or electron acceptors. In this type
of system, the main process leading to the generation of initiating radicals is an electron
transfer process (ET) [3].

The example of highly efficient initiators dedicated to radical polymerization are the
two-component PISs containing of sensitizer molecule and co-initiator. In such bimolecular
systems, the role of light absorbers can be played by various types of organic dyes, which
was presented in Figure 2 [43].
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The application of many of these compounds as photosensitizers in dye-based pho-
toinitiating systems was described in the literature. However, the information about
photosenzitizers in the form of squaraines (SQs) are limited. The first paper mentioning
the use of squaraine dyes as photosensitizers for radical polymerization was reported in
2004 by Wang and co-workers [44]. In 2021, Giacoletto and co-workers [45] presented an
overview paper regarding recent advances on squaraine-based photoinitiators. It turns out
that squaraines are a promising group of useful dyes for various innovative applications
because of their unique features, such as the easiness of the methods of synthesis, the low
costs of manufacturing and good photochemical stability [45,46]. For these reasons, the
design of novel squaraine acid derivatives seems to be really important.

The 2-aminobenzothiazole derivatives are an interesting group of compounds show-
ing a wide range of applications due to their specific properties. For example, in 2016
Joseph and Boomadevi Janaki [47] described new copper complexes of Schiff base lig-
ands of 2-aminobenzothiazole derivatives. These compounds were synthesized by the
condensation of Knoevenagel of acetoacetanilide and 2-aminobenzothiazole. The cooper
complexes are characterized by a wide range of absorption, from 200 nm to ca. 800 nm.
Moreover, all synthesized compounds show high antioxidant activity, antibacterial and
antifungal properties. For this reason, it is possible to use of these cooper complexes based
on 2-aminobenzothiazole to decrease ROS levels or reduce oxidative stress in Alzheimer’s
patients [47].

In this paper, we focused on determining the efficiency of novel two-component
systems based on newly synthesized 2-aminobenzothiazole derivatives for the photoini-
tiation of radical polymerization of acrylate monomer. We decided to use these dyes as
UV-Vis light absorbers and combined them with various iodonium salts to obtain a high
performance photoinitiators. The similar compounds were used as sensitizers for radical
polymerization of 1,6-hexanediacrylate (HDDA) and gave promising results of kinetics of
photopolymerization reaction, which was described by Zhao and co-workers in 2020 [48].
Novel S-benzoheterocycle thiobenzoates photoinitiators showed an excellent photoinitiat-
ing ability and cured polymeric films possessed comparable or better mechanical properties
in comparison with commercially available photoinitiators, such as benzophenone (BP)
and irgacure 184 [48]. Due to the high-performance of photoinitiating systems composed
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of dye as sensitizer and co-initiator in the form of iodonium salt, what was proposed
by Zhang and co-workers in 2019 [49] we examined the kinetics of the radical polymer-
ization of trimethylolpropane triacrylate (TMPTA) using novel photoinitiators based on
2-aminobenzothiazole derivatives and various diphenyliodonium salts.

2. Materials and Methods
2.1. Materials

All reagents used for the synthesis of 2-aminobenzothiazole derivatives, such as:
3,4-dihydroxy-3-cyclobutene-1,2-dione (squaric acid), 2-aminobenzothiazole, 2-amino-6-
bromobenzothiazole, 2-amino-6-methylbenzothiazole, 1-butanol and toluene were pur-
chased from Aldrich Chemical Co. (Milwaukee, WI, USA) and used without further
purification. The spectroscopic grade solvents N,N-dimethylformamide (DMF), and
1-methyl-2-pyrrolidinone (MP) were supplied by Alfa Aesar (Heysham, Lancashire, UK)
and Aldrich Chemical Co. (Milwaukee, WI, USA). Diphenyliodonium chloride (I1) was
purchased from Acros Organics (Carlsbad, CA, USA) and other iodonium salts, such as:
(4-methoxyphenyl)-(4-nitrophenyl) iodonium p-toluenesulfonate (I81) and (3-bromophenyl)-
(4-methoxyphenyl)iodonium p-toluenesulfonate (I84) were synthesized by scientists from
Cracow University of Technology, as described in the literature [50]. The chemical structures
of iodonium salts I1, I81 and I84 used as co-initiators in photopolymerization experiments
are shown in Scheme 1. Trimethylolpropane triacrylate (TMPTA, from Sigma Aldrich,
Burlington, MA, USA) was applied as a model acrylate monomer for the composition
polymerized by a radical mechanism.
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2.2. General Procedure for the Synthesis of 2-Aminobenzothiazole Derivatives

