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Previous studies suggest that in people with major depressive disorder (MDD), there

exists a perturbation of the normal balance between the excitatory and inhibitory

neurotransmitter systems in the visual cortex, indicating the possibility of altered visual

cortical excitability. However, investigations into the neural activities of the visual cortex

in MDD patients yielded inconsistent findings. The present study aimed to evaluate the

visual cortical excitability utilizing a paired-pulse stimulation paradigm in patients with

MDD and to access the paired-pulse behavior of recording visual evoked potentials

(VEPs) as a marker of MDD. We analyzed the amplitudes of VEPs and paired-pulse

suppression (PPS) at four different stimulus onset asynchronies (SOAs) spanning 93ms

to 133ms. Further, the relationship between PPS and the symptom severity of depression

was investigated using Spearman’s correlation. We found that, whereas the first VEP

amplitude remained unchanged, the second VEP amplitude was significantly higher

in the MDD group compared to the healthy controls. As a result, the amplitude ratio

(second VEP amplitude/first VEP amplitude) increased, indicating reduced PPS and

thus increased excitability in the visual cortex. Moreover, we found the amplitude ratios

had a significantly positive correlation with the symptom severity of depression in MDD,

indicating a clinically useful biomarker for MDD. Our findings provide new insights into the

changes in the excitation-inhibition balance of visual cortex in MDD, which could pave

the way for specific clinical interventions.

Keywords: major depressive disorder, cortical excitability, visual evoked potentials, paired-pulse suppression,

occipital cortex

INTRODUCTION

Major depressive disorder (MDD) is a common mental disease that is characterized by affective
disturbances and neurocognitive impairment, for which the development of clinically useful
biomarkers remains a challenge (1).

Though the underlying mechanism of MDD has not been fully understood, wide-spread
connectivity alterations in the structure and function of cortical regions, including occipital cortical
abnormalities linked with impaired visual perception, have been reported in MDD patients (2).
Several studies have investigated the cortical processing of different types of visual perceptions in
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MDD patients, such as visual motion, visual contrast and visual
integration, using psychophysical measures. The results revealed
higher motion suppression (3), decreased contrast suppression
(4) and deficits in integration of visual inputs in MDD (5). The
psychophysical deficits in visual perception in MDD are closely
related to the abnormality of biochemical changes in the occipital
cortex. Using proton magnetic resonance spectroscopy, previous
studies have consistently shown a decreased concentration of
gamma-aminobutyric acid (GABA) in the visual cortex of MDD
subjects (6–8), which can be normalized following effective
therapeutic interventions (9–11). As an important inhibitory
neurotransmitter, GABA was considered to mediate the center-
surround suppression effect in visual perception (12). In addition
to GABA, glutamate alterations have been identified in multiple
cortical regions, suggesting glutamate has a function in the
pathophysiology of MDD as well (13, 14). In healthy individuals,
excitatory glutamate levels were found to have a positive
association with GABA levels, indicating an excitation-inhibition
balance in the occipital cortex. However, in MDD, there was a
reduction in glutamate levels in the occipital cortex, and, more
importantly, the balance betweenGABA and glutamate levels was
disrupted (8).

Together, these findings suggest that there exists a
perturbation of the normal balance between the main excitatory
and inhibitory neurotransmitter systems in the occipital cortex
of MDD. This begs the issue of whether the excitability of
the visual cortex, determined to a great extent by GABA and
glutamate, is altered in MDD. In previous studies, transcranial
magnetic stimulation (TMS) of the motor cortex revealed
that there was an alteration of motor cortical excitability in
MDD, which could be modulated by transcranial direct current
stimulation (tDCS) (15, 16). The promising intervention of tDCS
for treating MDD revealed that aberrant cortical excitability
played a significant part in the pathogenesis of MDD. As a
result, a greater understanding of the aberrant excitability of the
visual cortex may pave the way for new therapy techniques to
improve visual perception in MDD patients. So far in the current
literature, there are inconsistent findings about alterations
involving visual cortical excitability in MDD patients. In an
early investigation utilizing electrophysiological measurements,
Fotiou et al. revealed that recordings of pattern-reversed visual
evoked potentials (VEPs) were within the normal range in MDD
patients and were not different from those in healthy controls
(17). However, in the two subsequent studies, amplitudes
of pattern-reversed VEPs were shown to be considerably
lower in MDD patients (18, 19). More recently, Qi et al.
explored the relationship between pattern glare and MDD.
They discovered a high level of pattern glare in MDD patients,
indicating hyper-excitability existed in the visual cortex of MDD
patients (20).

