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ABSTRACT: Pseudoachondroplasia (PSACH) and mul-
tiple epiphyseal dysplasia (MED) are relatively common
skeletal dysplasias resulting in short-limbed dwarfism,
joint pain, and stiffness. PSACH and the largest propor-
tion of autosomal dominant MED (AD-MED) results from
mutations in cartilage oligomeric matrix protein (COMP);
however, AD-MED is genetically heterogenous and can
also result from mutations in matrilin-3 (MATN3) and
type IX collagen (COL9A1, COL9A2, and COL9A3).
In contrast, autosomal recessive MED (rMED) appears
to result exclusively from mutations in sulphate trans-
porter solute carrier family 26 (SLC26A2). The diagnosis
of PSACH and MED can be difficult for the nonexpert
due to various complications and similarities with other
related diseases and often mutation analysis is requested
to either confirm or exclude the diagnosis. Since 2003, the
European Skeletal Dysplasia Network (ESDN) has used
an on-line review system to efficiently diagnose cases re-
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ferred to the network prior to mutation analysis. In this
study, we present the molecular findings in 130 patients
referred to ESDN, which includes the identification of
novel and recurrent mutations in over 100 patients. Fur-
thermore, this study provides the first indication of the
relative contribution of each gene and confirms that they
account for the majority of PSACH and MED.
Hum Mutat 33:144–157, 2012. C© 2011 Wiley Periodicals, Inc.
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Introduction
Pseudoachondroplasia (PSACH; MIM# 177170) and multiple

epiphyseal dysplasia (MED; MIM# 132400) are relatively common
skeletal dysplasias that can be inherited as either autosomal domi-
nant (PSACH and AD-MED) or recessive (AR-MED; rMED) condi-
tions [Briggs and Chapman, 2002; Superti-Furga and Unger, 2007].

PSACH usually manifests in the second year of life and is char-
acterized by moderate to severe disproportionate short stature, lig-
amentous laxity, and degenerative joint disease. MED is a clini-
cally variable disease that manifests in early-to-mid childhood with
joint pain and stiffness, mild to moderate short stature, and early
onset osteoarthritis [Barrie et al., 1958; Fairbank, 1947; Rimoin
et al., 1994]. At least one other disorder overlaps phenotypically
with MED; familial hip dysplasia (Beukes type; MIM# 142669)
[Cilliers and Beighton, 1990], which is mapped to chromosome
4q35 [Roby et al., 1999] and has been grouped with AD-MED in
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the 2010 revision of the “International Nosology and Classification
of Genetic Skeletal Disorders” [Warman et al., 2011].

PSACH is believed to result exclusively from mutations in the
gene encoding cartilage oligomeric matrix protein (COMP; MIM#
600310), as does the largest proportion of AD-MED [Briggs and
Chapman, 2002; Briggs et al., 1995; Hecht et al., 1995]. Presumed
autosomal recessive forms of PSACH [Dennis and Renton, 1975;
Wynne-Davies et al., 1986; Young and Moore, 1985] were proposed
to be caused by germline mosaicism and this has been proven by
COMP analysis [Ferguson et al., 1997; Hall et al., 1987]. However,
a disorder resembling PSACH without a COMP mutation has been
described [Spranger et al., 2005], but the genetic basis of this PSACH
variant remains undetermined.

AD-MED is a much more heterogeneous disorder, both at the
phenotypic and genetic levels. In addition to COMP mutations, it
can also result from mutations in the genes encoding matrilin-3
(MATN3, EDM5; MIM# 607078) and type IX collagen (COL9A1,
EDM6; MIM# 120210; COL9A2, EDM2; MIM# 600204; COL9A3,
EDM3; MIM# 600969, respectively) [Briggs and Chapman, 2002;
Chapman et al., 2001; Czarny-Ratajczak et al., 2001; Muragaki et al.,
1996; Paassilta et al., 1999; Unger et al., 2008]. Furthermore, several
studies have suggested that a variable proportion of AD-MED can
result from mutations in other genes [Jakkula et al., 2005; Zankl et al.,
2007], but the identities of these genes have not yet been determined.
AR-MED (rMED) can result from homozygosity or compound het-
erozygosity for mutations in the gene encoding SLC26A2 (EDM4;
MIM# 226900) [Hastbacka et al., 1999; Rossi and Superti-Furga,
2001; Superti-Furga et al., 1999] and is the mild end of the pheno-
typic spectrum that includes achondrogenesis 1B and diastrophic
dysplasia [Rossi and Superi-Furga, 2001].

The extensive genetic heterogeneity of MED combined with wide-
ranging clinical variability, including both intra- and interfamilial
variability, and various complications such as osteochondritis dis-
secans and mild myopathy provide a diagnostic challenge for the
nonexpert [Makitie et al., 2004; Newman et al., 2000; Unger, 2002;
Unger et al., 2008; Zankl et al., 2007]. In order to better understand
the molecular genetics of MED, we screened for COMP, COL9A1,
COL9A2, COL9A3, MATN3, and SLC26A2 mutations in over 100 pa-
tients referred to the European Skeletal Dysplasia Network (ESDN)
via the on-line case manager (www.ESDN.org). In many of these
patients, a clinical diagnosis of PSACH or MED was confirmed
(or suspected) by the expert panel of the ESDN prior to mutation
screening. However, we also included a cohort of patients, which the
expert panel felt were not classical examples of these diseases due to
a variety of unusual clinical and/or radiographic features (detailed
in Supp. Table S1). Indeed, in many of these cases an alternative
diagnosis was suggested prior to mutation screening. However, the
inclusion of these patients was important for identifying phenotypic
outliers of the “classical” PSACH and MED disease spectrum and to
also identify specific radiographic and/or clinical features that are
generally uncharacteristic of molecularly confirmed MED.

