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A new selection of supramolecular liquid crystal complexes based on complementary
molecules formed via hydrogen-bonding interactions is reported. All prepared complexes
were prepared from 4-n-alkoxybenzoic acid (An) and N-4-cyanobenzylidene-4-n-
(hexyloxy)benzenamine (I). FT-IR, temperature gradient NMR, Mass Spectrometer and
Chromatography spectroscopy were carried out to confirm the -CN and −COOH
H-bonded complexation by observing their Fermi-bands and the effects of the 1H-
NMR signals as well as its elution signal from HPLC. Moreover, binary phase diagrams
were established for further confirmation. All formed complexes (I/An) were studied by the
use of differential scanning calorimetry and their phase properties were validated through
the use of polarized optical microscopy Results of mesomorphic characterization revealed
that all presented complexes exhibited enantiotropic mesophases and their type was
dependent on the terminal lengths of alkoxy chains. Also, the mesomorphic temperature
ranges decreased in the order I/A6 > I/A8 > I/A10 > I/A16 with linear dependency on the
chain length. Finally, the density functional theory computational modeling has been
carried out to explain the experimental findings. The relation between the dimensional
parameters was established to show the effect of the aspect ratio on themesophase range
and stability. The normalized entropy of the clearing transitions (ΔS/R) was calculated to
illustrate the molecular interaction enhancements with the chain lengths.

Keywords: cyano-hydrogen bonding interactions, supramolecular liquid crystals, molecular geometry, DFT – density
functional theory, cyano-assemblies

INTRODUCTION

Supramolecular H-bonded liquid crystal complexes (SMHBLCs), which have been known for
decades, began receiving more attention in the middle of the 20th Century (Fairhurst et al.,
1998). Such interactions might be H-bonding (Paleos and Tsiourvas, 2001; Kato et al., 2006;
Demus et al., 2011), or halogen bonding (Nguyen et al., 2004; Metrangolo et al., 2006; Präsang et al.,
2008; Wang et al., 2018; Alaasar et al., 2019; Saccone and Catalano, 2019) with both having the
advantage of a formed liquid crystalline compound compared to covalent-bonding interactions. In
general, hydrogen bonds are non-covalent, directional interactions between H-bond donor and an
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acceptor such as O or N atoms. The hydrogen bonds are either
intramolecular, when they are in the same molecule, or
intermolecular, if the interacting groups belong to different
molecules. Hydrogen bond has essential role in the formation
of mesophases in liquid crystals. Recently, various SMHBLCs
were documented as different kinds of H-donors andH-acceptors
that offer wide many structural shapes (Ahmed and Khushaim,
2020; Al-Mutabagani et al., 2020c). These included calamitic
complexes (Naoum et al., 2008; Ahmed et al., 2019a), angular-
shaped (Gimeno et al., 2004; Gimeno et al., 2008; Alaasar et al.,
2011; Wang et al., 2015) polymeric architectures (Korkmaz et al.,
2016), modular hierarchical (Pfletscher et al., 2016), nematogenic
non-symmetric dimers (Korkmaz et al., 2016) or observing the
twist-bend nematic mesophase (Walker et al., 2018) and
supramolecular-polycatenars of chiral cubic-mesophases
(Alaasar et al., 2016).

Of particular interest to us are new architectural materials with
innovative shapes. (Yagai and Kitamura, 2008; Yeap et al., 2009;
Hagar et al., 2019). These investigations have led to insights on
the relationship between the experimental transitions and
estimated computational results for SMHBCs. Many
researchers (Paleos and Tsiourvas, 2001; Armstrong and
Buggy, 2005; Tschierske, 2013; Goodby et al., 2014; Ahmed
and Naoum, 2016; Ahmed et al., 2018; Ahmed et al., 2019c;
Saccone et al., 2019; Tuchband et al., 2019; Martinez-Felipe et al.,
2020; Walker et al., 2020) have analyzed new SMHBCs between
their carboxylic acid and pyridine containing sections, with the
intent to shed light on the menophase property of these new
SMHBCs (Al-Mutabagani et al., 2020a). It was reported that the
type of H-acceptor could impact the development of already
existent properties, thus adding a new structural property to the
liquid crystalline material (Al-Mutabagani et al., 2020a).
Additionally, atom type and electronic nature are essential in
the formation, the thermal stability, the type, and the
mesomorphic ranges of the LCs phases (Cho et al., 2013; Paul
et al., 2014; Alaasar et al., 2020; Blanke et al., 2020; Bryndal et al.,
2020; Devadiga and Ahipa, 2020; Yilmaz Canli et al., 2020).