The series of novel 2-aminobenzothiazoles, which played a role of photosensitizers
in two-component photoinitiating systems, i.e.,: 1,3-bis(benzothiazoleamino)squaraine
(SQM1), 1,3-bis(6-bromobenzothiazoleamino)squaraine (SQM2) and 1,3-bis(6-methylbenzo-
thiazoleamino)squaraine (SQM3), was synthesized in one-step reaction. The condensation
reaction of 1 eqv. of squaric acid with 2 eqv. of 6-substituted 2-aminobenzothiazoles leads
to squaraine dye formation, as presented in Scheme 2.

The squaraines SQM1-SQM3 were synthesized, as follows: 1,2-dihydroxycyclobuten-
3,4-dione (2.5 mmol) was heated under reflux in a mixture of 1-butanol (40 mL) and
toluene (20 mL). The water was distilled off azeotropically using a Dean-Stark trap. After
1 h of heating, an appropriate 6-substituted 2-aminobenzothiazole derivative (5 mmol)
was added and the reaction mixture refluxed for additional 4 h. After that, the reaction
mixture was cooled and the solvent removed under vacuum. The solid was dried at room
temperature [46]. The 2-aminobenzothiazole derivatives were used as photosensitizers
in photopolymerization experiments. The chemical structures of these compounds are
depicted in Scheme 3. The 1H and 13C NMR spectra of SQM1-SQM3 compounds are
available in Supplementary Materials (Figures S1–S6).
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2.3. Methods

The chemical structure of synthesized compounds was confirmed by nuclear magnetic
resonance (NMR) technique. The 1H and 13C NMR spectra were registered using an Ascend
III spectrometer operating at 400 MHz (Bruker, Billerica, MA, USA). Dimethylsulfoxide
(DMSO-d6) was used as solvent and tetramethylsilane (TMS) as internal standard. Chemical
shifts (δ) are reported in ppm relative to TMS and coupling constants (J) in Hz.

The melting point (uncorrected) was measured on the Böethius apparatus, PGH
Rundfunk (Fernsehen Niederdorf KR, Stollberg/Erzgebirge, Sachsen, Germany).

The absorption and fluorescence spectra of squaraine dyes were registered at room
temperature in a quartz cuvette (1 cm) using an UV-Vis Cary 60 spectrophotometer (Agilent
Technology, Santa Clara, CA, USA) and F-7000 spectrofluorometer (Hitachi, Tokyo, Japan),
respectively.

The fluorescence quantum yields of squaraines were determined, as follows: the
fluorescence spectrum of diluted solution of dye (A366 nm ≈ 0.1) was registered by excitation
at the maximum of the absorption band of the reference. The standard was chosen based
on the similarity of the maximum absorption of dye. The fluorescence quantum yields
of dye (Φdye) were determined compared with the fluorescence of cumarine 1 in ethanol
(λex = 366 nm, Φref = 0.64 [51]). This parameter was calculated on the basis of Equation (1):

Φfl =
ΦrefArefIdyen2

dye

AdyeIrefn2
ref

(1)

where: Φref is the fluorescence quantum yield of reference, Adye and Aref are the ab-
sorbances of dye and reference at the excitation wavelength, Idye and Iref are the integrated
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emission intensities for the dye and reference, ndye and nref are the refractive indexes of the
solvents used for the dye and reference, respectively.

