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Characterisation of tree vibrations 
based on the model of orthogonal 
oscillations
Ivana Kovacic   1, Dragi Radomirovic2, Miodrag Zukovic1, Benka Pavel2 & Milutin Nikolic1

This study presents quantitative and qualitative insights into the analysis of data obtained by tracking 
the motion of reflective markers arranged along the trunk of a pole-like potted tree, which was 
recorded by a state-of-the-art infrared motion-tracking system. The experimental results showed in-
plane damped trajectories of the markers with lateral displacements, i.e. out-of-plane vibrations of 
the tree under consideration. To explain such response and to determine the corresponding oscillatory 
characteristics, a completely new and original utilisation of the recorded in-plane damped trajectories 
is presented. The quantitative insight gained is based on the mechanical model that consists of two 
orthogonal springs and dampers placed in the plane where the motion takes place, and it is then 
directed towards the determination of the characteristics of the related orthogonal oscillations: two 
natural frequencies, the position of the principal axes to which they correspond, and two damping 
ratios. The qualitative insight gained involves analysing the shape and narrowness of the trajectory 
to assess how close-valued two natural frequencies are, and how small the overall damping is. The 
quantitative and qualitative methodologies presented herein are seen as beneficial for arboriculture, 
forestry and botany, but given the fact that orthogonal oscillations appears in many natural and 
engineering systems, they are also expected to be useful for specialists in other fields of science and 
engineering as well.

New experimental techniques are seen as beneficial for getting enhanced insights and deeper understanding 
of trees’ oscillatory characteristics. Different motion-capture systems can be particularly promising, which, for 
example, includes tree motion sensors1. A high-tech motion-capture system is used in this project for recording 
tree vibrations, although it was originally developed for studying human motion. However, no matter whether 
one uses contemporary or traditional experimental techniques, these characteristics need to be correctly defined 
and determined. This is especially important for a natural frequency, since it is seen as the indicator for the condi-
tions leading to tree uprooting2,3, which can cause property damage and personal injury or even death. Different 
approaches have been used to obtain natural frequencies from the motion in the time domain (displacement-time 
diagrams) or the response in the frequency domain4. It is of interest here to investigate which oscillatory features 
and parameters can be determined if one focuses on the trajectories of free motion. This is motivated by the fact 
that the literature review revealed a shortage of information available for the trajectories of motion, as well as the 
fact that the trajectories are usually shown just to illustrate the full complexity of the tree response in two dimen-
sions5. Peltola et al.6 measured wind and resulting swaying of two Scots pines (Pinus sylvestris), illustrating graph-
ically that the trajectory in one plane formed by the east-west direction and the north-south direction implied 
swaying mainly perpendicular to the direction of mean wind speed. Moore and Maguire7 investigated Douglas-fir 
trees, which were made to oscillate by pulling on the rope several times; the rope was then released, allowing the 
tree to perform free oscillations. The case of full crown case and no crown case were examined. In the former case, 
the trajectory was very thin, while in the latter, radial displacements appeared. James et al.5 performed exten-
sive measurements in which two strain meters were attached to the trunk, one to measure displacements in the 
north-south direction, and the one in the east-west direction. The associated software triggered the recording of 
the displacements, but also of wind speed and directions. This was done for four types of trees: a pole-like tree, a 
slender tree with branches closely aligned to the trunk, trees with a central trunk structure, and trees with many 
branches and no central trunk. The authors gave descriptive conclusions about the recorded trajectories: they 
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had a complex pattern, and the third and the fourth type had them always down wind, with some looping and 
sideways displacements occurring. In the subsequent report8, the focus was on the fourth tree type. There was 
no upwind displacement recorded for this tree in any wind storm event over the 3-month period of monitoring. 
This general downwind motion from the rest position was found to be similar to some previous reports9,10. Kane  
et al.11 were interested in large, open-grown trees, and as a result of pull-and-release tests with larger initial 
displacements, they recorded elliptic-like trajectories of a point on the trunk approximately at 1.4 m above the 
ground. However, no further insights into these elliptic-like trajectories have been given.