Materials and Methods
All cases were submitted on-line via the secure case manager site

(https://cm.esdn.org/). Every case was then reviewed and discussed
by the ESDN panel members. Following discussion, DNA sam-
ples from the patient, and when available affected and unaffected
family members, were sent for mutation screening in Manchester
(for PSACH and AD-MED) or Lausanne (AR-MED). Screening of
COMP (exons 8–19), MATN3 (exon 3), and the type IX collagen
genes (only the exon sequence and splice donor/acceptor sites of

exon 8 of COL9A1 and exon 3 of COL9A2 and COL9A3) was per-
formed as previously described [Jackson et al., 2004; Kennedy et al.,
2005a; Zankl et al., 2007]. This screening protocol reflected our
current knowledge of all known locations of PSACH and AD-MED
mutations in the type III repeat and C-terminal regions of COMP,
the A-domain of MATN3, and the COL3 domain of type IX colla-
gen. Screening of SLC26A2 was performed as previously described
[Rossi and Superti-Furga, 2001]. All mutations were confirmed in
a second PCR reaction. Primer sequences and PCR conditions for
exons 1–7 of COMP, exons 3–6 of MATN3, exons 1–3 and 5–6 of
MATN1, exons 2, 6+7 of MATN4, and exon 50 of COL2A1 are pre-
sented in Supp. Table S2. These exons encode important structural
and/or functional domains in COMP (type II EGF-like repeats),
MATN3 (EGF-like repeats), matrilin-1 (A-domains), matrilin-4 (A-
domains), and type II collagen (triple-helical region).

Proof of pathogenicity was defined by one or more of the following
criteria; (1) a previously published mutation with co-segregation in
a family and/or absent in controls, (2) a de novo mutation or co-
segregation in this study, (3) alteration of an evolutionary conserved
known functional residue in either the N-type motif or C-type motif
of the type III repeat region of COMP or the A-domain of MATN3,
(4) biochemical evidence of a pathogenetic affect.

Results
As part of this 7-year study (2003–2010), we screened DNA from

28 PSACH patients for mutations in COMP, 77 patients (suspected
AD-MED and variants) for mutations in COMP, MATN3, and the
three type IX collagen genes (COL9A1, COL9A2, and COL9A3), and
22 patients for mutations in SLC26A2 (suspected rMED).

Mutation Analysis of COMP in Suspected PSACH

COMP is a modular protein comprising an amino-terminal
coiled-coil oligomerization domain, four type II (EGF-like) do-
mains, seven type III (CaM-like) repeats, and a C-terminal globular
domain (CTD).

We identified type III repeat region COMP mutations in 27 of the
28 patients with PSACH (>96%; Table 1; Fig. 1), which were dis-
tributed between seven exons (exons 9, 10, 11, 13, 14, 16, and 18) and
comprised missense mutations (67%) or small deletions (30%) and
deletions/insertions (3%). We did not identify any PSACH missense
mutations in exons 8, 12, 15, 17, or 19 of COMP, which is consis-
tent with our previous findings [Kennedy et al., 2005a] (Fig. 1),
although the biological significance of this observation remains un-
known. Ten of the mutations (37%) were novel while the common
p.Asp473del mutation was identified in six patients (22%). The
CTD mutations p.Thr529Ile, pGly719Ser, and p.Thr585Arg, which
we and others have previously described [Briggs et al., 1998; Jakkula
et al., 2003; Kennedy et al., 2005b], were identified in four pa-
tients thus confirming the clustering of the CTD mutations into
distinct regions [Kennedy et al., 2005b]. We also screened COMP in
three patients with atypical PSACH but did not identify a mutation
(Table 2; Fig. 2).

Mutation Analysis of COMP, MATN3, and the Type IX
Collagen Genes in Suspected AD MED

We identified COMP mutations in 37 patients with MED
(Table 3), which were distributed between nine exons (exons 8–
14, 16, and 18) and comprised missense mutations (>86%), small
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Table 1. COMP Mutations Identified in 27 Patients with Clinical and Radiographically Confirmed PSACH

Patient/family
Diagnosis on

referrala
Diagnosis following

reviewb Exon DNA change Protein change
COMP
domain Published and/or proof of pathogenicity

ESDN-00814 PSACH PSACH 9 c.869A>G p.Asp290Gly T3 Related mutation p.Asp290Asn shown to
be de novo in Ikegawa et al. [1998]

ESDN-00877 PSACH PSACH 9 c.895G>C p.Gly299Arg T3 Ikegawa et al. [1998] (absent in controls)
ESDN-00385 PSACH PSACH 10 c.976G>T p.Asp326Tyr T3 de novo mutation in this family and

conserved functional residue in
C-type motif

ESDN-00622 PSACH PSACH 10 c.1021_1026del p.Glu341_Asp342del T3 Kennedy et al. [2005a] and de novo
mutation in this family

ESDN-00155 PSACH n/d 10 c.1048_1116del p.Asn350_Asp372del T3 de novo mutation in this family and
deletion of conserved functional
residues in C- and N-type motifs

ESDN-00966 PSACH PSACH 10 c.1133A>T p.Asp378Val T3 de novo mutation in this family
ESDN-00672 MED

Fairbank
PSACH 11 c.1159T>C p.Cys387Arg T3 Conserved functional residue in C-type

motif
ESDN-01201 PSACH PSACH 11 c.1205_1212delinsTCTGT p.Gly402_Gly404delinsValCys T3 Deletion of conserved functional

residues in C-type motif
ESDN-00197 PSACH PSACH 13 c.1318G>A p.Gly440Arg T3 Loughlin et al. [1998] (absent in

controls)
ESDN-00294 SMD PSACH 13 c.1336G>A p.Asp446Asn T3 Maddox et al. [1997] (absent in controls)

and de novo mutation in this family
ESDN-01016 No diagnosis PSACH 13 c.1343G>C p.Cys448Ser T3 Conserved functional residue in C-type