It was investigated and documented (Vijayalakshmi and
Sastry, 2009) that, the phase behavior of 1:1 SMHBCs between
4-n-alkyl benzoic acids and 4-(4′-octyloxy benzylidene)-cyano
aniline (Vijayalakshmi and Sastry, 2009). This study was resulted
an enantiotropic liquid crystalline mixtures with induced smectic
A (SmA) mesophase. The attached semi-flexible terminal chains
lead to sufficient disorder and maintains the mesogenic cores at a
slightly different positional order from the isotropic mesophase,
thus influencing the formation of SmA phase. Another example
(Kumar et al., 1999) of cyano H-bonding interactions is the
supramolecular complexes between 4-n-alkoxybenzoic acids
and 4-aminobenzonitrile. The intermolecular H-bonding
interactions between the electron rich terminals CN and
–COOH moieties leads to induced smectic G (SmG) phase.
Moreover, the steric repulsive impacts of the terminal
substituent are essential to stabilize the induced SmG phase
(Kumar et al., 1999).

Recently, there are only a few reports regarding CN-based
supramolecular hydrogen-bonding liquid crystal complexes (Paul
et al., 2014; Chen et al., 2020; Meddeb et al., 2021). The aim of this

work is investigate the preparation, mesomorphic, optical
properties and structural parameters of newly synthesized
supramolecular complexes (I/An) of CN based H-acceptor
derivatives. Another aim of this study is to combine
computational modeling of geometrical simulations with
experimental findings for further studies regarding SMHBCs
structural and physical properties. Herein we investigate the
mesomorphic behavior of SMHBCs as well as their
geometrical parameters by DFT simulation, and correlate the
experimental data of the mesomorphic transitions behaviors with
their calculated geometrical and thermal data values as
continuing our interest (Al-Mutabagani et al., 2020b; Hagar
et al., 2020; Nafee et al., 2020a; Ali et al., 2021; Almehmadi
et al., 2021; Mohammed et al., 2021; Parveen et al., 2021) in
conducting the experimental results with density functional
theory (DFT) theoretical calculations.

EXPERIMENTAL

The CN derivative I and their SMHBC, I/An, were designed
according to Figure 1:

Preparation of Complexes, I/An
The CN derivative I was prepared according to the previous
reported method (Ahmed et al., 2020). SMHBCs (I/An) were
prepared by molar mixing of 1:1 M ratios of alkoxy benzoic acids
(An) with changeable chain length from n � 6, 8, 10, 12, and 16
and the cyano Schiff base (I) with hexyloxy chain length. The
mixture was melted with stirring till the intimate blend, then
allowed to cool, Figure 1.

The NMR have been recoded for compound I/n8 that was
prepared by dissolving in 600 µL of deuterated solvents DMSO-
d6 inside a 3 ml glass vial, then vigorously vortexed until
completely dissolved. 500 μL was transferred to 5 mm NMR
tubes. A Bruker 600 NMR spectrometer (Bruker BioSpin,
Rheinstetten, Germany) operating at 600.13 MHz for proton
equipped with a triple resonance probe was used to record all
NMR spectra. The 1H NMR spectrum was recorded by collecting
64 scans with a recycle delay time of 10 s, using one pulse
sequence through a standard (zg) program from the Bruker
pulse library. The 13C NMR spectra were recoded using the
reported methods and parameters (Berger and Braun, 2004).
Chemical shifts were corrected using the TMS signal at
0.0 ppm as an internal chemical shift.