The aim of this work is to develop a theoretical framework for the utilization of the results obtained by using a 
state-of-the-art infrared marker-tracking system with the focus on the trajectories recorded to determine oscilla-
tory characteristics of the trajectories of the markers arranged along a trunk-dominated tree. The novel procedure 
emphasizes the importance of the meaning of the shape of the trajectories recorded, which implies the existence 
of two frequencies calculated, the directions to which they correspond (the so-called, principal axes) and the 
corresponding damping ratios, which, all in all, give new and precise insights into oscillatory characteristics of 
out-of-plane vibrating trees, which has not been provided so far.

Experiments
Experiments were conducted on the de-branched stem of a young pole-like Aesculisus hippocastanum tree. This 
stem was 1540 mm tall with a diameter of 31.5 mm at the base. Pull-and-release tests were carried out, in which 
the tree was pulled with a rope causing non-zero initial displacements, the system came to the rest state, i.e. ini-
tial velocities were zero, and the rope was cut and the tree was released to perform free vibrations. The resulting 
motions were recorded by a state-of-the-art motion tracking system - Vicon 3D and its accompanying software 
Nexus 2 (Fig. 1a). This is an infrared (IR) marker-tracking system that offers high resolution of 3D spatial dis-
placements of the reflective markers (dots) arranged along the trunk of the tree. There are eight cameras around 
the tree and each of them is outfitted with IR optical filters and an array of IR light-emitting diodes (LEDs). The 
markers reflect the IR radiation emitted by the LEDs, while all other light is filtered so that the system only recog-
nizes the dots. Vicon 3D was originally developed for investigating human motion by visual effects studios, sports 
therapists, neuroscientists, and for validation and control of computer vision and robotics, but it was originally 
utilized in this project to track the motion of trees excited in a certain way.

The arrangement of all markers is seen in Fig. 1a,b, but three Markers (1, 2 and 3) are labelled in Fig. 1b as their 
motion will be analysed subsequently.

The 3D displacements recorded are imported in Wolfram Mathematica and then used to construct a 
three-dimensional representation of the markers, as shown in Fig. 2a. The trajectories of three markers are pre-
sented in Fig. 2b. The trajectory of Marker 3 is enlarged and plotted separately in Fig. 2c. Besides presenting the 
shape of the trajectories, multi-part Fig. 2 also shows the data for the height of the tree and location of Markers 
1–3 and their trajectories. Mutual comparisons revealed that the dominant displacements were in the x-y plane, 
and the corresponding trajectory is shown in Fig. 2d. The way how this point moves in the x-y plane during time 
is shown in Animation 1, given as a Supplementary file.

The next section is concerned with the development of a theoretical framework that includes the use of these 
in-plane damped trajectories to obtain the corresponding oscillatory characteristics.

Theoretical Framework
Modelling and quantitative insight.  The mechanical model of each marker performing in-plane vibra-
tions is presented in Fig. 3: it consists of a particle attached to two orthogonal springs12, which model elastic 
properties of the system, and two orthogonal dampers, which include aerodynamic and internal linear viscous 

Figure 1.  (a) The Vicon 3D motion capture system; (b) A tree under considerations with several markers along 
it and three markers numbered (1, 2 and 3).
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damping. Note that the whole system lies in the plane orthogonal to the vertical z-axes and that each marker will 
have its own parameters, but the mechanical and mathematical models used will be the same.

It should be pointed out that there is a possibility for each particle to move along a straight line, but the exper-
iments performed have shown that this does not happen. If the stiffness and damping properties had been the 
same in all directions, the marker would have oscillated in one direction – the one corresponding to the initial 
direction, and the system could have been treated as having one degree of freedom. However, the existence of the 
lateral motion with respect to the initial deflection suggests that there are two degrees of freedom and, thus, two 
associated natural frequencies ω1 and ω2. The directions of the springs are collinear with, the so-called, principal 
(stiffness) axes, labelled by X and Y here. Their position is defined by the angle α with respect to the coordinate 
system xOy used for the measurements and recordings. It is very important to note that, in general, the principal 
axes differ from the measurement axes.

