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Introduction

Esophageal cancer is one of the most aggressive and 
highly lethal gastrointestinal tract malignancies [1, 2]. 
Esophageal squamous cell carcinoma (ESCC) accounts 

for more than 90% of esophageal cancer cases in China 
[3]. Despite the rapid advance in tumor-targeted thera-
peutics, no new regimens are effective in ESCC [4], and 
the 5-year overall survival rate for ESCC remains dismal 
[5, 6].
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Abstract

The aim of this study is to evaluate the efficacy of insulin-like growth factor 
1 receptor (IGF-1R) inhibitor Linsitinib, in esophageal squamous cell carcinoma 
(ESCC), and to characterize special biomarker to screen Linsitinib-sensitive pa-
tients as well as explore the molecular-resistant mechanism to Linsitinib in 
ESCC. Our study evaluated the sensitivity of insulin-like growth factor 1 receptor 
(IGF-1R) inhibitor, Linsitinib in ESCC cells with MTT assay. After Linsitinib 
treatment, the expressions of downstream signaling molecules and apoptosis 
pathways were measured by western blot. And the antitumor effect of Linsitinib 
and JSH-23, an inhibitor of nuclear factor-κB transcriptional activity, was ana-
lyzed both as single agent and in combination in ESCC. Apoptosis, cell viability, 
and clonogenic survival analysis were also investigated. The sensitivity of Linsi-
tinib was relatively variable in patient-derived primary ESCC cells as well as in 
human commercial cell lines. And the downstream AKT/mTOR and ERK sign-
aling pathways were inhibited by Linsitinib, while phosphorylation level of NF-κB 
p65 was obviously activated to reduce apoptosis effect in Linsitinib-resistant cell 
lines. Most importantly, blockage of NF-κB activity by JSH-23 could sensitize 
resistant cells to Linsitinib treatment. Results from this study demonstrated that 
the intrinsic resistance to Linsitinib was predominantly mediated by NF-κB 
activation in ESCC. Moreover, combination of Linsitinib and JSH-23 as therapy 
provides a novel strategy to overcome resistance to Linsitinib in ESCC.
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Insulin-like growth factor-1 receptor (IGF-1R) signal-
ing pathway has been implicated in the carcinogenesis 
and progression of multiple cancer sites, including ESCC 
[7, 8]. Studies of ESCC demonstrated that upon binding 
to its ligands IGF-1 or IGF-2, IGF-1R is autophospho-
rylated and the phosphorylation activates the downstream 
pathways of PI3K/AKT/mTOR and Ras/Raf/MEK/MAPK 
[9, 10], which promote tumor cell proliferation, inva-
sion, metastasis, and evasion of apoptosis [10, 11]. 
Moreover, elevated levels of IGF-1R expression are com-
mon in 60–80% ESCC [12, 13], and patients with higher 
expression of IGF-1R are more likely to have shorter 
overall survival [7]. Thus, inhibition of the IGF-1R 
pathway may offer a promising strategy for ESCC 
treatment.

Recently, around 30 compounds targeting IGF-1R have 
been tested in phase II/III clinical trials for the treat-
ment of several types of cancer including ESCC. [8, 
14–16]. Among them, Linsitinib (also named OSI-906) 
is a selective and orally bioavailable IGF-1R/insulin 
receptor (IR) inhibitor [17], which has been shown to 
block ligand-induced activation of pAkt, pERK1/2, and 
p-p70S6K [15]. However, clinical trials involving 
Linsitinib showed varied response rates [18–20]. Two 
phase I trials showed an overall objective response rate 
of about 30% in advanced solid tumors [18, 19], with 
some patients obtaining durable benefit from the IGF-1R 
blockage [18, 19]. However, a phase III clinical trial of 
adrenocortical carcinoma indicated that Linsitinib had 
no effect in comparison to the placebo group [21]. The 
different responses may be partly due to the innate drug 
resistance or activation of compensatory pathways allow-
ing for continued growth [15, 22]. To deal with these 
challenges, we need to elucidate the mechanisms that 
underlie Linsitinib resistance in ESCC and identify bio-
markers that can screen Linsitinib-sensitive patients with 
ESCC.