RESULTS AND DISCUSSION

Characterization of the Complex
FT-IR Confirmations
One of the main documented evidences of SMHBC formation is
the OH-Fermi vibrational stretching bands (Saunders and Hyne,
1958; Lam et al., 2016; Martinez-Felipe et al., 2016; Hu et al., 2017;
Pothoczki et al., 2020). The H-bonded OH functional group has
three Fermi-resonance stretching vibration peaks (A-, B-, and
C-type), indicating SMHBC interactions. The lye at the C–H
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FIGURE 1 | Synthesis of 1:1 SMHBCs I/An.

FIGURE 2 | FT-IR 1:1 supramolecular H-bonded complexes (I/A12).
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vibrational frequency of 2,915–2,851 cm−1 was the peak of the
A-type Fermi band of the complex I/A12. The peak at 2,544 cm−1

(I/A12) is also recognized as the B-type of the stretching vibration
in-plane bending of the O–H group. However,
the 1920 cm−1 Fermi band of the C-type is attributed to the
interaction between the overtone of the torsional and the essential
influences of the OH stretching vibration Figure 2.

NMR Confirmations
The NMR results at temperature gradient showed a significant
impact on characteristic signals. As shown from Figure 3, the
gradient thermal heating of the DMSO solution of the prepared
SMHBC I/A8 show a shift in the peaks of the aromatic protons
rather than the aliphatic ones. Obviously, the chemical shift changes
towards the higher field associated with decrement of signal
intensity, and indicates that the H-bonding is weakened with the
temperature as expected, and this provides evidence that this part of
the molecule could be subjected to conformational changes under
breaking of the H-bonding. One of the signals that is highly affected
under the temperature gradient is the O-H group of the COOH of
the carboxylic acid, δ � 12.59. Increment the temperature of the
DMSO solution lead to higher magnetic field for the resonance with
the decreasing of the signal intensity. From such results of the FT-IR
and NMR, it is possible to prove that H-bonding between the cyano
derivative and the carboxylic acid occurs.

Mass Spectrometer and Chromatography
confirmations:
The experiment was performed with the OrbitrapID-X mass
spectrometer (Thermo Scientific). The Orbitrap IDX
spectrometer could reach a high resolution (> 120,000) and
reliable mass accuracy (< 5 ppm mass error). The mass scan
range was set to 100–2000m/z and the Electrospray ionization

was set in positive mode (ESI+) for the studied compounds. The
Mass spectrometer was calibrated using a purchasable “Calibration
Mix ESI (Thermo Scientific)” by following the manufacturer
guideline. The ESI was carried out using a heated ion source
with a metal needle and a 3.5 kV voltage. The temperature of the
source vaporizer was set to 350°C, the capillary temperature to
275°C, and the sheath and auxiliary gases were optimized to 40 and
20 arbitrary units, respectively. The samples were automatically
infused (5 µL each) through the HPLC system (Vanquish, Thermo
Scientific). The separation was performed with the use of column
(Acquity UPLC HSS C18, 2.1 × 50°mm, 1.8°µ). A heated ion
source with a metal needle and a 3.5 kV voltage were used in the
ESI. The source vaporizer’s temperature was set to 350°C, the
capillary’s to 275°C, and the sheath and auxiliary gases were set
to 40 and 20 arbitrary units, respectively. The flow rate was set to
0.45 ml/min and a gradient was applied for the separation as
follow. 0–1 min (95%A, 5%B); 1–7 min (5%A, 95%B); 7–9 min
(5%A, 95%B); 9.1 min (5%A, 95%B); 10 min (5%A, 95%B).
Xcalibur™ software (Thermo Scientific) was used for method
development and data treatment. Representative examples of I/
A8 and I/A12 complexes measurements are depicted in Figures
4 and 5, respectively.