The differential equations of motion written with respect to the principal axes are:

δ ω+ + =̈X X X2 0, (1)1 1
2

δ ω+ + =̈Y Y Y2 0, (2)2 2
2

where δ1 and δ2 are viscous damping ratios. Note that they are uncoupled. Note also that Equations (1) and (2) do 
not have time non-dimensionalized, but oscillations take place in real time t[s], while the units for other param-
eters are: ω1[s−1], ω2[s−1], δ1[s−1], δ2[s−1]. These four parameters can be used later on to calculate the damping 
factors ζ1 = δ1/ω1 and ζ2 = δ2/ω2, which do not have units or can also be expressed in percentages.

Figure 2.  (a) The arrangement of all the markers obtained in Wolfram Mathematica and three Markers of 
interest (1, 2 and 3); (b) Trajectories of Markers 1, 2 and 3; (c) Trajectory of Markers 3 in 3D; (d) Trajectory of 
Markers 3 in the x-y plane.
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When the system is conservative (δ1 = δ2 = 0) and its motion starts from rest from the position defined by X(0) 
and Y(0) (this is the position M0 labelled in Fig. 4a), the motion satisfying Equations (1), (2) is given by (Kovacic 
and Radomirovic, 2017):

ω ω= = .X t X t Y t Y t( ) (0) cos( ), ( ) (0) cos( ) (3)1 2

Thus, there are the lower and upper boundary for each coordinate: − ≤ ≤X X t X(0) ( ) (0) and − ≤Y(0)  ≤Y t Y( ) (0). 
Consequently, the trajectory lies inside a rectangle plotted in Fig. 4a. Note that the symmetry axes of the rectangle 
are parallel to its sides, and coincide with the principal axes. The half-diagonal of the rectangle is defined by the dis-
placement A of the particle from the origin. When the motion starts, the particle is in one of the corners. Its velocity, 
as well as the kinetic energy is zero, while the potential energy is at maximum and it is equal to the overall mechani-
cal energy. Note that in all four corners of the rectangle, the velocity has a zero value as it corresponds to maximal 
amplitudes. The trajectory fills in the rectangle as time passes, which is illustrated in Fig. 4b.

When the system is non-conservative (δ δ≠ ≠0, 01 2 ), these oscillations become damped and the trajectory 
narrows down (Fig. 4c). The main questions are how this damped trajectory is related to the rectangle noted and 
how one can construct the rectangle and use it to obtain the unknown principal axes. To answer these questions, 
a new procedure is described subsequently.

How to determine the position of the principal axis.  When oscillations start, the particle moves ini-
tially almost along the diagonal OM0 shown in Fig. 4a. However, as time passes, the lateral motion increases. To 
achieve the main objective and locate the principal axes, one needs to obtain the moment of time t1 when the 
velocity becomes zero, or when it becomes approximately zero. This means that the particle will be in one of the 
corners of the rectangle or somewhere on the diagonals. To develop a methodology for obtaining t1, the time 
history diagrams X(t) and Y(t) are considered (Fig. 5).

It is assumed that ω1 < ω2 and that the system is undamped. As labelled in Fig. 5, the half-period for X(t) is 
π ω=T /2 /X 1 and the half-period for Y(t) is π ω=T /2 /Y 2, where >T TX Y . Note that after each half-period, the 

velocity in the X and Y direction is zero. Figure 5 illustrates the situation when three half-periods have been per-
formed along Y, while only two have passed for X. Generally speaking, the time difference between the number 
of periods for Y and X is

π
ω

π
ω

− − >N N( 1) 0,
(4)2 1

but it becomes smaller as N increases and, the expression on the left-hand side of Equation (4) tends to zero. So, 
if the number of half-periods for Y until t1 is n, one has π ω=t n /1 2, while for X one holds π ω= −t n( 1) /1 1. 
Equating these two expressions leads to

ω ω π
− = .

t (5)2 1
1

If n is an even integer, the particle reaches the corner C at t1 labelled in Fig. 6a, because the number of half-periods 
for Y is even and for X odd.