In this study, we investigated the mechanisms underpin-
ning the sensitivity and resistance of Linsitinib in ESCC, 
and found an intrinsic Linsitinib resistance mediated 
through the nuclear factor-κB (NF-κB) pathway. Our 
experiments suggest that Linsitinib administration in com-
bination with NF-κB inhibitor JSH-23 may have synergy 
in ESCC treatment.

Methods

Ethics approval

This study was approved by the institutional review board 
of Zhejiang Cancer Hospital. All patients signed an 
informed consent before surgery.

Cell lines and cell culture

Human commercially available ESCC cell lines were bought 
from Chinese Academy of Sciences, Shanghai Institutes 
for Biological Sciences (Shanghai, China). The patient-
derived primary cancer cells were isolated and cultured 
from solid tumors of ESCC patients. Reduction esophagec-
tomy tissue samples were mechanically dissociated and 
then incubated with collagenase (Roche Life Science, 
Indianapolis, IN) and hyaluronidase (Sigma-Aldrich, St. 
Louis, MO) at 37°C for 2  h. Primary cancer cells thus 
obtained were tested for drug response between passage 
3 to 5 generations. All tissue specimens used in our study 
were obtained from the tissue bank of Zhejiang Cancer 
Hospital. All patients signed an informed consent before 
surgery. This study was approved by the institutional 
review board of Zhejiang Cancer Hospital.

Primary ESCC cells were cultured in DMEM/F12 (Life 
technologies, Gaithersburg, MD). DMEM/F12 medium was 
supplemented with 10% fetal bovine serum (FBS, Gibco, 
Life technologies), 1% penicillin-streptomycin (Gibco, Life 
technologies), and 1% MEM nonessential amino acids 
(Gibco, Life technologies). All other cells were cultured 
in RPMI 1640 (Life technologies), supplemented with 10% 
FBS. All the cells were cultured under the standard con-
ditions (5% CO2 at 37°C).

Antibodies and reagents

Linsitinib and JSH-23 were purchased from Selleckchem 
Co. (Houston, TX). Stock solutions with a concentration 
of 10  mM were prepared and stored at −20°C.

Antibodies against phospho-IGF1R (CST-3918), total-
IGF1R (CST-9750), phospho-p65 (CST-3033), total-p65 
(CST-8242), phospho-Akt308 (CST-2965), phospho-Akt473 
(CST-9271), total-Akt (CST-1085), phospho-mTOR (CST-
5536), total-mTOR (CST-2983), phospho-ERK1/2 (CST-
9102), total-ERK1/2 (CST-4376), and PARP (CST-1078) 
were purchased from Cell Signaling Technology (Danvers, 
MA, USA). Cleaved Caspase-3 (25546-1-AP) were purchased 
from Protein Technology (Tucson, AZ) and Tubulin 
(ARH4207) were purchased from AR (San Diego, CA). 
HRP-conjugated goat anti-mouse and goat anti-rabbit 
antibodies were from Santa Cruz Biotechnology (Dallas, 
TX). MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-
tetrazolium bromide] was obtained from Sigma-Aldrich.

Cell viability analysis

A colorimetric MTT assay was performed to quantify the 
effect of drugs on cell viability. Cells were seeded in 96-
well plates at a density of 3000 cells/well, and were grown 
for over 24  h before being incubated with the respective 
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compound for 72  h. Controls were treated with DMSO 
only. Four hours prior to the end of the culture period, 
50  μL MTT solution (5  mg/mL in PBS) was added to 
each well. Each reaction was stopped by adding 150  μL 
DMSO. The absorbance was measured at a wavelength 
of 570  nm.