motif
ESDN-00165 PSACH PSACH 13 c.1417_1419del p.Asp473del T3 Hecht et al. [1995] (common mutation)
ESDN-00166 PSACH PSACH 13 c.1417_1419del p.Asp473del T3 Hecht et al. [1995] (common mutation)
ESDN-00449 PSACH PSACH 13 c.1417_1419del p.Asp473del T3 Hecht et al. [1995] (common mutation)
ESDN-00658 PSACH PSACH 13 c.1417_1419del p.Asp473del T3 Hecht et al. [1995] (common mutation)
ESDN-00724 PSACH PSACH 13 c.1417_1419del p.Asp473del T3 Hecht et al. [1995] (common mutation)
ESDN-01015 PSACH PSACH 13 c.1417_1419del p.Asp473del T3 Hecht et al. [1995] (common mutation)
ESDN-00242 PSACH PSACH 13 c.1417G>C p.Asp473His T3 Conserved functional residue in C-type

motif
ESDN-00020 PSACH PSACH 13 c.1423G>A p.Asp475Asn T3 Deere et al. [1998] (absent in controls)

and conserved functional residue in
C-type motif

ESDN-00248 PSACH PSACH 13 c.1445A>G p.Asp482Gly T3 Susic et al. [1998] and conserved
functional residue in C-type motif

ESDN-00204 PSACH PSACH 14 c.1520A>G p.Asp507Gly T3 Deere et al. [1998] (absent in controls)
and conserved functional residue

ESDN-00490 PSACH PSACH 14 c.1532A>G p.Asp511Gly T3 Conserved functional residue in C-type
motif

ESDN-01203 No diagnosis PSACH 14 c.1544A>G p.Asp515Gly T3 de novo mutation in this family
ESDN-00034 PSACH PSACH 14 c.1586C>T p.Thr529Ile CTD Kennedy et al. [2005a,b] (absent in

controls)
ESDN-00575 PSACH PSACH 14 c.1586C>T p.Thr529Ile CTD Kennedy et al. [2005a,b] (absent in

controls)
ESDN-00109 PSACH Mild PSACH or MED 16 c.1754C>G p.Thr585Arg CTD Briggs et al. [1998] (family studies)
ESDN-00894 PSACH PSACH 18 c.2155G>A p.Gly719Ser CTD Kennedy et al. [2005a,b] (absent in

controls)

aDiagnosis as provided by the referring clinician.
bConsensus reached by the ESDN panel after review.
Proof of pathogenicity is defined by one or more of the following criteria; (1) a previously published mutation with family studies or absent in controls (indicated by
parenthesis), (2) a de novo mutation or co-segregation in this study, (3) alteration of an evolutionary conserved functional residue in either the N-type motif or C-type motif of
the type III repeat region of COMP. Nucleotide numbering according to cDNA sequence with GenBank accession number NM_000095.2. Nucleotide 1 has been counted as the
first nucleotide of the translation initiation codon.
PSACH, pseudoachondroplasia; MED, multiple epiphyseal dysplasia; SMD, spondylometaphyseal dysplasia; T3, type 3 repeat region of COMP; CTD, C-terminal domain of
COMP; n/d, diagnosis not discussed by ESDN.

in-frame deletions (∼5%), duplications (∼5%), insertions (<3%),
and deletion/insertions (<3%). We did not identify any MED mis-
sense mutations in COMP exons 15, 17, and 19, which are again con-
sistent with our previous findings [Kennedy et al., 2005a] (Fig. 1).
Fifteen (∼40%) of the mutations were novel, while the recurrent
mutations p.Asp385Asn, p.Asn523Lys, and p.Arg718Pro/Trp were
each identified in three patients [Ballo et al., 1997; Kennedy et al.,
2005b; Mabuchi et al., 2003]. Interestingly, MED patient ESDN-
00594 was found to have two potential COMP missense mutations;
p.Gly501Asp in the Type III-repeat region and p.Gln756Arg in the
CTD (Table 3).

MATN3 mutations were identified in 13 MED patients and com-
prised predominantly of missense mutations (∼92%) and a novel

in-frame deletion, all within exon 2 encoding the single A-domain
of MATN3 (Table 3). Nine mutations affected residues forming
the internal β-sheet of the A-domain (i.e., βB, βD, βE, and βF),
while four mutations affected residues in one of the six external
α-helices (i.e., α4, α5, or α6) [Fresquet et al., 2007]. The recurrent
mutations p.Thr120Met and p.Arg121Trp [Cotterill et al., 2005;
Jackson et al., 2004] were each identified in more than one patient.
We also identified an in-frame deletion/insertion (c.513_530del),
which is predicted to result in a p.Asp171_Glu177delinsGlu in a
single family with MED. MED patient ESDN-00594, who had pre-
viously tested heterozygous for p.Gly501Asp and p.Gln756Arg in
COMP, was also shown to be heterozygous for p.Val245Met in
MATN3 (Tables 3 and 4).
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Figure 1. Exon distribution of COMP missense mutations in PSACH
and MED. The cumulative distribution of COMP missense mutations from
this study and that published by Kennedy et al. [2005a] is represented
graphically. The total number of patients reported in these two studies
is 86 (n = 35 PSACH; n = 51 MED) and these data clearly show that exons
10 and 11 are enriched for MED missense mutations, while missense
mutations in exon 13 mostly cause PSACH. In these two studies, we
identified no COMP missense mutations in exons 15 (aa 557–572), 17 (aa
639–696), and 19 (aa 743–757) and only a single MED missense mutation
in exon 12.

Finally, we identified COL9A2 mutations in five MED patients
and a COL9A3 mutation in a single MED patient (Table 3). The
COL9A2 mutations that we identified were all in the splice donor
site of exon 3 and were therefore consistent with previous findings
[Fiedler et al., 2002; Holden et al., 1999; Muragaki et al., 1996]. In
our cohort of patients, mutations were identified at positions +3,
+5, and +7 of the splice donor consensus sequence (i.e., +1C C G
g t g a g t+9) and are therefore consistent with those previously
identified, with just one exception. MED patient ESDN-01003 was
heterozygous for c.186+4a>c (i.e., +7 in consensus sequence), which
has not been previously described. We did not directly assay whether
this specific mutation would affect splicing, but the patient tested
mutation negative for COMP, MATN3, COL9A1, and COL9A3, and
the c.186+4a>c mutation co-segregated with the affected mother
and brother of the proband.