If n is an odd integer, the particle reaches the corner C at t1 and its position is shown in Fig. 6b. Note that the 
number of half-periods for Y is odd then, while it is even for X.

Figure 3.  Mechanical model for each marker performing in-plane oscillations.
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Of interest is also the case when n is not an integer. In this case, the particle is not in the corner at the moment 
t1, but somewhere on the diagonal OC, and this position is labelled by B in Fig. 6a. At the moment t1, the rectangle 
as the envelope of the trajectory is completed. From t1 to 2t1, the particle forms the same rectangle, and it is again 
located on the diagonal OA. However, at 5t1 the same rectangle is again formed for the fifth time, but the particle 
is on the diagonal OC. When the system is non-conservative (δ1≠0 and δ2≠0), there is no rectangle, but a shape 
shown in Fig. 4c occurs. During the time interval ≤ ≤t t0 1, the first external figure is formed. Then, another 
form is composed inside it, as seen in Fig. 4c. When the damping ratios are equal and small, the rounded corners 
of these figures lie on the diagonals of the rectangle.

To deal with the damped case, the analysis procedure is analogous to the one for the undamped case, but 
instead of half-periods, one deals with quasi-half-periods and damped frequencies ω ω δ= −1 1

2
1
2  and 

ω ω δ= −2 2
2

2
2 , i.e.

Figure 4.  (a) Principal axes X and Y, non-principal axes x and y, the initial position M0, and the rectangular as 
the envelope of the trajectory; (b) Trajectory of undamped motion; (c) Trajectory of damped motion.

Figure 5.  Time-history diagrams along principal axes.

Figure 6.  (a) Motion of the particle with respect to the characteristic rectangle; (b) The case when C is in the 
right lower angle.
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π
ω

π

ω δ

π
ω

π

ω δ
= =

−
= =

−
.T T/2 , /2

(6)
X Y

1 1
2

1
2 2 2

2
2

2¯ ¯

Equation (5) now becomes

ω ω π
− =

t (7)2 1
1

Thus, if one finds the moment of time t1 when the velocity is zero, one can easily calculate the difference between 
the damped frequencies by using Equation (7).

Let us show now the procedure for determining t1. To that end, one should recall that each period or 
half-periods for the principal coordinates starts and ends up with the respective velocity being zero and X(t) 
and Y(t) being extremal. The same fact holds for quasi-periods or half-periods for x(t) and y(t). This implies that 
one needs to consider the extrema of the time-histories of the recorded x(t) and y(t) as plotted in Fig. 7a and the 
time differences between them (they are labelled by Δt1, Δt2… in Fig. 7a). If x(t) and y(t) would have extremal 
values simultaneously, the corresponding moment of time would correspond to t1. However, due to the existence 
of damping, this is highly unlikely, and one should actually represent the differences from Fig. 7a as the function 
of time and find its zero (Fig. 7b).

Let us show now how to obtain the angle α. Referring to Fig. 6a, the vectors OA and OB can be expressed as:

= +x yOA i j(0) (0) , (8)

= + .x t y tOB i j( ) ( ) (9)1 1

One can then notice that the vector OC and OB are collinear, and can be related as follows

λ λ= = +x t y tOC OB i j[ ( ) ( ) ], (10)1 1

where λ is the parameter of proportionality. Based on the equality of diagonal of the rectangle, this parameter can 
be expressed as

λ = = =
+

+
.

OC
OB

OA
OB

x y

x t y t

(0) (0)

( ) ( ) (11)

2 2

1
2

1
2

The angle α is now defined by

α
λ

λ λ
=

⋅
=

−

− + −
.

CA
x x t

x x t y y t

CA icos (0) ( )

[ (0) ( )] [ (0) ( )] (12)

1

1
2

1
2

So, after calculating t1, one should determine x(t1) and y(t1) from the experimentally recorded time histories. 
Then, by using Equation (11) one calculates first the parameter λ, and then the angle α from Equation (12). If the 
position of C is as shown in Fig. 6b, one has

π α
λ

λ λ



 +



 =

⋅
=

−

− + −
.