Cell lysis and western blot

Cells were lysed to extract proteins with a lysis buffer 
using the standard method. The extracted protein samples 
were analyzed using 8% or 12% SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE), and the separated proteins 
were transferred onto polyvinylidene difluoride membranes 
(Millipore, Bedford, MA). Each membrane was blocked 
with 5% nonfat dry milk or bovine serum albumin in 
TBS-Tween-20 (TBS-T) for 1  h, followed by incubation 
with primary antibody at 4°C overnight. The membrane 
was then incubated with HRP-conjugated secondary anti-
body before it was detected with enhanced chemilumi-
nescence (ECL, Millipore).

RNA extraction and quantitative real-time 
PCR

Total RNA was extracted from cells with the TRIzol reagent 
and cDNA was synthesized using a Prime-Script RT Reagent 
kit (Takara Bio, Inc. Otsu, Shiga, Japan). Targeted cDNA 
were amplified using a SYBR Premix Ex Taq kit (Takara 
Bio) on ABI 7500 Real-time polymerase chain reaction (PCR) 
System (Life Technology, Foster City, CA). PCR condition 
was one cycle at 50°C for 2  min and then 40 cycles of 
5  sec at 95°C and 35  sec at 60°C. The sequences of PCR 
primers used were as follows: IL-6, 5′-TTCCATCCAGTT 
GCCTTCTT-3′ (forward), and 5′-CAGAATTGCCATTGCA 
CAAC-3′ (reverse); IL-8, 5′-ATGACTTCCAAGCTGGCCG 
TGGCT-3′ (forward), and 5′-TCTCAGCCCTCTTCAAAAA 
CTTCTC-3′ (reverse); GAPDH, 5′-GAAGGTGAAGGTCGG 
AGTC-3′ (forward) and 5′-GAAGATGGTGATGGGATTTC
-3′(reverse). The results were normalized against GAPDH 
expression. Levels of gene expression were calculated using 
the formula 2−ΔΔCt.

Flow cytometric analysis of apoptosis cell

Cells (1  ×  105/mL) were seeded in 6-well plates and 
incubated overnight. The cells were than exposed to 
Linsitinib (1.0 or 10.0 μmol/L) and JSH-23 (20 μmol/L) 
alone or in combination for 48  h. After the treatment, 
cells were stained with the Annexin V-FITC Apoptosis 
Detection kit (Sigma-Aldrich) for 5  min at 4°C in 
dark. Apoptotic cells were measured with a FACS 

Calibur flow cytometer, and the results were analyzed 
by CellQuest software (BD Biosicences, San Diego, CA).

Colony formation assay

Cells (1  ×  103  cells per plate) were seeded onto 6-well 
plates and then treated with Linsitinib (1.0 or 10.0 μmol/L) 
and JSH-23 (20  μmol/L) alone or in combination for at 
least 10  days. At the end of the incubation period, cells 
were fixed with methanol and stained with 0.05% crystal 
violet solution. Colonies containing >50 cells were counted.

Statistical analysis

Statistical analyses were performed using SPSS (version 
18.0, Chicago, IL). Data from the experiments were 
expressed as mean  ±  SD which was based on a minimum 
of three independent experiments. Differences between 
groups were compared using the two-way ANOVA, fol-
lowed by the Newman–Keuls test, and a P  <  0.05 was 
considered significant.

Results

Effect of Linsitinib on ESCC cells

To investigate the effect of Linsitinib on the viability of 
ESCC cells, a panel of 16 primary ESCC cells was exposed 
to different concentrations of Linsitinib (0.1–100  μmol/L), 
and the cell viability was then measured with MTT assay 
(Fig.  1A). The test results showed that four of 16 primary 
cells were almost completely resistant to Linsitinib, while 
four displayed high sensitivity. In addition, we evaluated the 
sensitivity of Linsitinib with concentrations of 0.1–80 μmol/L 
in a panel of six commercially available ESCC cell lines 
(Eca-109, EC-9706, KYSE-510, KYSE-410, TE-1, and TE-13). 
As shown in Figure  1B, TE-13 was the most sensitive cell 
line and the remaining five were much resistant. The sensi-
tive (TE-13) and resistant cell lines (TE-1 and KYSE-510) 
were further examined for drug resistance.