The steady-state photolysis experiments were carried out to investigate the inter-
actions between photosensitizer and co-initiator. The changes of the absorption of the
photosensitizer and photosensitizer in the presence of an appropriate co-initiator in N,N-
dimethylformamide (DMF) as a solvent after irradiation with an argon-ion laser at an
intensity of 50 mW × cm−2 were registered. The absorption measurements after 0 s, 10 s,
30 s, 60 s, 10 min, 20 min, 30 min and 60 min of irradiation were registered using an UV-Vis
Cary 60 spectrophotometer (Agilent Technology). The concentration of co-initiator was
1 × 10−3 M.

2.4. Photopolymerization Experiments

The general procedure for photopolymerization experiments included several funda-
mental steps:

(a) The synthesis and spectral characterization of novel photosensitizers;
(b) The preparation of polymerizable compositions containing an appropriate concentra-

tion of photoinitiator;
(c) The selection of curing conditions of the polymerizing mixture, i.e.,: light source,

intensity and range of light radiation and flow of inert gas (nitrogen).

The basic steps for the photopolymerization experiments are shown in Figure 3. The
preparation of the appropriate polymerizable composition required the synthesis of new
photosensitizers. These compounds were prepared according to the general procedure
described in Section 2.2. In the next step, the squaraine dyes were combined with different
co-initiators. These combinations were two-component photoinitiating systems for radical
polymerization of trimethylolpropane triacrylate (TMPTA). The polymerization mixture
was composed of 1.8 mL of monomer (TMPTA), 0.2 mL of solvent (MP), appropriate
photosensitizer (SQM1/SQM2/SQM3) and co-initiator (I1/I81/I84). The use of 1-methyl-
2-pyrrolidinone (MP) was necessary due to poor solubility of dye in monomer. The
experiments were carried out for various concentration of photoinitiators: 5 × 10−4 M,
1 × 10−3 M, 2 × 10−3 M and 5 × 10−3 M. The monomer composition without a co-initiator
was used as a reference sample.
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In order to determine the photoinitiation efficiency of the proposed systems, a regular
photo-DSC setup was used. The photopolymerization experiments were carried out
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using differential scanning calorimeter—DSC Q2000 (TA Instruments, New Castle, DE,
USA) connected with TA Q PCA photo unit equipped with a high-presure mercury lamp-
OmniCure S2000 (Excelitas Technologies, Waltham, MA, USA). The radiation in the UV-Vis
range (300–500 nm) at constant light intensity equal to 30 mW × cm−2 was used as a
light source. All measurements were performed under isothermal conditions at 25 ◦C and
nitrogen flow of 50 mL × min−1. The tested and reference samples weighing 30 ± 0.1 mg
were placed into an open aluminum DSC pan and then maintained at the prescribed
temperature, i.e.,: 25 ◦C for 2 min before each measurement run began. The heat evolved
during the exothermal reaction and was registered at sampling intervals of 0.05 s per point.

On the basis of the obtained data, the kinetic parameters of photopolymerization
process, such as: the degree of monomer conversion (C%), the rate of polymerization (Rp)
and photoinitiation index (Ip) were calculated. The value of C% parameter is directly pro-
portional to the number of reactive moieties in the monomer molecule, which corresponds
to the acrylate groups. The conversion percentages were determined on the basis of the
integrated area under exothermic peak using Equation (2):

C% =
∆Ht

∆H0
× 100 (2)

where ∆Ht is the heat evolved at time t during reaction, ∆H0 is the theoretical enthalpy for
the complete degree of monomer conversion (for acrylates: ∆H0 = 78.0 kJ × mol−1 [52]).