Paired-pulse stimulation paradigm, which involves delivering
two stimuli at different inter-stimulus intervals, are widely
employed to assess cortical excitability. When paired stimuli
are applied in close succession, the amplitude of the evoked
potential by the second stimulus is suppressed. By comparing
the suppressive influence of the second stimulus with the first
stimulus, researchers can investigate the cortical excitability

in the motor, visual and somatosensory cortex (21–23). High
paired-pulse suppression (PPS) indicates low cortical excitability,
while low PPS indicates high cortical excitability. To clarify the
foregoing seemingly contradictory results, this study employed a
paired-pulse stimulation method to produce VEPs. PPS was next
examined in MDD patients and a group of healthy controls who
were matched by gender, age, and educational level to determine
visual cortical excitability. Further, the relationship between
visual cortical excitability and psychopathological symptoms in
MDD was investigated.

METHODS

Participants
Twenty-three individuals with MDD and 27 normal controls
were enrolled in the study. All subjects were recruited from
the neurology outpatient clinics of Yongchuan Hospital and
provided written informed consent. This research was carried
out in line with the Helsinki Declaration and approved by the
Ethics Committee of Yongchuan Hospital of Chongqing Medical
University (approval No. 2019114).

The diagnosis of MDD was established by two experienced
psychiatrists and confirmed with the Mini International
Neuropsychiatric Interview (M.I.N.I.). The population was also
assessed psychometrically using the Hamilton Depression Rating
Scale (HAMD).

Inclusion criteria of the MDD subjects were: (1) currently
in a first or recurrent episode of MDD diagnosed according
to the Diagnostic and Statistical Manual of Mental Disorders,
Fifth Edition (DSM-V); (2) a total score of HAMD ≥17; (3) age
between 18 and 60 years; (4) free from ocular diseases and with
normal or corrected-to-normal visual acuity in both eyes; (5)
dextromanual and able to finish the study.

Inclusion criteria of the healthy subjects were: (1) no history
of psychiatric disorder; (2) a total score of HAMD ≤7; (3) age
between 18 and 60 years; (4) free from ocular diseases and with
normal or corrected-to-normal visual acuity in both eyes; (5)
dextromanual and able to finish the study.

Exclusion criteria for both groups were: (1) history of
neurological or other physical illness such as cardiac, respiratory,
hepatic, renal, and endocrinal diseases; (2) history or family
history of other psychiatric disorders; (3) presence of alcohol
or substance abuse; (4) presence of psychotropic drug use; (5)
subjects who are pregnant, breastfeeding or in menstrual period.

Stimulation
The paradigm of paired-pulse stimulation was the same as that
used in earlier investigations (24, 25). The participants were
situated in a shaded room, 50 cm away from a cathode ray
tube (CRT) with a viewing angle of 23◦ × 17◦. The CRT was
set to a pixel resolution of 800 × 600 and a frame rate of
75Hz (13.33ms per frame). Subjects were instructed to relax
with their eyes open and binocularly gaze at a small fixed
cross in the center of the monitor. For paired-pulse stimulus, a
black and white checkerboard pattern (check size 0.5◦, contrast
36 %, mean luminance 16 cd/m2) as the initial stimulus was
displayed for one frame (13.33ms), which corresponded to
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the tube’s frame rate. The first stimulus was then followed by
presentations of multiple frames with a uniform gray backdrop
and no variation in the mean brightness. After various stimulus
onset asynchronies (SOAs), the second stimulus, presented as a
checkerboard pattern with the same parameters, occurred. We
used four different SOAs of 93ms (six frames), 107ms (seven
frames), 120ms (eight frames) and 133ms (nine frames), which
had shown paired-pulse inhibition in previous studies. The trials
with these paired-pulse stimuli were spaced by 1,000ms intertrial
intervals, resulting in a frequency of around 1Hz. For single-
pulse stimulus, checkerboard patterns with identical contrast and
luminance as before were displayed for one frame (13.33ms),
followed by presentations of multiple frames with a uniform gray
backdrop (intertrial interval 1,000ms, resulting in a stimulation
frequency of about 1Hz). Ten trials with paired-pulse stimuli,
accompanied by 10 trials with single-pulse stimuli, constituted
one cycle. Both the paired- and single-stimulus conditions were
given in four successive cycles of ten stimuli, totaling 40 sweeps
per condition. The VEPs were performed using a GT-2008V-III
VEP system (Guo Te Medical Equipment, Chongqing, China).