Two patients had the relatively common c.186+2t>c change, which
has previously been reported in several families of European origin

[Muragaki et al., 1996]. We also identified a c.148-2a>g mutation in
intron 2 of COL9A3 in ESDN-00986. Although this specific sequence
change has not been previously published, a c.148-2a>t mutation
has been shown to be pathogenic and to result in the skipping of
exon 3 of COL9A3 due to the loss of the consensus “a” at the –2
position of a splice acceptor site [Paassilta et al., 1999].

In summary, we identified mutations in 27 patients with PSACH
and 56 patients with AD-MED. The MED mutations that we identi-
fied in our patient cohort were found in the COMP (66%), MATN3
(24%), COL9A2 (8%), and COL9A3 (2%) genes. We did not iden-
tify a COL9A1 mutation in any patient sample analyzed. These data
confirm recent studies showing that COMP mutations are the pre-
dominant cause of MED [Zankl et al., 2007], while type IX collagen
gene mutations account for only about 10% of the currently known
mutations in AD-MED.

Mutation Analysis of SLC26A2 in AR-MED (rMED)

We screened 22 patients for mutations in SLC26A2 that had a
diagnosis consistent with AR-MED as determined by the ESDN
expert panel. Sixteen (16/22, ∼73%) of these patients were either
homozygous, or compound heterozygous, for SLC26A2 mutations
(Table 3). More specifically, of those 16 patients, 13 (13/15, ∼86%)
were homozygous for the common p.Arg279Trp AR-MED muta-
tion [Superti-Furga et al., 1999], while one patient was compound
heterozygous (p.Arg279Trp and IVS1+2T>C). Three other patients
were compound heterozygous, with the common “Finnish” muta-
tion (IVS1+2T>C) [Hastbacka et al., 1999] and p.Cys653Ser both
occurring twice; the remaining two mutations being p.Ala715Val
and p.Phe256Ser. The latter mutation had not been observed prior
to this study; its absence in well over 200 control samples and the
proximity to two other known pathogenic mutations (p.Gly255Glu
and p. Gly259Val) confirm its putative pathogenicity.

Novel Mutations in the EGF-Like Repeats of COMP in
PSACH and MED Patients

We failed to identify COMP, MATN3, COL9A1, COL9A2,
COL9A3, or SLC26A2 mutations in 30 patients that had originally
been referred to ESDN with a working diagnosis of PSACH or MED
and variants (Supp. Table S1). We therefore decided to extend the
screening of some of these patients to include exons 1–7 of COMP,
exons 3–6 of MATN3, exons 1–3 and 5–6 of MATN1, and exons 2

Table 2. Three Patients Screened for COMP Mutations that had (S)EMD or Nontypical PSACH

Patient Diagnosis on referrala Reasons why not “classical” PSACH
Alternative diagnosis suggested
prior to mutation screeningb

ESDN-00074 (S)EMD unspecified (1) Advanced carpal ossification. (1) SEMD unspecified
(2) Flat instead of rounded vertebrae.
(3) No mini-epiphyses in the hips.

ESDN-00618 PSACH (1) Radiographic features were not severe enough in knees, hips, and spine. (1) Acromesomelic dysplasia
(2) Hand radiographs show very short and broad phalanges with

precocious ossification of the epiphyses attached to the metaphyses.
(2) Acrocapitofemoral dysplasia
(3) CHH

ESDN-00695 PSACH (1) Vertebral bodies appeared too flat for PSACH but instead resembled
those in the non-Comp pPSACH family (14).

(1) AR-PSACH
(2) pPSACH

(2) Hips and knees are reminiscent of AD PSACH. (3) SED
(3) Tubular bones in hands are not short enough and the delayed carpal

ossification is too pronounced.

aDiagnosis as provided by the referring clinician.
bDiagnosis suggested by the ESDN panel. ESDN-00695 had previously tested negative for a COL2A1 mutation.
PSACH, pseudoachondroplasia; SED, spondyloepiphyseal dysplasia; (S)EMD, (spondylo)-epi-metaphyseal dysplasia; CHH, cartilage hair hypoplasia; AR-PSACH, autosomal
recessive PSACH; pPSACH, pseudo-PSACH.
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Figure 2. Radiographic findings in COMP negative patients referred as PSACH. ESDN-00074: Radiographs of the spine, pelvis, knees, and left
hand. With the exception of the left hand taken at 4 years of age, all radiographs were taken at the age of 3 years. The vertebral bodies are flattened,
the proximal femoral epiphyses are small, and the femoral necks are short. The trochanters minor are well ossified and prominent present. The
knee epiphyses are small and irregularly ossified. The metaphyses in the knees are widened and the femoral distal metaphyses have spikes at
both ends. The submetaphyseal regions have a striated pattern. The hands show shortening and broadening of the metacarpals and phalanges
with small epiphyses. The epiphyses of the proximal phalanges are fragmented. There is advanced carpal ossification with rather rectangular
(and not rounded) shape of the carpal bones. The distal ulna shows precocious ossification of the epiphysis and cupped metaphysis. ESDN-00618:
Radiographs of spine, pelvis, knee, and hand taken at the age of 6 months. The pelvis is abnormal with flat and trident acetabular roof and small and
broad iliac wings. The ischiadic bones are broad. The proximal femoral epiphyses are well ossified for age. The femoral necks appear broad. The
hand shows shortening of phalanges and metacarpals, especially the proximal and middle phalanges are very short with poor diaphyseal modeling
and precocious ossification of the epiphyses that are attached to the metaphysis. The vertebral bodies are mildly foreshortened with posterior
scalloping. No gross abnormalities are seen at the knee. ESDN-00695: Radiographs of spine, pelvis, knee, and hand taken at the age of 7 years. The
mini-epiphyses in the hips and the small epiphyses in the knees with translucent submetaphyseal areas in the proximal tibia are reminiscent of
PSACH. However, the hand shows only mild shortening of the phalanges and metacarpals. In addition, there is marked delay in carpal ossification.
The epiphyses in the wrist and hands are too small for age. The vertebral bodies are flattened and elongated.