CA
x x t

x x t y y t

CA icos
2

(0) ( )

[ (0) ( )] [ (0) ( )] (13)

1

1
2

1
2

How to determine natural frequencies and damping ratios.  Now, when the angle α is known, one 
can pass from the non-principal axes to the principal axes by using the following coordinate transformations (see 
Fig. 3):

Figure 7.  (a) Time differences between the extrema of x(t) and y(t); (b) Time difference versus time diagram 
with its zero t1.
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α α= +X x ycos( ) sin( ), (14)

α α= − + .Y x ysin( ) cos( ) (15)

The solutions of motion with respect to the each of the principal axes are (Kovacic and Radomirovic, 2017):

ω
δ
ω

ω=





+





δ−X t e X t X t( ) (0)cos( ) (0) sin( ) ,
(16)

t
1

1

1
1

1

ω
δ
ω

ω=





+





.δ−Y t e Y t Y t( ) (0)cos( ) (0) sin( )
(17)

t
2

2

2
2

2

A numerical fitting procedure with these two analytical expressions gives the values of the damping ratios, 
damped frequencies, and consequently two natural frequencies.

Numerical analysis and parameter values
In accordance with the previously presented procedure, the recorder time histories for the non-principal axes 
x and y are considered. Marker 3 is chosen to start with, and the corresponding time differences between the 
extrema are shown in Fig. 8a, while the graph ‘time differences versus time’ is plotted in Fig. 8b. Its zero corre-
sponds to the value of t1, which is also presented in Table 1. The angle α is calculated by using Equation (12) and 
it is also included in Table 1. The analytical expressions (16) and (17) are used in conjunction with the in-built 
FindFit method to determine the damping ratios and two natural frequencies, which are included in Table 1 as 
well. The comparisons between the transformed experimental results along principal axes, as well as between 

Figure 8.  Marker 3: (a) Time differences between the extrema of x(t) and y(t); (b) Time difference versus time 
diagram with its zero value t1; (c) Comparison of the transformed experimental results (magenta solid line) 
and the fitted numerical results (black dots) along the X-axis; (d) Comparison of the transformed experimental 
results (magenta solid line) and the fitted numerical results (black dots) along the Y-axis; (e) Comparisons for 
the trajectories.
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the trajectories are given in Fig. 8c–e. As can be seen, the agreements achieved are very good. It should also be 
pointed out that similar damped time histories and trajectories have been reported on real open-grown trees13, 
which supports the results presented herein and the applicability to real conditions.

To whole procedure is repeated for Markers 2 and 1, and the values of the corresponding parameters are 
included in Table 1. The confirmations of good agreement between the transformed experimental results along 
principal axes and the trajectories are illustrated in Fig. 9 for Marker 2 and in Fig. 10 for Marker 1.

Analysing Table 1, one finds that this procedure gives that the position of principal axes along the trunk 
is between 52° and 53°. The natural frequencies have close values, which are approximately ω1 = 21.6 s−1 and 
ω2 = 21.86 s−1. This yields the frequency of vibration being approximately f1 = 3.44 Hz and f2 = 3.48 Hz, respec-
tively. The damping ratios corresponding to the directions of two principal axes are, approximately, 0.52 s−1 and 
0.65 s−1. These values imply the following values of the damping factor ζ1 = δ1/ω1 = 0.024 and ζ2 = δ2/ω2 = 0.03 (or, 
2.4% and 3%). The damping factors are seen to be small as no branches and leaves were present, which contribute 
to their higher values14.