Inhibition of ERK and PI3K signaling by 
Linsitinib

Since incomplete blockade of the IGF-1R pathway could 
confer Linsitinib resistance, we evaluated the downstream 
effectors of the MEK and PI3K pathways (ERK1/2, AKT 
and mTOR) with western blot. As shown in Figure  2, 
IGF-1R phosphorylation was inhibited after treatment of 
Linsitinib at 0.1 or 1.0  μmol/L for 72  h. Moreover, com-
pared to the controls, phosphorylation of ERK1/2 was 
down-regulated by Linsitinib in both sensitive (TE-13) 
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and resistant cell lines (TE-1, KYSE-510), and levels of 
phosphorylated AKT and mTOR were low in all three 
cell lines. These results suggested that Linsitinib could 
effectively inactivate two major downstream pathways of 
IGF-1R.

Reduced apoptosis in Linsitinib-resistant 
ESCC cells

To examine if Linsitinib resistance affects cell apoptosis, 
we analyzed the expression of cleaved PARP and activated 
Caspase-3 protein with western blot. As indicated in 
Figure 3, after treatment of Linsitinib at 0.1 or 1.0 μmol/L 
for 72  h, the expression of cleaved PARP and activated 
Caspase-3 were increased in a sensitive cell line (TE-13), 
but decreased in resistant cell lines (TE-1 and KYSE-510). 

These results suggested that Linsitinib-resistant cells had 
a reduced capacity of apoptosis.

Activation of NF-κB pathway in Linsitinib-
resistant ESCC cells

NF-κB pathway may play a critical role in drug resistance 
of ESCC cells. We evaluated whether NF-κB pathway was 
activated after Linsitinib treatment. Figure  4A shows a 
dose-dependent elevation of p-p65 levels in Linsitinib-
resistant cell lines (TE-1 and KYSE-510), with little or 
no change in total p65 levels. Expression of p-p65 was 
inhibited in TE-13, the Linsitinib-sensitive cell line. 
Additionally, as the transcriptional targets of p65, IL-6 
and IL8 mRNA levels were also altered following the 
trends of p-p65, up-regulation in resistant cell lines, and 
down-regulation in the sensitive cell line (Fig.  4B). Taken 
together, our experiment suggested that NF-κB pathway 
was activated in resistant ESCC cells after Linsitinib 
treatment.

Enhanced apoptosis following combined 
treatment of Linsitinib and NF-κB inhibitor 
in Linsitinib-resistant cells

To test if NF-κB inhibitor could be used in combination 
with IGF-1R blocker in treating ESCC, we performed flow 
cytometry analysis of cell apoptosis in Linsitinib -sensitive 
and -resistant cells (Fig.  5). Interestingly, after exposing 
cells to Linsitinib (1.0 or 10.0  μmol/L) and JSH-23 
(20 μmol/L) alone or in combination for 48 h, cells treated 
with the combined regimens showed statistically significant 
induction of programmed cell death when compared to 
single-regimen treatment in Linsitinib-resistant cells 
(P  <  0.01, Fig.  5). However, this effect was not observed 
in Linsitinib-sensitive cell TE-13 (P  >  0.05, Fig.  5). This 
difference suggests that reduction in apoptosis may be 
an important mechanism in tumors resistant to Linsitinib.

Combined treatment of Linsitinib and NF-κB 
inhibitor affected cell viability and colony 
formation in Linsitinib-resistant cells

We next measured cell viability and colony formation 
ability after exposing the cells to Linsitinib (1.0 or 
10.0  μmol/L) and JSH-23 (20  μmol/L) alone or in com-
bination (Fig.  6A). As depicted in Fig.  6A, compared to 
Linsitinib monotherapy, the combination of Linsitinib and 
JSH-23 had a statistically significant effect on growth 
inhibition of Linsitinib-resistant cells (TE-1 and KYSE-510, 
P  <  0.01). However, no inhibitory effect was observed 
in Linsitinib-sensitive cell (TE-13, P  >  0.05). Similarly, 
the addition of JSH-23 could reverse ESCC cells from 