and 6+7 of MATN4 (Supp. Table S1). We specifically chose these
exons because they encode important structural and/or functional
domains in glycoproteins that are structural components of the car-
tilage growth plate. For example, the EGF-like repeats of COMP
and MATN3 and the EGF-like and A-domains of matrilin-1 and
-4 are important for protein integrity and interactions in cartilage
[Wagener et al., 2005]. Moreover, mutations in the first EGF-like
repeat of MATN3 had been reported to cause recessive spondylo-
epi-metaphyseal dysplasia (SEMD, MATN3 related) [Borochowitz
et al., 2004] and confer susceptibility to hand osteoarthritis
[Stefansson et al., 2003].

In one patient with MED and in the one remaining patient with
“classical” PSACH, we identified novel mutations in exons 5 and
7 of COMP, respectively (Table 5; Fig. 3). MED patient ESDN-
00521 was heterozygous for c.500G>A, which is predicted to result
in a p.Gly167Glu substitution in the second EGF-like repeat of

COMP. In PSACH patient ESDN-01040, we identified a heterozy-
gous c.700C>T, which resulted in a p.Pro234Ser substitution in the
fourth EGF-like repeat of COMP; both of these unclassified vari-
ants had not previously been reported and were not present in the
dbSNP database version 130 (May 2009). In contrast, no mutations
were identified in the additional exons of MATN1, MATN3, and
MATN4 that we screened, which is consistent with our previous
studies [Jackson et al., 2004].

Novel Mutations in Exon 50 of COL2A1

Finally, we extended our screening to include exon 50 of COL2A1
since a recurrent mutation (p.Gly1170Ser) in this exon has been
shown to cause Legg-Calve-Perthes (LCP) disease in four fami-
lies [Miyamoto et al., 2007; Su et al., 2008], and there is clear
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Table 4. Two MED Patients with Multiple Mutations Identified in COMP and MATN3

ESDN 00359 Clinical status COMP screening

Proband MED c.1206T>C
c.1502G>A
c.1504G>T

Father of proband Unaffected None detected
Mother of proband Affected c.1206T>C

c.1502G>A
c.1504G>T

Sister of proband Unknown None detected

ESDN 00594 Clinical status COL9 screening MATN3 screening COMP screening

Proband MED None detected c.733G>A,p.Val245Met c.1502G>A,p.Gly501Asp
c.2267A>G,p.Gln756Arg

c.2274+1G>C
Father of proband MED or mild PSACH n/a c.733G>A,p.Val245Met c.1502G>A,p.Gly501Asp

c.2267A>G,p.Gln756Arg
c.2274+1G>C

Patient ESDN-00359 was shown to be heterozygous for three COMP variants, which were all inherited from his affected father and therefore co-segregated as a single haplotype.
Patient ESDN-00594 inherited three COMP variants and a single MATN3 variant from his affected father. Nucleotide numbering according to cDNA sequence with nucleotide 1
counted as the first nucleotide of the translation initiation codon. GenBank accession numbers NM_000095.2 (COMP); NM_002381.4 (MATN3).

Table 5. Novel COMP and COL2A1 Mutations Identified in Four Patients with Clinically and Radiographically Confirmed PSACH or MED

Patient Phenotype Gene Exon Nucleotide change Protein change Domain Proof of pathogenicity

ESDN-00521 MED COMP 5 c.500G>A p.Gly167Glu EGF-like 2 Evolutionally conserved functional residues in type II repeats of
ESDN-01040 PSACH COMP 7 c.700C>T p.Pro234Ser EGF-like 4 COMP and not present in 20 other PSACH-MED patients

ESDN-00050 MED COL2A1 50 c.3535G>A p.Gly1179Arg Triple helical region Highly conserved glycine residues vital for correct triple helical
ESDN-00283 MED COL2A1 50 c.3527G>T p.Gly1176Val Triple helical region formation. Mutations in neighboring glycine residues,

p.Gly1173Arg and p.Gly1176Ser, shown to be pathogenic

COMP EGF-like mutations were identified in MED patient ESDN-00521 and PSACH patient ESDN-01040, both of which are novel variants that are not present in the dbSNP
database version 130 (May 2009). COL2A1 mutations identified in two MED patients (ESDN-00050 and -00283) that affected conserved glycine residues in the triple helical
region of type II collagen. Nucleotide numbering according to cDNA sequence with nucleotide 1 counted as the first nucleotide of the translation initiation codon. GenBank
accession numbers NM_000095.2 (COMP); NM_001844.4 (COL2A1).

clinical overlap between LCP and MED [Herring and Hotchkiss,
1987; Ikegawa et al., 1991]. Patient ESDN-00050 (mild MED) was
heterozygous for c.3535G>A, which is predicted to result in a
p.Gly1179Arg substitution and patient ESDN-00283 (MED) was
heterozygous for c.3527G>T, which is predicted to result in a
p.Gly1176Val substitution (Table 5).

Discussion
In this study, we undertook a comprehensive clinical and molec-

ular approach to define the genetic basis of PSACH and MED in
a cohort of 130 patients referred to ESDN. All of these patients
had been referred to ESDN between 2003 and 2010 with various
working diagnoses of PSACH (27); PSACH-MED (3); MED (66)
(including variants described as Fairbank (2), polyepiphyseal dys-
plasia (1), MED with sacroiliitis (1), MED with neuropathy (1) and
Perthes (2)); rMED (9); spondyloepiphyseal dysplasia (SED)/MED
(1); SED (4); SEMD (2) (including a variant described as SEMD-JL
[1]); SMD (1); PPRD (2); mild DTD (3), or without any formal
diagnosis (4).