Recording and Analysis
For VEP recordings, the anodal electrode was inserted on the
scalp at Oz (mid-occipital location) above the visual cortex,
with the reference electrode at Fz (mid-frontal position) and
the ground electrode at Cz (center of the scalp). VEPs of each
condition (single stimulation, and paired-pulse stimulation at
SOAs of 93, 107, 120 and 133ms) were documented in epochs
from 200ms before and 300ms after the stimulation. After
being band-pass filtered (1–100Hz) and baseline adjusted to the
Pre-stimulus, signals were averaged and those >140 µV were
considered artifacts and were removed. In the single-pulse VEP
recordings, C1 denoted a positive peak that occurred <100ms
after stimulus onset, while C2 denoted a negative peak that
occurredmore than 100ms after the start of simulus. Considering
paired-pulse VEPs, the amplitudes of the first response between
C1 and C2 were termed A1 (first amplitude) and the amplitudes
of the second response between C1 and C2 were termed A2
(second amplitude). To factored out the linear superposition
effects in paired-pulse VEPs, the response to the single-pulse
stimulation was subtracted from the paired-pulse stimulation
trace, resulting in a “true” second amplitude (A2s). PPS was
defined as a ratio (A2s/A1) of the amplitudes of the second (A2s)
and the first (A1) peaks (Figure 1). The value of ratio ≥1 means
that there is no suppression.

Statistics
All statistical analysis in this study was done with SPSS (version
19.0). For demographic and clinical data, χ

2 test and Student’s
t test (unpaired, two-tailed) were conducted to determine the
difference between the two groups. For the amplitudes of single
VEPs, Student’s t test was performed. The paired-pulse VEP
data were analyzed using a Two-way repeated measures ANOVA
(Between-subject factor = group, level = 2; Within-subject
factor = SOAs; level = 4) with post-hoc t-tests (Bonferroni
corrected). To see if there was a link between PPS and HAMD-
17 scores, Spearman’s correlation coefficient was examined. The

general linear regression analysis method is used to analyze the
relationships. Differences were considered statistically significant
if p < 0.05.

RESULTS

Demographic and Clinical Characteristics
Table 1 summarizes the demographic variables and clinical
characteristics of study participants, including gender, age,
education level and the scores of HAMD. No significant
differences were observed between the MDD group and the
healthy controls with respect to gender (χ2 = 0.0480, p= 0.8267),
age (T = 0.5020, p = 0.6180) and education level (T = 0.1181,
p = 0.9065). MDD patients had a significantly higher HAMD
score than the control group (T = 29.7523, p < 0.001), showing
that the patients were in the midst of a depressive episode when
they entered the study.

Recording VEPs
Mean values and standard deviations of the response amplitudes
to the single- and paired-pulse stimulus in the MDD group and
the healthy controls are shown inTable 2. The unpaired Student’s
t-test revealed no significant changes in VEP amplitude between
the two groups in the single stimulus condition (T = 1.7707,
p > 0.05).