Mesomorphic and Optical Studies
In order to confirm the complex formation between N-4-
cyanobenzylidene-4-(hexyloxy)benzenamine (I) and alkoxy
benzoic acids (An), a binary phase diagram was made for the
system I/IA12 as an example. It was found that the difference
between H-donors and H-acceptor in polarity affects the strength
of the hydrogen bonding interactions (Cleland and Kreevoy,
1994). However, the polarities of both components of the
mixture are not affected by the terminal length of attached
chain. The graphical binary phase diagram is presented in
Figure 6A. As can be seen, induced nematic and SmA

FIGURE 3 | NMR 1:1 supramolecular H-bonded complexes (I/A8) with temperature gradient, T � 305–365 K.
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mesophases are of higher thermal stabilities than that
deduced from the linear-dependence (wide range ≈ 50%
mol of I, see Figure 6). This arises from the minimum

potential energy surface, which is used to describe the non-
ionized H- bond between an acid and base components
(Martinez-Felipe et al., 2016). Such mesomorphic enhancement

FIGURE 4 | HPLC-MS extracted ion chromatogram of the compound entitled I/A8 at m/z 571.35531 (RT: 8.3 min).

FIGURE 5 | HPLC-MS extracted ion chromatogram of the compound entitled I/A12 at m/z 635.38424 (RT: 5.7 min).
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(ΔT � Tmeasured–Tlinear) is correlated with the mixture
composition in Figure 6B. The 1:1 M supramolecular complex
formation can be confirmed from the enhanced mesophase
thermal stability at this composition (≈ 50% mol of I),
(Martinez-Felipe et al., 2016; Ahmed et al., 2019a).

Continuing the confirmation, 1:1 M ratios of supramolecular
complexes, I/An, made from CN derivative as a base component,
I, and each of the five acid homologues, An, were prepared and
investigated for their mesomorphic activities via DSC and POM.
DSC analyses were confirmed by the POM texture investigations.
In order to ensure the thermal stability of the mixtures, the DSC
analyses were performed for two heating–cooling scans. All
thermal investigations of present SMHBCs were recorded from
the second heating scan, and the DSC thermogams (Figure 7)
possess similar behaviors and reveal that the prepared mixtures
are very clean. The DSC thermograms of other prepared
complexes are depicted in Supplementary Figures S1–S3

(supplementary data). DSC thermogram of I/A6 showed three
endotherms characteristic peaks of the crystal–SmA, SmA-N and
N–isotropic transitions upon heating and reversed upon cooling
scan. While, thermograms of I/A8, I/A10, and I/A12 showed two
endothermic peaks of the crystal–SmA and SmA–isotropic liquid
phase transitions upon heating and reversed also on cooling. The
DSC curve of the longest chain complex I/A16 exhibits three
endothermic characteristics of the crystal–SmC, SmC-SmA and
SmA–isotropic transitions upon heating and reversed upon
cooling curve. Moreover, all melting transitions of samples are
shifted to lower temperatures compared with those observed
through heating cycle.

Representative examples of POM textures are represented in
Figure 8, which shows images of SmA and nematic mesophases
of the dimorphic complex I/A6. In addition to, the presence of
conic focal texture indicates the occurrence of the SmA phase,
and the Schlieren texture means nematic phase.

FIGURE 7 | DSC thermograms at a heating rate 10oC/min for heating and cooling scans of 1:1 SMHBCs (A) I/A6 and (B) I/A10.

FIGURE 6 | (A) Binary phase diagram of I/A12 SMHBC, and (B) the relation of the mesomorphic enhancement and the mixture compositions of base, I.
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It is important to mention that the pure 4-n-alkoxybenzoic
acids exhibit smectic C and nematic mesophases dependent on
their terminal length (Naoum et al., 2010), while the cyano
derivative, I, possesses a smectic A phase with mesomorphic
thermal stability 108.6oC (Nafee et al., 2020b)

The mesomorphic and optical behaviors of the 1:1 SMHBCs
(I/An) were analyzed. Transition temperatures (T) and their

associated enthalpy (ΔH) of mesomorphic transition, as
derived from DSC investigations, for all prepared SMHBCs are
tabulated in Table 1. Figure 9 displays the graphical relation of
the chain-length andmesomorphic transition temperatures of the
designed complexes in order to evaluate the effect of the terminal
length of acid on the mesophase properties. It can be seen from
Table 1 and Figure 9 that the enantiotropic mesophases are
exhibited by all formed complexes, and their types are dependent
on the length of the alkoxy chain n. On the other hand, the
melting points of the investigated SMHBCs are only slightly
affected by the length of the acid component chain (n). The
higher melting temperatures of I/A16 complex attests to the
increased amount of co-linearity of this mixture, which
facilitates more efficient packing within the crystal phase and
influences molecular interactions arising from the azomethine
linker. In addition, the stability of the smectic A is also impacted
by the incremental changes in the length of the acid chain
(Naoum et al., 2010).