The rate of polymerization (Rp) corresponds to the amount of heat released during
the chain reaction. This parameter was estimated using Equation (3):

Rp =
dH/dt

∆H0
(3)

where dH/dt denotes how the heat flow evolved during the polymerization reaction.
Taking into account the maximum rate of polymerization (Rp (max)) and the time

required for the maximum rate of heat released in the polymerization reaction (tmax), the
overall ability to the initiation of polymerization reaction (Ip) may be calculated on the
basis of the formula presented below (Equation (4)):

Ip =
Rp (max)

t(max)
(4)

The kinetic parameters of polymerization process expressed by Equations (2)–(4) were
used as a determinants for the evaluation of the photoinitiation efficiency of new squaraine-
based photoinitiators. On the basis of these parameters, the most effective photoinitiating
systems for radical polymerization of acrylate monomers has been detailed in this article.

3. Results and Discussion
3.1. Characteristics of Photoinitiators

As mentioned above, in this article we proposed new bimolecular photoinitiators
composed of squaraine dye as a photosensitizer and iodonium salt in the role of a co-
inititiator. The chemical structure of synthesized photosensitizers was confirmed by the
NMR technique. The 1H and 13C NMR spectra clearly confirmed the chemical structure of
dyes (SQM1-SQM3). The structure analysis of squaraines is presented below. The 1H and
13C NMR spectra of all synthesized compounds are available in the ESI file. The structure
characteristics data of 2-aminobenzothiazole derivatives are as follows:
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1,3-Bis(benzothiazoleamino)squaraine (SQM1)
1H NMR (DMSO-d6), δ (ppm): 8.49 (s, 1H, -OH); 7.98–7.96 (d, 2H, Ar, J = 8 Hz);

7.78–7.72 (m, 2H, Ar); 7.48–7.40 (m, 3H, Ar); 7.34–7.30 (m, 2H, Ar).
13C NMR (DMSO-d6), δ (ppm): 187.2; 171.8; 168.1; 162.8; 146.9; 130.6; 127.4; 126.8;

124.5; 123.0; 122.8; 122.3; 118.9; 116.7; 60.8; 19.1; 18.6; 14.3.
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The SQM1 dye was obtained as orange solid, yield: 49.54%, mp. 190–227 ◦C.
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dyes (SQM1-SQM3). The structure analysis of squaraines is presented below. The 1H and 
13C NMR spectra of all synthesized compounds are available in the ESI file. The structure 
characteristics data of 2-aminobenzothiazole derivatives are as follows: 
 1,3-Bis(benzothiazoleamino)squaraine (SQM1) 

1H NMR (DMSO-d6), δ (ppm): 8.49 (s, 1H, -OH); 7.98–7.96 (d, 2H, Ar, J = 8 Hz); 7.78–
7.72 (m, 2H, Ar); 7.48–7.40 (m, 3H, Ar); 7.34–7.30 (m, 2H, Ar) 

1,3-Bis(6-bromobenzothiazoleamino)squaraine (SQM2)
1H NMR (DMSO-d6), δ (ppm): 8.21 (s, 1H, Ar); 8.20 (s, 2H, -NH, -OH); 8.04 (s, 1H,

Ar); 7.95–7.94 (d, 1H, Ar, J = 4 Hz); 7.57–7.54 (dd, 1H, Ar, J = 12 Hz); 7.41–7.38 (dd, 1H, Ar,
J = 12 Hz); 7.29–7.27 (d, 1H, Ar, J = 8 Hz).

13C NMR (DMSO-d6), δ (ppm): 187.1; 172.0; 168.0; 162.7; 150.1; 148.1; 133.8; 132.4;
130.0; 129.1; 125.1; 124.1; 121.2; 119.0; 115.8; 113.2.

The SQM2 dye was obtained as orange solid, yield: 80.39%, mp. 206–230 ◦C.
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131.0; 128.9; 128.4; 127.6; 122.5; 122.0; 118.6; 116.6; 70.8; 21.4; 21.2; 18.7; 14.0.