In the paired-pulse stimulus condition, the amplitude ratios
(A2s/A1) in the MDD group and the control group at different
SOAs (93ms, 107ms, 120ms and 133ms) were all <1.0,
indicating varying degrees of PPS. The amplitude ratios increased
in both groups as the value of SOAs increased, with the largest
values (0.96) in the control group at a SOA of 133ms (Figure 2A).
The repeated measures ANOVA for the analysis of amplitude
ratio (A2s/A1) indicated there were significant effects of group
(MDD vs. control; F = 100.467, p < 0.001), SOA (F = 31.237,
p < 0.001), and interaction between SOA and group (F = 7.451,
p < 0.001) (Table 3). Post-hoc t-tests with Bonferroni correction
showed the amplitude ratios (A2s/A1) were significantly higher
at SOAs of 93ms (F = 66.481, p < 0.001), 107ms (F = 84.846,
p < 0.001), 120ms (F = 30.536, p < 0.001) and 133ms
(F = 9.469, p = 0.003) in the MDD group compared to the
healthy controls (Table 4). A higher amplitude ratio indicated
a lower PPS. Because the amplitude ratio was calculated by
dividing A2s by A1, the two components were then analyzed
separately to identify which component was responsible for the
increased amplitude ratio in the MDD group (Figure 2B). For
the first VEP amplitude (A1), ANOVA did not indicate any
effects of group (MDD vs. control; F = 2.592, p = 0.114), SOA
(F = 2.912, p = 0.074) or interaction between SOA and group
(F = 1.824, p = 0.156). Regarding the second VEP amplitude
after subtraction of the single VEP amplitude (A2s), there were
significant effects of group (MDD vs. control; F = 256.398,
p < 0.001), SOA (F = 50.096, p < 0.001), and interaction
between SOA and group (F = 17.044, p < 0.001). The significant
effect of group for A2s indicated that the MDD group had a
substantial increase in the second VEP amplitude compared to
the control group. Post-hoc t-tests with Bonferroni correction
showed significantly higher amplitude of A2s at SOAs of 93ms
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FIGURE 1 | Visually evoked potentials of one subject after single- (gray trace) and paired-pulse with SOA of 93ms (black trace). The label C denoted the positive and

negative components of the first and second response. Subtracting the single-pulse trace from the paired-pulse trace yields the dotted gray trace. The first amplitudes

(A1 = C21-C11) and second amplitudes (A2 = C22-C12) in the paired-pulse trace are indicated by vertical bars; the second amplitudes (A2) after subtracting the

response of a single-pulse are denoted as A2s.

TABLE 1 | Demographic and clinical data of MDDs and healthy controls.

Variables MDD patients (N

= 23)

Healthy controls

(N = 27)

Test statistic p value

Gender (M/F) 7/16 9/18 χ
2 = 0.0480 0.8267

Education, years (SD) 13.7 (1.75) 13.6 (1.80) T = 0.1181 0.9065

Age, years (SD) 30.7 (8.04) 29.7 (5.71) T = 0.5020 0.6180

Age of onset, years (SD) 28.9 (7.30) – – –

Duration of illness, years (SD) 1.7 (1.07) – – –

Number of episodes (SD) 1.2 (0.41) – – –

First/recurrent episode 18/5 – – –

HAMD-17 scores (SD) 23.8 (3.4) 3.4 (1.1) T = 29.7523 <0.001

HAMD, Hamilton Depression Rating Scale. Each value is expressed as mean (standard deviation).

(F= 141.885, p< 0.001), 107ms (F= 167.285, p< 0.001), 120ms
(F = 94.005, p < 0.001) and 133ms (F = 13.171, p = 0.01) in
the MDD group compared to the healthy controls. So, the VEP
amplitude to the second stimulus, according to our analyses, is
critical in modulating paired-pulse behavior in MDD.

Relation of Paired-Pulse Suppression With
Symptom Severity of Depression
PPS is regarded as a cortical excitability indicator. The above
finding that the MDD group showed a reduced PPS and hence an
elevated visual cortical excitability begs the question of whether
PPS is related to symptom severity in MDD patients. To address
this question, a linear association analysis between the degree of
PPS and the symptom severity of depression was performed. The
amplitude ratios (A2s/A1) used to quantify PPS were shown to

have a significantly positive correlation with symptom severity
as measured by HAMD scores: the greater the amplitude ratios
(A2s/A1), the higher the HAMD scores suggesting higher degrees
of symptom severity. Figure 3 showed the Spearman’s correlation
coefficient and p-values for each SOA in the lower right corner
of the plots (SOA 93 ms: r = 0.4280, p = 0.0416, SOA 107 ms:
r = 0.4979, p = 0.0156, SOA 120 ms: r = 0.4387, p = 0.0390,
SOA 133 ms: r = 0.3476, p = 0.1041). Only at a SOA of 133ms
was the correlation not significant, possibly due to the decayed
PPS at long SOAs.