For the vast majority of patients referred to ESDN with a provi-
sional diagnosis of PSACH, the panel agreed with the diagnosis and
a COMP mutation was subsequently found (Table 1). This obser-
vation implies that PSACH is relatively straightforward to diagnose
given suitable radiographs and clinical summary, however, it should
be noted that at least 21 of the 27 PSACH referrals came from geneti-
cists within clinical genetics departments, including eight referrals
from members of the ESDN panel, suggesting that the cases came

from clinicians with experience in skeletal dysplasias. The three ex-
ceptions were ESDN-00074, ESDN-00618, and ESDN-00695, but
atypical clinical and radiographic features excluded PSACH and
suggested an alternative diagnosis prior to sequencing the COMP
gene (Table 2; Fig. 2).

In the other 56 patients in whom we identified a COMP, MATN3
or type IX collagen gene mutation, the majority had been referred
to ESDN with a diagnosis of MED (Table 3), which would indicate
that the “classical” forms of MED (i.e., those patients in whom
we identified a mutation) are also relatively easy to diagnose. This
was particularly the case for those patients in whom we identified
MATN3, COL9A2, or COL9A3 mutations [i.e., 18/19 (94%) patients
with these mutations had a correct diagnosis upon referral to ESDN;
see Table 3]. Once again these referrals came almost exclusively from
geneticists within clinical genetics and/or pediatrics departments
and included nine referrals from members of the ESDN panel.

Finally, in those patients in which we identified a DTDST muta-
tion, 69% (11/16 patients) had originally been referred with a diag-
nosis of MED or rMED; with PPRD (2) and mild DTD/SED/SEMD
(3) being proposed as a diagnosis in five cases. This observation
would therefore suggest that rMED is slightly harder to diagnose
than classical AD-MED. This may be explained partly by the fact
that unlike AD-MED where family history is often positive, most
cases of rMED lack a family history and therefore physicians may
be less inclined to think of a possible genetic cause of the disorder.
Likewise, all the referrals came from geneticists within clinical ge-
netics departments and also included three referrals from members
of the ESDN panel.
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Figure 3. Radiographic findings in PSACH and MED patients with mutations identified in the EGF-like repeats of COMP. ESDN-00521: Radiographs
taken at the age of 6 years. The proximal femoral epiphyses are small and flattened. The distal femoral and proximal tibial epiphyses are also small
for age. There is no ossification yet of the proximal fibular epiphysis. The hand radiograph shows normal phalanges and metacarpals but delayed
ossification of the carpal bones and epiphyses in the wrist. The spine is normal. ESDN-1040: The radiographs of pelvis and knee taken at the age
of 6 years shows very small epiphyses in the hips and knees, which is reminiscent of pseudoachondroplasia. Note, also the two round translucent
areas in the distal femoral metaphysis, which are often seen in patients with pseudoachondroplasia.

In spite of the diagnostic difficulties, we can confirm that autoso-
mal recessive MED (rMED) accounts for approximately one-fourth
of total MED cases, as has been suggested by earlier studies (15, 16).
This relatively high incidence is driven by the frequency of the
p.R279W mutation, which is by far the most common DTDST mu-
tation in the European population [Ballhausen et al., 2003; Barbosa
et al., 2010; Rossi and Superti-Furga, 2001]. Interestingly, it has been
reported that DTDST mutations are not a common cause of MED in
some Asian populations [Itoh et al., 2006]. On the whole, this study
suggests that ESDN receives a significant number of referrals from
geneticists and/or pediatricians with an interest in, and knowledge
of, skeletal dysplasias, which is reflected in the relatively high level
of correct diagnosis on referral.

The range of COMP mutations that we identified in the PSACH
patients was similar to those previously published [Kennedy et al.,
2005a] and included missense mutations that resulted in the substi-
tution of conserved glycine, aspartic acid, asparagine, and cysteine
residues, which are important for the folding, structural integrity,
and calcium binding of the type III repeats [Tan et al., 2009]. We also
identified the common p.Asp473del mutation in six PSACH patients
and more complex deletions in three other patients, thus in-frame
deletions were identified in approximately 33% of PSACH patients
(9/27), which was slightly less than the 43% that we have previously
reported [Kennedy et al., 2005a]. The range of COMP mutations that
we identified in the MED patients was more diverse than those found
in PSACH and in addition to the substitution of conserved glycine,
aspartic acid, asparagine, and cysteine residues, we also identified
missense mutations that resulted in the substitution of noncon-
served proline (p.Pro276Arg) and serine (p.Ser298Leu) residues and
a conserved alanine (p.Ala311Asp) residue all within the linker or the

T31 repeat of the Type III region (Fig. 4). We also identified a broad
range of in-frame deletion, duplication, and deletion/insertion mu-
tations including the previously reported p.Asp473dup [Delot et al.,
1999]. It is an interesting observation that p.Asp473del consistently
causes PSACH, while p.Asp473dup always causes MED. Presumably,
the insertion of a aspartic acid reside into the C-type motif of T36 is
less deleterious to protein folding and structure than its deletion.

Interestingly, we identified the recurrent p.Asn523Lys
(c.1569C>G) mutation in three MED patients from our panel
(ESDN-00123, 00382, and 00751), all of whom were from the
Netherlands. Furthermore, this same mutation was previously
identified in a large South African kindred of Dutch descent [Ballo
et al., 1997], suggesting that this is an ancestral mutation. We also
identified the recurrent p.Asp385Asn (c.1153G>A) mutation in two
British and one Dutch family with MED (ESDN-00049, 00509, and
00597), in addition to p.Asp585Asn and p.Asp385del mutations,
which points to a key role for Asp385 in the structure of COMP.

Finally, when just considering the 34 different COMP missense
mutations that we identified in the type III region, sequence align-
ments reveal that 85% (29/34) of them affect residues in the C-type
motif of the linker and T31–7 repeats (Fig. 4). This suggests that con-
served residues in this motif are more important for coordinating
calcium binding and/or the folding of COMP; the five mutations
that we identified in the N-type motif all cause MED.