In the case of the shortest complex I/A6, it is dimorphic
exhibiting both SmA and N mesophases with a thermal
mesomorphic stability of 130.5oC and a mesomorphic range of
71.2oC. For the complexes, I/A8, I/A10, and I/A12, only the
monomorphic SmA phase is observed, with thermal stabilities of
131.5, 127.9, and 130.4oC, respectively. For the longest acid chains
(n � 16), complex I/A16 exhibits dimorphic mesophases, SmC
(range ≈ 8.8oC) and SmA phases. In conclusion, the length of the
terminal alkoxy chain on the acid component plays an important

FIGURE 8 | Textures upon heating as observed under POM for SMHBC I/A6: (A) SmA phase 98.0°C; (B) Nematic phase at 128.0°C.

TABLE 1 | Mesomorphic transition temperatures (°C), enthalpy (kJ/mol), and normalized entropy of transitions for present SMHBCs I/An.

System TCr-SmC TSmC-SmA TCr-SmA TSmA-N TSmA-I TN-I ΔS/R

I - - 77.3 (30.27) - 108.6 (2.36) - 0.74
I/A6 - - 59.3 (49.17) 126.4 (7.87) - 130.5 (3.12) 0.93
I/A8 - - 63.1 (62.27) - 131.5 (9.85) - 2.92
I/A10 - - 70.5 (70.08) - 127.9 (9.79) - 2.94
I/A12 - - 75.0 (72.95) - 130.4 (10.59) - 3.16
I/A16 78.9 (85.30) 87.7 (3.85) - - 125.6 (11.18) - 3.37

Cr-SmC � solid to the SmC phase transition.
SmC-SmA � SmC to the SmA phase transition.
Cr-SmA � solid to the SmA phase transition.
SmA-N � SmA to the N phase transition.
SmA-I � SmA to the isotropic phase transition.
N-I � nematic to the isotropic phase transition.
ΔS/R � normalized entropy of transition.

FIGURE 9 | Effect of the terminal length of alkoxy-acid chain (n) on
mesomorphic behaviour of 1:1 SMHBCs, I/An.
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role and is more influential in the stability of the observed
mesophases. The mesomorphic temperature range of the
present SMHBCs are decreasing in the order I/A6 > I/A8 >
I/A10 > I/A16, i.e., with linear dependency on the chain length
(n). It has been reported that as the terminal chain length increases,

the rigidity of SMHB central core will be decrease, and consequently,
the structural linearity of the complex slightly decreases due to the
large number of the chain configurations that result in strong
interactions between the terminals (Ahmed et al., 2019b).

Molecular Geometries Studies
The molecular geometry of the prepared SMHBCs (I/An) has
been estimated using DFT calculations by the DFT method at
basis set B3LYP 6-31G (d,p). All structures were minimized and
optimized by the guesstimate of the geometrical optimization for
each molecule to find the geometrical structure of minimum
energy. The optimization process has proceeded to find the
conformations of the minimum energy geometrical structure,
where, the atoms, the bond lengths and bond angle of the
molecules varied to find a new minimum energy geometry
which is called as convergence. The fact that imaginary
frequencies are not present is evidence of the geometrical
stability of all H-bonded complexes. Figure 10 shows the
optimum geometrical structure of the cyano derivative (I) and
4-octyloxybenzoic acid A8 as well as their H-bonded
complex I/A8.