DISCUSSION

Previous electrophysiologic investigations on neural activities
of visual cortex in MDD patients yielded inconsistent results.

Frontiers in Psychiatry | www.frontiersin.org 4 March 2022 | Volume 13 | Article 844434

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Du et al. Visual Cortical Excitability in MDD

TABLE 2 | Response amplitudes and their ratios for the MDD group and healthy controls.

Parameter SOAs (ms)

93 107 120 133

MDD group

A1 (µV) 34.05 ± 2.04 32.03 ± 2.26 34.24 ± 3.18 32.28 ± 2.14

A2 (µV) 22.64 ± 3.48 26.06 ± 1.83 27.54 ± 3.26 29.10 ± 2.49

A2s (µV) 29.14 ± 2.65 29.28 ± 1.96 30.66 ± 2.25 30.88 ± 2.30

Amplitude ratio (A2s/A1) 0.86 ± 0.08 0.92 ± 0.09 0.90 ± 0.10 0.96 ± 0.10

Single (µV) 32.22 ± 2.68

Control group

A1 (µV) 32.07 ± 3.10 32.38 ± 2.70 33.24 ± 2.29 32.76 ± 2.43

A2 (µV) 18.77 ± 2.61 20.25 ± 2.60 24.83 ± 3.15 28.08 ± 3.32

A2s (µV) 21.46 ± 1.78 21.86 ± 2.00 25.09 ± 1.71 28.41 ± 2.39

Amplitude ratio (A2s/A1) 0.67 ± 0.07 0.68 ± 0.09 0.76 ± 0.08 0.87 ± 0.10

Single (µV) 33.54 ± 2.59

SOAs, Stimulus Onset Asynchronies. Each value is expressed as mean (standard deviation).

FIGURE 2 | (A) Amplitude ratios (A2s/A1) of the MDD and control group as a function of SOAs. (B) The first amplitudes (A1) and the second amplitudes after

subtracting the response of a single-pulse (A2s) for the MDD and control group vs. SOA, grand mean ± SD.

In our results, we observed no difference in the amplitude of
single-pulse VEPs between the MDD group and the healthy
controls. This finding is in line with the results reported by
Fotiou et al. who found no difference in the amplitude of single
VEPs between MDD group and control group, but a significant
alteration of VEP latency in different subtypes of MDD (17).
However, our finding on single VEP is not in accordance
with the two later studies (18, 19), in which amplitudes of
pattern-reversed VEPs were shown to decrease significantly in
MDD patients. VEPs reflect population synaptic currents and
are usually termed for the type of stimulation, such as flash
VEPs, pattern-reversal VEPs, or pattern-onset-offset VEPs. The

inconsistency of the results might be attributed to the different
types of stimulation used in the single VEP recording. Unlike the
above mentioned studies, we employed the approach of pattern
onset/offset VEPs, which was thought to be less vulnerable
to confounding variables including inadequate fixation, eye
movements, or willful defocus than pattern reversal VEPs (22).
Furthermore, pattern onset/offset VEPs differs markedly from
VEPs generated by other forms of stimulation, leading to a new
nomenclature known as C1, C2, and C3 (26). The primary source
of the C1 component of the pattern onset/offset VEPs is thought
to be parvocellular areas of primary visual cortex (V1). The C2
and C3 components appear to be extrastriate in origin (27–29).
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TABLE 3 | Effect of SOA, group and their interaction on amplitude ratio (A2s/A1).

Souce df Observed power p value F value

SOA 3 1.000 <0.001 31.237

Group 1 1.000 <0.001 100.467

SOA*Group 3 0.984 <0.001 7.451

SOAs, Stimulus Onset Asynchronies; df, degree of freedom.