Qualitative insight
The experiments showed that the values of ω1 and ω2 are close to each other, with the difference of around 1%. 
Therefore, the values of ω1 and ω2 differ slightly and can be related to each other in the form ω ω= + p(1 /100)2 1 , 
i.e. the parameter p can be introduced as their difference in percentages. The aim of this section is to present how 
the shape of the trajectory changes when this percentage increases as well as when the damping ratio varies. It is 
expected that these trajectories and their shape can be used to gain a qualitative insight into the closeness of the 
natural frequencies and the value of the damping ratios. It is assumed that ω1 = 20 s−1, while p is taken to be 1%, 
3% and 5%. The viscous damping ratios are assumed to be of the increasing values 0.1 s−1; 0.3 s−1 and 0.5 s−1. All 
the corresponding trajectories are presented in Fig. 11, together with the principal stiffness axes, measurement 

Parameter values

Marker t 1 s[ ] α °[ ] ω −s[ ]2
1 ω −s[ ]2

1 δ −s[ ]1
1 δ −s[ ]2

1

1
X

7.086 52.524
21.557 0.517

Y 21.839 0.65

2
X

7.115 52.954
21.563 0.525

Y 21.858 0.654

3
X

7.126 52.376
21.564 0.518

Y 21.862 0.642

Table 1.  Values of the calculation and system parameters obtained numerically based on the analytical 
procedure developed.

Figure 9.  Marker 2: (a) Comparison of the transformed experimental results (magenta solid line) and the 
fitted numerical results (black dots) along the X-axis; (b) Comparison of the transformed experimental results 
(magenta solid line) and the fitted numerical results (black dots) along the Y-axis; (c) Comparisons for the 
trajectories.
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axes and the sides of the rectangle (the same colour and style legend is used for the axes as in Fig. 4) to emphasize 
how the shape and the position of the trajectory are related to their position.

All these cases enable one to gain the following insights into the oscillatory characteristics based on the shape 
of trajectories: the lower the value of p, the narrower the trajectories; the trajectories become narrower also when 
the damping increases. Thus, going back to the experimentally obtained trajectory given in Fig. 2d, one can con-
clude that this trajectory is narrow, and, therefore, comparable to some of those from Table 1 corresponding to 
the smaller p and smaller damping ratios.

Figure 10.  Marker 1: (a) Comparison of the transformed experimental results (magenta solid line) and the 
fitted numerical results (black dots) along the X-axis; (b) Comparison of the transformed experimental results 
(magenta solid line) and the fitted numerical results (black dots) along the Y-axis; (c) Comparisons for the 
trajectories.

Figure 11.  Shapes of trajectories for different percentage differences between the natural frequencies and 
various values of the damping ratios (note that its units are s−1). The position of the horizontal and vertical 
(measurement) axes is noted as well as the position of the principal axes and the sides of the rectangle defined.
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Conclusions
This study has been concerned with a completely new and original utilisation of the trajectory of markers 
arranged along a trunk-dominated (de-branched, pole-like) potted tree that performs free vibrations. This 
includes both quantitative and qualitative insights into their in-plane motion recorded with a view to obtaining 
the corresponding fundamental and precise oscillatory characteristics that have not been determined so far. A 
high-tech motion-tracking system has been used to record displacements of the markers arranged along the tree 
under consideration.

As the markers (particles) from the trunk have been found to move approximately in a plane parallel to the 
horizontal plane, the mechanical model for describing their motion has two degrees of freedom. It has been 
introduced herein as consisting of two orthogonal springs and dampers, the position of which is defined by two 
principal axes. The experimental results are analysed quantitatively based on this mechanical model, giving the 
position of the principal axes. As far as the authors are aware, neither the principal axes nor the utilisation of the 
trajectory for their determination has been presented so far related to this type of trajectories and tree vibrations. 
In the case studied, one of the principal stiffness axes has been found to be located under the angle ranging 
between 52° and 53° with respect to the horizontal measurement axis. The other principal axis is orthogonal to it. 
There are two natural frequencies associated with each of these principal axes and they have close values: one is 
calculated to be approximately 21.6 s−1 and the other one 21.86 s−1 (the former is approximately 3.44 Hz and the 
latter is slightly higher than it). The damping ratios related to the directions of principal axes are, approximately, 
0.52 s−1 and 0.65 s−1, which correspond to approximate damping factors of, respectively, 0.024 and 0.03.