Although both the individual components of the cyano
derivative I and 4-alkoxybenzoic acids are linear and have
complete planar geometry, the SMHBCs derivatives are non-
linear, as shown in Figure 10, the supramolecular complexes I/An
exhibiting a non-linear, gun-shaped geometry. It is possible to
take the absent imaginary frequencies as evidence for their
geometric stability. The results of the current calculations tell
us the preferred molecular geometry in gas phase; however, the
condensed mesophases have liquid crystalline present, meaning
that the lowest energy may differ, making the elongated species
the more preferred geometry.

In order to investigate the impact of the chain length on the
mesomorphic behavior of the SMHBCs, the aspect ratios (L/D,
see Table 2) were calculated by estimating the dimension
parameters, L � length and D � width. Due to the non-linear
geometry of the SMHBCs, the dimensional parameters increases

FIGURE 10 | The calculated molecular geometry of the cyano derivative I, 4-octyloxybenzoic acid A8 and their SMHBC, I/A8.

TABLE 2 | Dimensional parameters and aspect ratios of SMHBCs, I/An.

Parameter I/A6 I/A8 I/A10 I/A12 I/A16

Dimensions Å Length (L) 37.790 39.858 41.766 43.409 47.840
Width (D) 12.350 13.487 14.802 16.045 18.292

Aspect ratio (L/D) 3.060 2.955 2.822 2.706 2.615
Mesophase range 71.2 68.4 57.4 55.4 46.7

FIGURE 11 | Dependence of the mesophase range with aspect ratio of
SMHBCs, I/An.

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 6798858

Hagar et al. Cyano-Hydrogen Bonding Iquid Crystal

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


by small values as the length of the alkoxy terminal of the
carboxylic acid increases. Moreover, the increment of the
length of the complexes is less than that of the width, and
consequently the aspect ratios decrease with the terminal
alkoxy chain length. As shown in Figure 11, the mesophase
range decreases with the aspect ratio. This result can be illustrated
in terms of the decrement of the lateral interaction with longer
chain length due to the lower aspect ratio. The higher the aspect
ratio, the more the molecules can pack together. Moreover, the
higher aspect ratios of the SMHBCs I/An at longer lengths of the
terminal chains could explain the formation of the nematic
mesophase. The higher aspect ratios at shorter chain lengths
resulted in the decrement of the lateral interaction, allowing the
terminal interaction to be dominant to enhance the less ordered
nematic phase. However, the longer terminal chains produce a
dilution of the aromatic moieties with lowering aspect ratios to
enhance side-side attraction over end-end aggregation, and
consequently the more ordered smectic mesophase is observed.

An important element that could affect the mesophase range
of the angular shaped liquid crystals is the width of the
compounds. Figure 12 shows the relationship between the
calculated width of the prepared supramolecular H-bonded
complexes and the enhanced mesophase range. Notably, as
the length of the alkoxy terminal chain increases, the width of
the angular complex increases. The successive increment of the
crystal mesophase and the decrement of the other enhanced
mesophase ranges. This could be explained by the higher
degree of the intermolecular interaction with higher chain

lengths. At higher chain lengths, the van der Waal’s
interaction increases to enhance the formation of the highest
ordered crystal mesophase due to the enforced parallel
association.

Thermal Parameters
The estimated thermal parameters were calculated with the same
method at the same set for the cyano derivative as well as its
H-bonded complexes (I/An), and the data are collected in
Table 3. Obviously, the calculated total predicted stability of
the SMHBCs increases with increasing chain length. This could
be explained by the incremental molecular packing at higher
chain lengths, resulting in lower energy. The longer the chain
length, the more the alkoxy chains aggregated due to Van der
Waals forces, and the lower the predicted energy values of
SMHBCs. As shown in Figure 13, longer alkoxy chains result
in more stable SMHBCs (I/An), and have a negative effect on the
smectic mesophase range. The decrement of the smectic range
can by explained by the terminal lengths; as the chain length
increases, the strength of the terminal aggregation increases,
resulting in the decrease of the smectic range.