TABLE 4 | Pairwise comparisons of amplitude ratio (A2s/A1) between MDD and

control groups with post-hoc t-tests (Bonferroni correction).

SOAs df Observed power p value F value SEM

93 ms 1 1.000 <0.001 66.481 0.023

107 ms 1 1.000 <0.001 84.846 0.026

120 ms 1 1.000 <0.001 30.536 0.026

133 ms 1 0.854 0.003 9.469 0.029

SOAs, Stimulus Onset Asynchronies; df, degree of freedom; SEM, Standard Error

of Mean.

As a result, comparing multiple research employing different
types of stimulation is challenging.

To overcome the challenges of evaluating excitability from
single-pulse stimulation, paired-pulse stimulation has become
a common method for investigating cortical excitability in
various disorders like migraine (30), generalized anxiety (23)
or dystonia (31), allowing researchers to better understand
about the contributions of inhibition and facilitation in cortex,
as well as changes in their balance. We aimed to investigate
the visual cortical excitability using a paired-pulse stimulation
method in MDD patients, and to access paired-pulse behavior
of recording VEPs as a marker of MDD. According to our
findings, the amplitude ratios (A2s/A1) were significantly higher
in the MDD group compared to the healthy controls, indicating
reduced PPS and thus increased excitability in the visual cortex.
Further analysis found that, whereas the first VEP amplitude
(A1) remained unchanged, the second VEP amplitude (A2s) was
significantly higher in MDD patients. Moreover, we found the
amplitude ratios (A2s/A1) had a significantly positive correlation
with symptom severity of depression, indicating a useful clinical
biomarker for MDD.

The result of increased excitability in the visual cortex
of MDD patients is consistent with the findings of recent
psychophysical research, in which heightened levels of pattern
glare were observed in MDD, reflecting an increase in cortical
excitability (20). The neurological mechanism driving pattern
glare is usually assumed to be of cortical origin, i.e., cortical
hyper-excitability or inadequate cortical inhibition caused by
a lack of inhibitory systems unable to restrain overexcited
situations (32–34). Previous research on cortical excitability
in MDD has relied mostly on TMS, which is commonly
utilized to evaluate motor cortical excitability, and found an
interhemispheric imbalance between the prefrontal and motor
cortex, which manifested as decreased excitability in the left
hemisphere and increased excitability in the right (35–38).

TMS was also utilized in the visual system to test cortical
excitability in migraine patients (39), but not in MDD patients.
However, TMS can cause phosphene perception in the visual
field and incompliance in the subjects when used to measure
the excitability of occipital cortex. Hoffken et al. showed that
paired-pulse VEPs could indicate equivalent visual cortical
excitability features while overcoming the TMS limit, since the
PPS of VEPs was inversely linked with TMS-induced phosphene
thresholds (40).

PPS, also denoted as forward suppression, refers to the
decrease of the neural responding to the second stimuli when
two stimuli are presented in short succession. The mechanisms
that mediate PPS, on the other hand, are not completely
understood. Short-term plasticity, a term used to describe
changes in neural behavior resulting from prior activity, is
often assumed to represent one possible mechanism, which
involves presynaptic depletion of releasable vesicles, postsynaptic
receptor desensitization or other presynaptic mechanisms
depressing vesicle release (41). In addition, there is evidence
for a GABAergic contribution to PPS. GABA is the primary
inhibitory neurotransmitter, acting at inhibitory synapses by
binding to specific GABAA and GABAB receptors. In rat
auditory cortex, research has revealed that forward suppression
is primarily regulated by GABAA receptor-mediated inhibition
at short ISIs (42). In human motor and somatosensory cortex,
drug applications of the GABAA agonist lorazepam could
modulate cortical excitability by interfering with GABAergic
neurotransmission (43, 44). Moreover, GABAB receptors are also
implicated in the regulation of PPS, since presynaptic blockage
of GABAB receptors induces a reduction in synaptic release
probability, which is compatible with presynaptic inhibition of
glutamate release (45). The terms “short-latency intracortical
inhibition (SICI)” and “long-interval intracortical inhibition
(LICI)” are used in paire-pulse TMS research to describe
a phenomenon in which the conditioning stimulus reduces
the response of the test stimulus at a short or long ISI,
respectively. SICI is supposed to indicate GABAA receptor
activity, whereas LICI is thought to reflect GABAB receptor
activity. This phenomenon is thought to be related to, and
maybe equivalent to, forward suppression (46). In addition
to GABAergic systems, glutamate and its receptors were
also considered to play an important role in modulating
the PPS (47).