The approach focused on trajectories presented herein also offers the possibility to estimate the difference 
between two natural frequencies qualitatively, without any calculations, and to estimate how small/large the over-
all damping is. This can be done based on the shape of trajectories. Thus, a thinner trajectory implies that the 
difference between two natural frequencies is smaller as well as that damping is larger.

The knowledge of the position of the principal axes when a tree does not perform in-plane oscillations is 
important both for the characterization of its structural elastic properties as well as for experiments: pulling a 
tree initially in the direction of one of them and releasing it would make the point on the tree oscillate along a 
straight line with one of the natural frequencies; similarly, pulling a tree initially in the orthogonal direction and 
releasing it would make this point oscillate along the orthogonal straight line with the other natural frequency. 
Applying the pull-and-release test in an arbitrary direction between the principal axes will cause a tree oscillate 
with a frequency that is a certain combination of these two natural frequencies, and this depends on the direc-
tion of pulling. It should be noted that in some previous experiments with trees in the natural environment, 
two-closed valued frequencies in two orthogonal directions have been obtained: in the north-south and east-west 
directions11, or in the fall-line and cross-slope direction15. Yet, there has not been any validation that these direc-
tions corresponded to their principal axes. Contemporary high-tech motion capture systems with multiple cam-
eras offer the possibilities for very detailed and precise data in different motion analysis applications, and the 
study presented herein has provided the related proof-of-concept for its use for recording motion of points on a 
tree. Being accompanied with the new theoretical methodologies, this study has revealed some primary research 
details about trees that do not perform in-plane oscillations.

So, three complementary approached have been used in this work: a high-tech experimental technique, a new 
analytical and contemporary numerical approaches, enabling one to gain a detailed and very prices insight into 
dynamics and oscillatory properties of the object under consideration. This work opens up several avenues for 
progress regarding the use of this high-tech motion capture system –on indoor potted trees, or on open-grown 
trees. First, branched trees should be equipped with markers, placed on the points on branches of different 
branching hierarchy and also on different locations on the same branching order to determine their trajectories 
and oscillatory characteristics. Second, the markers are (dynamically speaking) treated as particles performing 
small vibrations in one plane, so each of them represents a linear system with two degrees of freedom and, thus, 
have two natural frequencies. However, the markers/particles on branches might move in 3D and have three 
degrees of freedom and three natural frequencies associated with three principal axes. In addition, real trees are 
continuous systems, i.e. systems with an infinite number of degrees of freedom and have an infinite number of 
modes and modal frequencies. To catch this property, markers could be arranged along a trunk very close to 
each other (or completely continuously) and further on along branches. This could yield valuable details about 
deformations of certain parts of the tree (bending and torsion). Last but not least, trees can be pulled to perform 
large-amplitude vibrations and this could be realised with different initial amplitudes, which will bring geometric 
nonlinearity to bear. The question of interest is if the natural frequencies would be changing with the amplitude as 
in nonlinear oscillators16 or if they will be amplitude-independent, behaving thus as nonlinear isochronous sys-
tems17. All these open questions and their answers would help theoretical biologist advance their knowledge on 
tree biomechanics related to their oscillatory properties. It is also expected that the precise determination of these 
oscillatory properties will be beneficial to forestry and arboriculture, helping to assess the structural integrity and 
risk assessments of certain branches or the whole tree.

The trajectories recorded and characterised have been shown to stem from 2D damped orthogonal oscilla-
tions. They were recorder on trees, and their explanation and characterisation have yielded new insights into 
the related oscillatory characteristics, which can be further used in the closely related fields when trees perform 
out-of-plane vibrations: arboriculture, forestry and botany, especially related to the closeness of the natural fre-
quency and the position of the principal axes. However, orthogonal oscillations appear or are associated with 
disparate systems that occur in many other fields and devices: optics, electronics and electrical engineering, mate-
rial characterisation, harmonographs (devices containing coupled pendula), etc. It is, therefore, expected that 
specialists from other disciplines will benefit from the methodologies presented herein as well.
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