Figure 1. Sensitivity of Linsitinib in ESCC cells. (A) A panel of 16 patient-
derived primary ESCC cells was seeded in growth medium containing 
different concentrations of Linsitinib (0.1–100 μmol/L) for 72 h. Then 
MTT assay was performed to measure the cell viability. (B) The sensitivity 
of Linsitinib with concentrations of 0.1–80 μmol/L was also evaluated in 
another panel of six commercially available ESCC cell lines including 
Eca-109, EC-9706, KYSE-510, KYSE-410, TE-1, and TE-13. ESCC, 
esophageal squamous cell carcinoma.



1357© 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. 

Linsitinib resistance in esophageal carcinomaJ. Wu et al.

Linsitinib resistant to Linsitinib sensitive with regard to 
their colony formation.

Discussion

Recent clinical trials of IGF-1R inhibitors have demon-
strated variable antitumor effects [20, 23], which may 
reflect either the lack of patient selection strategies and/
or little understanding of drug-resistant mechanisms. 
Consistent with the findings of a previous study of Linsitinib 
in colorectal cancer [24], our study also showed that the 
sensitivity of Linsitinib was variable not only in primary 
cells but also in commercial cell lines. This observation 
indicates to the presence of intrinsic resistance to Linsitinib 
in ESCC. Possible mechanisms explaining the intrinsic 
resistance include limited effect on downstream signaling 
of IGF-1R, existence of subclones resistant to the drug, 
and alternative compensatory pathway [25, 26]. Previous 
studies showed that cell lines with active downstream 
molecules MAPK/MEK [27, 28] or AKT/mTOR/p70S6K 

[24, 29] had intrinsic resistance to IGF-1R inhibitor. 
Moreover, using Linsitinib in combination with a MEK 
inhibitor to treat colorectal cancer cells with active MAPK 
demonstrated synergistic antitumor effects on the 
Linsitinib-resistant cell lines [27]. In our study, we found 
that the AKT/mTOR and ERK1/2 pathways were inhibited 
by Linsitinib in both sensitive and resistant cell lines. On 
the basis of this observation, we hypothesized that failure 
to Linsitinib treatment was not due to the activities of 
IGF-1R downstream molecules, but rather resulted from 
a compensatory mechanism that counteracted the effect 
of a single regimen which targeted only upstream 
molecule.

As previously proposed, IGF-1R inhibitors could induce 
apoptosis, inhibit tumor growth, as well as sensitize cells 
to chemotherapy in esophageal carcinoma cells [29, 30]. 
Programmed cell death can be suppressed by the nucleus 
localization of nuclear factor-κB (NF-κB) [31], which 
induces the expression of antiapoptotic factors such as 
the IAPs, the TRAFs, and Bfl-1 [32]. NF-κB plays a 

Figure 2. Linsitinib inhibits the activation of ERK and PI3K pathways. After treatment of Linsitinib at 0.1 or 1.0 μmol/L for 72 h, the phosphorylation 
of insulin-like growth factor-1 receptor (IGF-1R), ERK1/2, and AKT/mTOR pathways were analyzed in TE-13, TE-1, and KYSE-510 cell lines by western 
blot.

Figure 3. Reduced apoptosis in Linsitinib-resistant esophageal squamous cell carcinoma cells. After treatment of Linsitinib at 0.1 or 1.0 μmol/L for 
72 h, cleaved PARP and activated Caspase-3 were examined in TE-13, TE-1, and KYSE-510 cells by western blot. Tubulin was used as a loading 
control.
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critical role in chemotherapy resistance due to its ability 
to reduce apoptosis [33–37]. Apoptotic pathways are related 
with the sensitivity of target drugs [38–40], and Linsitinib 
resistance in ESCC may be related to apoptosis. So we 
investigated the expression of cleaved PARP, activated 
Caspase-3, and phosphorylated NF-κB p65, as well as its 
transcriptional targets IL-6 and IL8. Interestingly, our 
results demonstrated that the apoptotic effect was decreased, 
while NF-κB p-p65 was significantly increased in Linsitinib-
resistant cells. Meanwhile, the opposite trend was observed 
in Linsitinib-sensitive cells.