Frontier Molecular Orbitals and
Polarizability
Figure 14 depicts the approximate plots of the prepared SMHBCs
I/An for Frontier molecular orbitals, FMOs, HOMO (highest
occupied molecular orbitals), and LUMO (lowest unoccupied
molecular orbitals). The cyano derivative is clearly where the
atom electron densities involved in FMO formation. Further, as
shown in Table 4, the alkoxy chain length has no significant effect
FMO energy levels, or the gaps of energy between HOMO and
LUMO. The energy gap between FMOs could be to predict the
efficiency and likelihood of electron transfer between the FMOs
during a electronic excitation process. Moreover, it can be used to
calculate parameters such as the global softness (S � 1/ΔE) and
chemical hardness η: parameters that depend on polarizability
and liquid crystal sensitivity for photoelectric effects. The better
global softness of the compounds leads to greater enhancement of
their polarizability as well as the photoelectric sensitivity. As
shown in Table 4, the H-bonded complexes derived from the
cyano compound I have a lower FMO energy gap than does the
individual cyano compound; consequently, formers are softer
than that of later. Moreover, the H-bonding of the cyano liquid
crystal I increases the polarizability by almost 100 units from 284
to 465–584 Bohr3. The higher polarizability can be explained in

FIGURE 12 | Dependence of the mesophase range on the length (Ȧ) of
SMHBCs, I/An.

TABLE 3 | Thermal parameters (Hartree/Particle) of the H-bonded complexes I/An.

Parameter I I/A6 I/A8 I/A10 I/A12 I/A16

Ecorr 0.376839 0.667563 0.724793 0.781819 0.838814 0.953074
ZPVE −959.673700 −1691.277723 −1769.844771 −1848.411939 −1926.979094 −2084.113191
Etot −959.651417 −1691.236651 −1769.801047 −1848.365454 −1926.929885 −2084.058547
H −959.650473 −1691.235707 −1769.800103 −1848.364510 −1926.928941 −2084.057603
G −959.729290 −1691.364803 −1769.934774 −1848.506657 −1927.078202 −2084.220908
ZPVE: Sum of electronic and zero-point energies; Etot: Sum of electronic and thermal energies; H: Sum of electronic and thermal enthalpies; G: Sumof electronic and thermal free energies.
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terms of the higher aspect ratio of the SMHBCs with respect to
the individual components. Moreover, the more diminished the
energy difference of I/An, the more their polarizability increases.

However, the dipole moment investigation is one of the most
important parameters that can impact enhanced mesophase type
and behavior. From Table 4, it is clear that the dipole moment of
H-bonded complexes I/An is higher than that of the cyano liquid
crystal, 9.9-10.9, 6.7 Debye, respectively. The higher dipole
moment of the H-complexes explains well the smectic texture

of higher range of stability of the formed mesophase. The higher
dipole moment is predominant in side-side interactions rather
than end-end interactions by permitting the lateral stacking to be
dominant to enhance the smectic phase, 29.2oC mesophase range
of the cyano LC (I) and 71.2oC for I/A6.

It is well known that changing the dimensional parameters as
well as the polarity of the terminal attached substituents of the
liquid crystals has a major effect on the polarizability (Kim and
Kastelic, 1984; Sengupta et al., 2013). As shown in Figure 15, as the
alkoxy chain length increases, the polarizability increases, this can
be explained in terms of the aspect ratio. As the aspect ratios of
the molecule increases, the space filling of the liquid crystalline
compounds increases, resulting in the enhancement of the
polarizability. On the other hand, the increment of the
polarizability irregularly affects the smectic mesophase
stability. However, as the aspect ratio increases, the complexity
of the materials increases, and so the lateral interaction as well as
the van der Waal’s intermolecular interaction increase. The
higher degree of the intermolecular forces permits the
enhancement of the more ordered smectic mesophases.

Molecular Electrostatic Potential
According to the molecular electrostatic potential, the charge
distribution map for SMHBCs of SMHBCs I/An was
determined using the same method on the same basis sets
(MEP) (Figure 16). The negatively charged atomic sites (the
red region) were thought to be mostly concentrated on the
alkoxy acid hydrogen bonded carboxylate moiety. The alkyl

FIGURE 13 | Relationship between the sum of the electronic and
thermal energies with the smectic mesophase stability of H-bonded
complexes, I/An.