The SQM3 dye was obtained as orange solid, yield: 80.42%, mp. 128–153 ◦C.
One of the most important preconditions of photopolymerization experiments is

the selection of a proper light source. For this reason, the spectroscopic properties of
photoinitiators were studied.

From the data presented in Figure 4a and summarized in Table 1, it can be concluded
that all 2-aminobenzothiazole derivatives absorb in narrow range of spectrum. The absorp-
tion bands are intensive and range from 300 nm to ca. 460 nm. The maximum absorption
(λab (max)) of all squaraines is about 345 nm. Moreover, the molar extinction coefficients
for SQs achieve high values and are in the order of 2 × 104 dm3 × mol−1 × cm−1 for
SQM1 and about 1 × 103 dm3 × mol−1 × cm−1 for other. The spectral data of investigated
dyes are summarized in Table 1. The 1-methyl-2-pyrrolidinone was used as solvent in
spectroscopic studies.
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Figure 4. Normalized absorption (a) and fluorescence (b) spectra of squaraines SQM1-SQM3 in 1-methyl-2-pyrrolidinone 
(MP) recorded at room temperature. 
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Figure 4. Normalized absorption (a) and fluorescence (b) spectra of squaraines SQM1-SQM3 in 1-methyl-2-pyrrolidinone
(MP) recorded at room temperature.

Table 1. The spectroscopic properties of investigated photosensitizers.

Compound λab (max)
(nm)

ε(max)
(dm3 × mol−1 × cm−1)

λfl (max)
(nm)

∆νSt
(cm−1)

Φfl
(10−2)

SQM1 344 24,500 523 9949 1.64
SQM2 348 9700 538 10,148 1.17
SQM3 345 8300 418 5062 1.40

As shown in Figure 4b, the fluorescence bands are broad and ranging from 360 nm
to 660 nm. The position of the fluorescence bands depends both on the structure of the
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dye, as well as, the type of solvent used. In comparison to the absorption maxima, the
values of λfl(max) for SQM1-SQM3 compounds are different. Interestingly, the squaraine
dyes have two characteristic fluorescence maxima. It may be explained by the presence of
three emission bands, i.e., free dye, dye-solvent complex and twisted excited state resulting
from C-N bond rotation [53]. The main maximum of fluorescence is 523 nm for SQM1,
538 nm for SQM2 and 418 nm for SQM3, respectively.

The Stokes shifts (∆νSt) reached high values, from 5 × 103 cm−1 to 10 × 103 cm−1.
The fluorescence quantum yields (Φfl) are similar for all studied dyes. As is clearly seen,
the proposed squaraines show excellent spectroscopic properties for their application as
photosensitizers in photoinitiating systems.

On the other hand, the iodonium salts: I1, I81 and I84 absorb light below 300 nm [3].
Due to the absorption range of these compounds in the ultraviolet, usually the iodonium
salts need to be combined with other molecules, which absorb light in the visible range
of spectrum. Therefore, the introduction of squaraine dye into photoinitiating system is
necessary, because it shifts the sensitivity of the photoinitiator towards longer wavelengths.
The light source emitted from the high-pressure mercury lamp (OmniCure S2000) cover
the range from 300 nm to 600 nm and in this case overlaps with the absorption region
of squaraine dye. To summarize, the combination of squaraine dye with iodonium salt
is a promising system, which can be used for initiation of the radical polymerization
of acrylates.

The steady state photolysis experiments showed that the exposure of the dye solution
to laser radiation results in a gradual bleaching of photosensitizer. It can be observed by
the difference in light absorption. The longer exposure time of the sample causes the lower
absorption intensity. For example, the changes in the intensity of absorption bands both of
SQM1 dye solution, as well as the combination of squaraine dye SQM1 with iodonium salt,
are presented in Figure 5.
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Figure 5. The steady state photolysis of (a) SQM1/I1 and (b) SQM1/I84 in N,N-dimethylformamide (DMF) upon the argon 
ion laser exposure (I0 = 50 mW × cm−2). The concentration of iodonium salt was 1 × 10−3 M. Inset: The photobleaching of 
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Figure 5. The steady state photolysis of (a) SQM1/I1 and (b) SQM1/I84 in N,N-dimethylformamide (DMF) upon the argon
ion laser exposure (I0 = 50 mW × cm−2). The concentration of iodonium salt was 1 × 10−3 M. Inset: The photobleaching of
squaraine dye (SQM1) as a result of laser irradiation.