PPS can be altered either by changing the response to
the first stimulus, or by changing the response magnitude of
the second stimulus, which is considered to be controlled by
different mechanisms. Modulation in PPS caused by changes
in second amplitudes might indicate changes in intracortical
processing, whereas the presence of altered first amplitudes
reflects an involvement of thalamocortical transmission (30, 48).
We observed an elevated change in the second amplitude but
no changes in the first amplitude in MDD patients compared
to healthy controls, thus reflecting abnormal cortical visual
processing in MDD. Indeed, many lines of studies have reported
that MDD is often associated with the subjective experience
of altered visual perception, such as photophobia, perceived
dimness and reduced visual contrast discrimination (49–51).
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FIGURE 3 | Correlation of paired-pulse suppression with symptom severity of depression for each SOA in MDD group. An increase in the amplitude ratios (A2s/A1) is

associated with an increase in HAMD-17 scores. The Spearman’s correlation coefficient and p-values for each SOA were present in the lower right corner. Only at

SOA of 133ms was the correlation not significant.

Moreover, the impairment in visual perception was found to be
directly related to the psychopathological symptoms of MDD
(4, 8). In our study, we found PPS, as indicated by amplitude
ratios (A2s/A1), was significantly related to the symptom severity
of depression. It is reasonable to presume that aberrant visual
cortical excitability has a significant pathophysiological role in
MDD, and PPS could serve as a reliable biomarker linking the
deficit of visual perception and psychopathological symptoms
in MDD.

Limitations and Alternative Explanations
The paired-pulse stimulation paradigm does not allow for the
assessment of separate visual substreams that are differently
engaged in visual perception since both the use of a black and
white checkboard and a contrast of 36% result in unspecific
visual stimulation. The magnocellular pathway is more sensitive
to low spatial frequency, low contrast, flicker stimuli and motion
detection, whereas the parvocellular pathway is more sensitive
to chromatic, high luminance contrast, high spatial frequency
and stationary stimuli (52, 53). Given that MDD patients have
visual motion perception, visual contrast perception, and visual
integration deficits, more research should be done at various
luminance contrasts, chromatic colors, and temporal frequencies

to separate the possible contributions of parvo-, konio-, and
magnocellular streams.

Although our results appear to point to a dysfunctional
circuits occurring at the level of visual cortex in MDD, i.e.,
increased cortical excitability probably due to the imbalance
between the excitatory and inhibitory systems, additional
possibilities need to be considered. Some neurological disorders
are characterized by a defective regulation of contrast gain
control, including amblyopia and epilepsy (54, 55). More
interestingly, the contrast gain control is likely a property of the
transcallosal pathway (56), and also major depressive disorder is
characterized by either atrophy or microstructural changes of the
corpus callosum (57, 58). In this context, the increased cortical
excitability might be attributable to a subcortical impairment in
contrast gain control regulation at the corpus callosum.

Another possible explanation for the increased cortical
excitability in MDD is the visual cortex’s metaplasticity. The
presence of mechanisms of metaplasticity could keep synaptic
plasticity within a functional dynamic range in the visual cortex,
i.e., homeostatic plasticity (59). Many mental diseases are often
accompanied by a defective homeostatic plasticity. The elevated
change in the second amplitude in MDD patients may be
attributed to a deficit of homeostatic plasticity in the visual cortex,
which should be explored in future studies.
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CONCLUSIONS

In summary, we investigated the paired-pulse behavior of VEPs
and found a reduced PPS and thus an increased excitability of
the visual cortex in MDD, which may reflect abnormal cortical
visual processing. Moreover, PPS had a significant correlation
with the symptom severity of depression, indicating a clinically
useful biomarker in MDD. Our findings provide new insights
into the changes in the excitation-inhibition balance of occipital
cortex in MDD.
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