FIGURE 14 | The estimated plots for Frontier molecular orbitals of SMHBCs, I/An.

Frontiers in Chemistry | www.frontiersin.org June 2021 | Volume 9 | Article 67988510

Hagar et al. Cyano-Hydrogen Bonding Iquid Crystal

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


chain and the cyano derivative moiety are expected to have
the least negatively charged atomic sites (blue regions). As
shown in Figure 16, the orientation and magnitude of charge
are heavily influenced by H-bonding. As a result, this may be
used to understand why the dipole moment of the SMHBCs
increases when compared to the cyano LC. The SMHBCs I/
An longer alkoxy chain lengths have no impact on charge
orientation or magnitude.

Entropy Change of SMHBCs
From the entropic changes perspective, flexible chains dominate
since they are very labile and can easily formmulti-conformational

modes. Entropy change is observed in all formed 1:1 mixtures,
more conformational and orientational changes in the mixture as
compared to the individual, pure compounds.

The normalized entropy of the clearing transitions (ΔS/R)
were calculated from DSC measurements for all investigated
SMHBCs, I/An, and the data are tabulated in Table 1. Results
indicate a linear correlation linear variation between the entropy
change and the length of the terminal flexible-chains on the acid
moiety (see Figure 17). This may be attributed to differences in
molecular interaction enhancements as the chains increase. As
the chain length increases, the more ordered smectic phase
observed, and results in the high difference in the entropy

TABLE 4 | FMO Energies a.u., Polarizability, α, and Dipole Moment μ (Debye) of the cyano compound I and its SMHBCs, I/An.

Parameter I I/A6 I/A8 I/A10 I/A12 I/A16

ELUMO −0.08971 −0.10132 −0.10140 −0.10158 −0.10159 −0.10157
EHOMO −0.22201 −0.22882 −0.22877 −0.22886 −0.22889 −0.22882
ΔEHOMO-LUMO 0.1323 0.1275 0.1274 0.1273 0.1273 0.1273
Softness, S 7.559 7.843 7.849 7.855 7.855 7.855
Hardness, η 0.0662 0.0638 0.0637 0.0637 0.0637 0.0637
μ Total 6.707 9.902 10.988 10.981 10.977 10.973
Polarizability α 284.89 465.43 488.94 512.43 535.00 584.04

FIGURE 15 | The relationship between the polarizability and the aspect ratio (L/D) of all prepared compounds (A); and polarizability dependence relationship with
the length of alkoxy chains (B).

FIGURE 16 | Molecular electrostatic potentials (MEP) for SMHBCs I/An.
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change between the smectic to the isotropic phases. Although, the
longer chain length decreases the mesophase range, it increases
the smectic entropy change; this finding can be explained in terms
of the enhanced crystal mesophase with the longer chain length.

CONCLUSION

A new series of SMHBCs were formed from 4-n-alkoxybenzoic
acid (An) and N-4-cyanobenzylidene-4-(hexyloxy)benzenamine
(I). Several points have been concluded from this investigation:

•FT-IR, NMR temperature dependency, as well as binary
mixtures systems were proved the SMHBCs formation.
•The temperature gradient NMR spectroscopy showed a shift in the
aromatic protons rather the aliphatic one and the O-H signal was
diminishedwithhigh temperature aswell as it is shifted to higherfield.
•Mesomorphic and optical characterizations results showed
that enantiotropic N and SmA mesophases.

•The mesomorphic temperature ranges decreased in the order
I/A6 > I/A8 > I/A10 > I/A16 with linear dependency on the
terminal chain length.
•The DFT calculations showed that a non-linear, gun-shaped
geometry of the complexes I/An.
•The mesophase range decreases with the calculated
aspect ratio.
•The decrement of the smectic range has been explained in
terms of the effect of the terminal lengths impact.
•Linear variation in the entropy change was observed
with the terminal flexible-chain length of the acid
moiety.
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