Mutations in exons 14–18 of COMP, which encodes the C-
terminal domain were identified in approximately 13% (8/64) of
PSACH and MED patients and were once again clustered at spe-
cific residues as previously noted [Kennedy et al., 2005b]. These
observations reinforce the hypothesis that Thr529, Thr585, Arg718,
and Gly719 are important for the structure and/or function of the
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Figure 4. Localization of COMP mutations identified in PSACH and MED patients in this study. An amino acid sequence alignment of the type III
repeats region of COMP, with the linker region and each of the seven T3 repeats (T31−7) shown with their corresponding residue numbers. Residues
comprising the N-type and C-type motif are boxed and the consensus sequence of each motif is indicated below. Also shown on the alignment are
the missense mutations that cause either MED (∗), PSACH (ˆ), or both (+) phenotypes. In-frame deletions are underlined.

C-terminal domain of COMP. Indeed, we have now identified ev-
ery possible amino acid substitution of Thr585 [i.e., pThr585Met,
p.Thr585Lys (unpublished data), and p.Thr585Arg], which all result
from either a transversion or transition at nucleotide c.1754, sug-
gesting that this nucleotide is particularly susceptible to mutation,
but also confirming that methionine at residue 585 is vital for the
correct folding and/or functioning of COMP.

MED mutations in MATN3 were again found in exon 2, which
encodes the single A-domain of MATN3 and affected residues in
either the β-stands (70%) or α-helices (30%). The identification of
an in-frame deletion/insertion (c.513_530del), which is predicted
to result in a p.Asp171_Glu177delinsGlu in the α4 helix, is the first
mutation of this kind to be identified in MATN3 and thus extends the
type of mutations in MATN3 that can cause MED. The clustering of
mutations in exon 2 demonstrates the importance of the A-domain
and most studies have demonstrated that these mutations disrupt
the folding of this domain [Cotterill et al., 2005], which elicits and
unfolded protein response [Nundlall et al., 2010].

Interestingly, in all six patients in whom we identified a COL9
mutation, the ESDN panel had predicted or suggested a type IX
collagen defect prior to mutation screening. The ability of the panel
to accurately predict a COL9 mutation was a result of the previously
documented differences in the clinical and radiographic presenta-
tion of MED caused by a type IX collagen mutation compared to
COMP and MATN3 mutations [Lachman et al., 2005; Unger et al.,
2008, 2001]. COL9-MED is generally the mildest form of MED and
is characterized by joint pain and stiffness presenting in the first
decade of life, while radiographic abnormalities are primarily re-
stricted to the knees with relative sparing of the hips. Interestingly,
three of the six patients (ESDN-0638, 0926, and 0997) were from
the Netherlands and two of these shared the same c.186+2C>T mu-
tation in COL9A2, which was originally identified in a large Dutch
kindred in 1986 [Muragaki et al., 1996; van Mourik et al., 1998]
and more recently in a second large family of Dutch origin [Jackson

et al., 2010; Versteylen et al., 1988]. These data might suggest that
the c.186+2t>c mutation in COL9A2 is another ancestral mutation
in the Dutch population; however, haplotype analysis should be
performed to test this hypothesis further. In contrast, three British
families with COL9A2-MED all had a different mutation; c.186+4a>c
(ESDN-01003 in this study), c.186+5g>c [Holden et al., 1999], and
c.186+6t>g [Barrie et al., 1958; Briggs et al., 1994; Spayde et al.,
2000]. Finally, although it has been proposed that COL9-MED mu-
tations are more prevalent in Japan [Itoh et al., 2006], it is interesting
to note that of the 14 COL9A2 mutations published to date, 12 have
actually been identified in families from Northern Europe (UK [3],
Netherlands [4], Germany [2], Sweden [1], and unspecified [1]).
Our study has now demonstrated that mutations in COL9A2 and
COL9A3 account for approximately 10% of mutations in molecu-
larly confirmed MED, which is slightly less than the 16% reported by
Itoh and colleagues [Itoh et al., 2006]. In contrast, COMP mutations
accounted for 66% of mutations (37% in [Itoh et al., 2006]) and
MATN3 for 24% of mutations (47% in [Itoh et al., 2006]). These
differences in the relative proportions of COMP, MATN3, and COL9
mutations may be due to ascertainment bias or ethnic differences.

The panel’s success in predicting a COL9 mutation was not re-
peated with MED resulting from MATN3 mutations and in most
cases the panel could not decide between COMP or MATN3 as the
causative gene prior to screening (although the COL9 genes were
never considered as candidates). These observations would suggest
that there are phenotypic features (both clinical and radiographic)
shared between COMP-MED and MATN3-MED, which may result
from common disease mechanisms. Indeed, recent studies of knock-
in mouse models of mild PSACH and MED caused by Comp and
Matn3 mutations, respectively, suggest that specific characteristics
of growth plate pathophysiology, such as reduced chondrocyte pro-
liferation and increased and/or spatially dysregulated apoptosis are
common disease mechanisms [Leighton et al., 2007; Pirog-Garcia
et al., 2007].
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Interestingly, in two unrelated patients with AD-MED, we iden-
tified more than one potential mutation that co-segregated with the
phenotype following family studies (Table 4). MED patient ESDN-
00359 had three changes identified in COMP; p.Gly404Gly (a non-
pathogenic neutral polymorphism), p.Gly501Asp, and p.Asp502Tyr,
which are both conserved amino acid residues in the N-type motif
of the T37 repeat and help to co-ordinate Ca2+ binding. All three
changes co-segregate as a single haplotype since they were also
present in the suspected affected mother, but not the unaffected
father, of the proband. In this case, it would seem most likely that
a single mutational event affecting contiguous nucleotides in the
codons of both Gly501 (GGC) and Asp 502 (GAC) would account
for these two mutations (p.Gly501Asp and p.Asp502Tyr). Both mu-
tations might conceivably cause MED on their own by affecting
highly conserved amino acids important for protein folding and
calcium binding, respectively.