As is clearly seen, the irradiation of squaraine dye solution results in a decrease in
the intensity of absorption from about 1.5 to ca. 0.5 after 0 s and 60 min of irradiation,
respectively. On the other hand, the presence of iodonium salt, I1, I81 and I84 leads to fast
decrease of absorption intensity (even only 1 min of irradiation). The fastest photobleaching
of squaraines was observed in the presence of (4-methoxyphenyl)-(4-nitrophenyl) iodonium
p-toluenesulfonate (I81). The absorbance quenching processes are similar to that, when
squaraine dye is combined with diphenyliodonium chloride (I1) or (3-bromophenyl)-(4-
methoxyphenyl)iodonium p-toluenesulfonate (I84).

Therefore, the fastest interaction of SQ/Iod pair after light action is observed for the
combination of squaraine dye with I81 salt. In other cases, the interaction dye-iodonium



Materials 2021, 14, 7814 11 of 16

salt is similar. These differences may be observed in the photoinitiation efficiencies of novel
radical photoinitiators.

3.2. Kinetic Studies of Photopolymerization Process

The influence of combinations of different photosensitizers in the form of squaraine
dye with various diphenyliodonium salts on the kinetics parameters of the radical poly-
merization of trimethylolpropane triacrylate (TMPTA) was estimated. The photopoly-
merization experiments were conducted for different pairs of photosensitizer/co-initiator.
The squaraine dyes, such as: 1,3-bis(benzothiazoleamino)squaraine (SQM1), 1,3-bis(6-
bromobenzothiazoleamino)squaraine (SQM2) and 1,3-bis(6-methylbenzothiazoleamino)sq-
uaraine (SQM3) were used as UV-Vis light absorbers. Three diphenyliodonium salts:
diphenyliodonium chloride (I1), (4-methoxyphenyl)-(4-nitrophenyl) iodonium p-toluenesu-
lfonate (I81) and (3-bromophenyl)-(4-methoxyphenyl)iodonium p-toluenesulfonate (I84)
played the role of co-initiators. The photopolymerization experiments were carried out for
different initiator concentrations.

In order to find the most optimal concentration of the photoinitiator in polymerizable
mixture, that gives the highest kinetic parameters of radical polymerization of TMPTA,
the kinetic studies for systems containing of 5 × 10−4 M, 1 × 10−3 M, 2 × 10−3 M and
5 × 10−3 M of SQ/Iod pair were carried out. The influence of initiator concentration on
the rate of polymerization reaction of acrylate monomer was illustrated in Figure 6. The
experiments were performed for all combinations of squaraine dye and diphenyliodonium
salt. For example, the kinetic results of polymerization reaction for different concentration
of SQM3/Iod pairs were presented in Table 2.
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Figure 6. The effect of concentration of photoinitiator on the rate of the radical polymerization of
TMPTA. The concentration of 1,3-bis(6-methylbenzothiazoleamino)squaraine (SQM3) was the same
as for appropriate co-initiators and was marked on the figure.

As shown in Figure 6, the concentration both of the sensitizer and the co-initiator,
had an important impact on the kinetics of radical polymerization of triacrylate (TMPTA).
The rate of polymerization increases as the initiator concentration in the polymerization
mixture changed from 5 × 10−4 M to 5 × 10−3 M. The rate-initiator concentration curves for
SQM3/I1 and SQM3/I84 are similar. The highest Rp values were observed for the highest
concentration of photoinitiator, i.e., 5 × 10−3 M. It should be noted that concentrations of
initiators of 2 × 10−3 M and 5 × 10−3 M give similar and the highest rates of polymerization,
at about 20 × 10−3 s−1.
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Table 2. The influence of photoinitiator concentration for kinetic parameters of radical polymerization of TMPTA initiated
by squaraine dye (SQM3) with the combination of different iodonium salts: I1, I81 and I84.