To further confirm these results, we investigated the 
combined effects of Linsitinib and JSH-23, a molecule 

that inhibits the transcriptional activity of NF-κB, on 
ESCC cell growth. JSH-23 has been found to reduce the 
resistance to TRAIL-induced apoptosis in acute myeloid 
leukemia [41]. In addition, JSH-23 has been proven to 
reverse the radioresistance in breast cancer [42]. We inves-
tigated the apoptotic activities of both Linsitinib-resistant 
and -sensitive cell lines treated with Linsitinib and JSH-23 
alone or in combination. As expected, a single-regimen 
therapy of JSH-23 did not work well, but a combination 
therapy of both Linsitinib and JSH-23 demonstrated a 
significant synergy in induction of apoptosis, as well as 
effective reduction in cell viability and colony formation 
in Linsitinib-resistant cell lines. However, no difference 

Figure 4. Activation of nuclear factor-κB (NF-κB) pathway in Linsitinib-resistant esophageal squamous cell carcinoma cells. (A) With the treatment of 
the different concentrations of Linsitinib (0, 0.1, and 1.0 μmol/L) for 72 h, the phosphorylation of NF-κB p65 was evaluated in TE-13, TE-1, and 
KYSE-510 cells by western blot. (B) IL-6 and IL-8 mRNA levels were measured by real-time polymerase chain reaction; untreated cells were included 
as controls. Every experiment was performed at least three times in triplicate determinations. Each result was corrected by value from a control study.

Figure 5. Apoptosis was enhanced following the combination of Linsitinib and nuclear factor-κB (NF-κB) inhibitor in Linsitinib-resistant cells. TE-13, 
TE-1, and KYSE-510 cell lines were seeded in growth medium with Linsitinib (1.0 or 10.0 μmol/L) and JSH-23 (20 μmol/L) alone or in combination for 
48 h. Then cells were harvested and the Annexin V-FITC apoptosis assay was performed to measure the percentage of apoptotic cells. And results 
from three independent experiments are summarized in Figure 5. NS indicates P > 0.05. *P < 0.01
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Figure 6. Combined treatment of Linsitinib and nuclear factor-κB (NF-κB) inhibitor affected cell viability and colony formation ability in Linsitinib-
resistant cells. TE-13, TE-1, and KYSE-510 cells were exposed to Linsitinib 1.0 μmol/L for (A), 10.0 μmol/L for (B), and JSH-23 (20 μmol/L) alone or in 
combination. Then MTT assay was performed to measure the cell viability, and data from each cell line represent mean growth inhibition compared 
to DMSO control cells for three independent experiments. Furthermore, colony formation analysis was also investigated. Representative images are 
shown in (C) and results from three independent experiments are summarized in (D). NS indicates P > 0.05. *P < 0.01
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was found in Linsitinib-sensitive cells when they were 
treated with single or double regimens. Treatment with 
both Linsitinib and JSH-23 exhibited increased efficacy 
of Linsitinib in Linsitinib-resistant cells, indicating that 
targeting on both IGF-1R and NF-κB may generate a 
promising therapeutic effect on ESCC.

To sum up, our study suggests that the intrinsic resist-
ance of ESCC to Linsitinib may be mediated by NF-κB 
activation. A combined therapy that targets both IGF-1R 
and NF-κB may provide a novel strategy to overcome 
the ESCC’s resistance to Linsitinib.

Conclusions

The intrinsic resistance of ESCC to Linsitinib may be 
mediated by NF-κB activation. A combined therapy that 
targets both IGF-1R and NF-κB provides a novel strategy 
to overcome resistance to Linsitinib in ESCC.
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