ESDN-00594 had four changes; three in COMP and a single
change in MATN3, none of which have previously been reported
(Table 4). The COMP changes included p.Gly501Asp (also iden-
tified in ESDN-00359 and ESDN-00422); p.Gln756Arg, which is
at the end of the C-terminal domain of COMP (and interestingly
arginine is present at that same position in bovine and rat COMP);
and finally c.2274+1G>C which is in the 3′ untranslated region and
might affect mRNA stability leading to reduced protein levels, but
since COMP-null mice are normal, this change is unlikely to have a
phenotypic effect. The MATN3 mutation is at a conserved residue
(p.Val245) in the αF strand of the MATN3 A-domain and functional
studies show p.Val245Met affects to some extent the trafficking and
secretion of MATN3 A-domain [unpublished data]. Importantly,
the p.Gly501Asp mutation in ESDN-00422 was recently confirmed
as de novo in this family [Stephen Robertson, personal communi-
cation], confirming that it is the cause of MED in ESDN-00594.
Nevertheless, the intracellular retention of a significant proportion
of p.Val245Met suggests the intriguing possibility that it might be a
genetic modifier of phenotypic severity.

By extending our standard screening protocol, we identified mu-
tations in COMP and COL2A1 in the remaining PSACH patient and
in three MED patients. In PSACH patient ESDN-01040, we identi-
fied a heterozygous p.Pro234Ser substitution in the fourth EGF-like
repeat of COMP and MED patient ESDN-00521 was heterozygous
for p.Gly167Glu in the second EGF-like repeat of COMP. Both of
these residues are conserved in murine COMP and the substitution
of glycine and proline residues in the EGF-like repeats of fibrilin-1
has been shown to cause Marfan Syndrome [Arbustini et al., 2005;
Collod-Beroud et al., 1999]. More recently, we have identified a third
COMP EGF-like mutation in a patient with PSACH, p.Gly258Arg,
which is in the fourth repeat and again conserved across species
(unpublished data), but the precise affect of these COMP mutations
remains undetermined and will require extensive studies in vitro.

Both of the COL2A1 mutations that we identified (p.Gly1176Val
and p.Gly1179Arg) were in suspected MED patients (ESDN-00283
and ESDN-00050) in whom there was limited clinical information
and radiographic images in which to make an unambiguous diagno-
sis (Table 5). However, in both cases while there were some features
consistent with MED, it was also noted that there were features not
normally associated with MED such as short trunk and severely
fragmented hip epiphyses with adjacent metaphyseal anomalies.
This observation would suggest that there is some clinical and ra-
diographic overlap between MED and mild SED congenital (SEDc),
which is borne out by the fact that similar mutations, p.Gly1173Arg
[Sobetzko et al., 2000] and p.Gly1176Ser [Williams et al., 1995], have
previously been shown to cause SEDc type. Furthermore, the identi-
fication of a recurrent p.Gly1170Ser mutation in patients with Legg-

Calve-Perthes disease (LCPD) and/or primary avascular necrosis of
femoral head (ANFH) [Miyamoto et al., 2007; Su et al., 2008] also
suggests that there are similar disease mechanisms that might cause
phenotypes within a LCPD/ANFH-MED-SEDc disease spectrum.

Finally, in those patients in whom we could not identify a muta-
tion in the core exons of our screening protocol, the predominant
diagnosis on referral had been MED or rMED (Supp. Table S1: 22/30
[80%]), with the remainder being PSACH (1), DTD (2), SED (3),
or unknown (2). This observation would suggest that the mutation
negative cases of MED are due to either a mutation in an as yet
unknown gene(s), or the diagnosis of MED was incorrect in these
patients. Interestingly, on re-review of these cases it was clear that
the ESDN panel had not agreed upon a consensus diagnosis for most
of these cases. Indeed, there were only two mutation negative pa-
tients in which a diagnosis of suspected mild MED was agreed upon
by the panel prior to screening (Supp. Table S1; ESDN-00039 and
ESDN-00160). In the majority of cases in which we did not identify a
mutation in this study (Supp. Table S1: 24/26 [96%]), an alternative
diagnosis was suggested prior to mutation screening and for many
cases this was either Meyer’s disease/hip dysplasia (Beukes)/bilateral
LCPD (8/26), a type II collagenopathy (5/26), or SEMD (2). This
would suggest that there are forms of familial hip dysplasia, variably
described in the literature as Meyer’s disease (dysplasia epiphysealis
capitis femoris), familial hip dysplasia (Beukes), and bilateral LCPD,
that are genetically distinct from the classical forms of MED and do
not result from mutations in COMP, MATN3, or type IX collagen.
The genetic cause of these diseases remains underdetermined, but
the careful use exome sequencing may help identify potential can-
didate genes. Finally, it is interesting to note that like the mutation
positive cases, the majority of mutation negative patients had also
been referred by geneticists within clinical genetics departments in-
cluding six from members of the ESDN panel. This would indicate
that in these patients there are clear difficulties in making a correct
diagnosis rather than a lack of relevant expertise.

In summary, we have shown that in the context of PSACH and
the MED disease spectrum, the classical form of PSACH is relatively
straightforward to diagnose provided there is sufficient clinical and
radiographic information. In cases of PSACH, a COMP mutation
should be identified, however, we have additional evidence to con-
firm that a PSACH-like phenotype is distinct from classical PSACH
and does not result from a COMP mutation [Spranger et al., 2005].
In contrast, the radiographic signs of MED are more subtle and
variable, and while the ESDN panel was relatively successful in pre-
dicting genotype from the phenotype, MED remains more difficult
to diagnose correctly. Our study confirms that accurate review by an
expert panel may help in prioritizing the genes to be sequenced and
thus reduce both time and cost. Those cases that remain “mutation
negative” should be carefully re-reviewed and alternative diagnoses
possibly considered. Finally, our comprehensive study also throws
doubt on previous studies that have suggested that mutations in the
known genes are not the major cause of MED [Jakkula et al., 2005],
and we conclude that mutations in COMP, MATN3, and type IX
collagen genes account for the vast majority of classical AD-MED.
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