Photoinitiator

Photoinitiator Concentration (M)

5 × 10−4 1 × 10−3 2 × 10−3 5 × 10−3

Rp
(×10−3 s−1)

C%
(%)

Rp
(×10−3 s−1)

C%
(%)

Rp
(×10−3 s−1)

C%
(%)

Rp
(× 10−3 s−1)

C%
(%)

SQM3/I1 1.93 12.25 6.21 26.43 12.92 29.56 20.10 34.27
SQM3/I81 9.94 25.16 20.02 34.70 21.77 35.68 23.37 35.71
SQM3/I84 7.64 24.63 16.82 30.00 21.90 30.56 25.98 33.45

On the basis of the data summarized in Table 2, it can be concluded, that the high-
est final monomer conversions are observed for the photoinitiating systems comprised
of 5 × 10−3 M of photoinitiator. The values of degree of double bond monomer con-
version ranging from about 10% for SQM3/I1 photoinitiating system (concentration of
initiator: 5 × 10−4 M) to above 35% for SQM3/I81 combination (concentration of initiator:
5 × 10−3 M). Similar results were obtained for combinations of SQM1 and SQM2 dyes with
mentioned iodonium salts. It needs to be highlighted, that using of initiator concentration
of 2 × 10−3 M or 5 × 10−3 M are the best options due to the highest kinetic parameters of
radical polymerization of TMPTA.

In order to explain the influence of the type of co-initiator on the kinetics of the
photopolymerization process, the efficiency of photoinitiating systems consisting of 1,3-
bis(benzothiazoleamino)squaraine (SQM1) and various types of diphenyliodonium salts
(I1, I81 was I84) was compared, what is shown in Figure 7.
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Figure 7. The kinetic curves registered during radical polymerization of TMPTA initiated by two-component photoinitiating
systems composed of 1,3-bis(benzothiazoleamino)squaraine (SQM1) in the presence of various co-initiators marked on the
figure. The concentration of photoinitiator was 5 × 10−3 M. The light intensity was 30 mW × cm−2.

From the kinetics data presented in Figure 7 and summarized in Table 3, it can
be concluded that the structure of the co-initiator has a significant effect the kinetics of
the polymerization reaction. The highest rates of polymerization and final monomer
conversion were obtained from pairs composed of squaraine dye and (3-bromophenyl)-
(4-methoxyphenyl)iodonium p-toluenesulfonate (I84). The exothermal effect for these
photoinitiating systems was the highest and ranged from 300 mW to above 600 mW. The
rates of polymerization achieved values about 2.20 × 10−2 s−1 to 2.60 × 10−2 s−1 and the
final conversion ranged from 28% to 34%.

The photoinitiation reaction of radical polymerization of acrylate monomer (TMPTA)
is very fast. It should be noted that the light action of the tested sample causes an immediate
reaction with the release of a large amount of heat. The photocuring of polymerizable
mixture takes only few seconds. As was shown in Table 3, The maximum of released
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heat during exothermal reaction was in the range from 12 s to even ca. 3 s for the most
effective photoinitiator.

Table 3. The kinetics parameters of radical polymerization of TMPTA initiated by bimolecular
photoinitiators composed of 2-aminobenzothiazole derivative (SQM1/SQM2/SQM3) and various
radical sources (I1/I81/I84). The concentration of photoinitiator was 5 × 10−3 M.

Photoinitiator Co-Initiator Q(max)
(mW)

t(max)
(s)

Rp
(×10−2 s−1)

Ip
(×10−3 s−2)

C%
(%)

SQM1
I1 311 12.03 1.31 1.09 23.41

I81 475 5.03 2.00 3.98 29.35
I84 529 3.83 2.23 5.82 27.60

SQM2
I1 465 6.23 1.96 3.15 25.70

I81 547 4.03 2.31 5.73 28.18
I84 612 2.83 2.58 9.12 29.68

SQM3
I1 476 8.23 2.01 2.44 34.27

I81 554 4.23 2.34 5.53 35.71
I84 616 3.23 2.60 8.05 33.45

In this paper, we studied also the influence of sensitizer structure on the polymeriza-
tion process, what was presented in Figure 8.
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Figure 8. The kinetic curves registered during radical polymerization of TMPTA initiated by various two-component
photoinitiating systems composed of various SQ dye and (3-bromophenyl)-(4-methoxyphenyl)iodonium p-toluenesulfonate
(I84). The concentration of photoinitiator was 2 × 10−3 M. The light intensity was 30 mW × cm−2.

Apart from the initiator concentration and the structure of the co-initiator, the type of
photosensitizer used in photopolymerization experiments also has a significant impact. The
highest values of the kinetic parameters of reaction were obtained for photoinitiating system
comprised of 1,3-bis(6-methylbenzothiazoleamino)squaraine (SQM3). Similar results were
obtained for photoinitiators and consisted of SQM1 and SQM2 dyes. The final monomer
conversion for photoinitiating systems containing SQM3 squaraine oscillated at about
35%. On the other hand, the combination of SQM1 or SQM2 squaraine dyes with all
iodonium salts gives the degree of double-bond conversion in the range from 20% to
30%. It should be also noted that the highest values of photoinitiation indexes were
obtained for bimolecular photoinitiators composed of squaraine dye and (3-bromophenyl)-
(4-methoxyphenyl)iodonium p-toluenesulfonate (I84). In this case, this parameter is about
10 × 10−3 s−2.

On the basis of obtained kinetic results, one can conclude, that proposed bimolecular
photoinitiators are very efficient and high-speed photoinitiating systems, which initiate
the radical polymerization of acrylates with promising final monomer conversions. The
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further modification of system compositions may improve the kinetic parameters of radical
polymerization of acrylate monomers. In the next papers, we focused on the combina-
tion of these 2-aminobenzothiazole derivatives with other co-initiator to improve the
photoinitiating ability of these systems.

4. Conclusions

The proposed two-component photoinitiating systems consisting of newly synthe-
sized 2-aminobenzothiazole derivatives and different diphenyliodonium salts may be
used as ultraviolet-visible light active photoinitiators for the radical polymerization of
trimethylolpropane triacrylate (TMPTA). The photoinitiation efficiency of novel photoini-
tiators depends on the sensitizer and co-initiator structures and their concentration in
polymerizable composition. The highest values of kinetics parameters of radical polymer-
ization of TMPTA were obtained for combination of squaraine derivatives (SQM1-SQM3)
with (3-bromophenyl)-(4-methoxyphenyl)iodonium p-toluenesulfonate (I84). The rates of
polymerization oscillates at about 2 × 10−2 s−1 and the total monomer conversion ranged
from 20% to above 35%. The proposed photoinitiating systems may be used as effective
high-speed initiators for radical polymerization of acrylate monomers under sensitive
light conditions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/ma14247814/s1, Figure S1: 1H NMR spectrum of SQM1 regis-tered in DMSO-d6, Figure S2: 13C
NMR spectrum of SQM1 registered in DMSO-d6, Figure S3: 1H NMR spec-trum of SQM2 registered
in DMSO-d6, Figure S4: 13C NMR spectrum of SQM2 registered in DMSO-d6, Figure S5: 1H NMR
spectrum of SQM3 registered in DMSO-d6, Figure S6: 13C NMR spectrum of SQM3 registered in
DMSO-d6.
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