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ABSTRACT: Uridine diphosphate N-acetylglucosamine (UDP-
GlcNAc) is a nucleotide sugar used by glycosyltransferases to
synthesize glycoproteins, glycosaminoglycans, glycolipids, and
glycoRNA. UDP-GlcNAc also serves as the donor substrate for
forming O-GlcNAc, a dynamic intracellular protein modification
involved in diverse signaling and disease processes. UDP-GlcNAc
is thus a central metabolite connecting nutrition, metabolism,
signaling, and disease. There is a great interest in monitoring UDP-
GlcNAc in biological systems. Here, we present the first genetically
encoded, green fluorescent UDP-GlcNAc sensor (UGAcS), an optimized insertion of a circularly permuted green fluorescent protein
(cpGFP) into an inactive mutant of an Escherichia coli UDP-GlcNAc transferase, for ratiometric monitoring of UDP-GlcNAc
dynamics in live mammalian cells. Although UGAcS responds to UDP-GlcNAc quite selectively among various nucleotide sugars,
UDP and uridine triphosphate (UTP) interfere with the response. We thus developed another biosensor named UXPS, which is
responsive to UDP and UTP but not UDP-GlcNAc. We demonstrated the use of the biosensors to follow UDP-GlcNAc levels in
cultured mammalian cells perturbed with nutritional changes, pharmacological inhibition, and knockdown or overexpression of key
enzymes in the UDP-GlcNAc synthesis pathway. We further utilized the biosensors to monitor UDP-GlcNAc concentrations in
pancreatic MIN6 β-cells under various culture conditions.

■ INTRODUCTION
Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the
major end-product of the hexosamine biosynthetic pathway
(HBP), is one of the most important nucleotide sugars in living
organisms.1 The HBP branches out from glycolysis and
consumes ∼0.006−3% of total glucose,2−4 along with
glutamine, acetyl-coenzyme A (Ac-CoA), adenosine triphos-
phate (ATP), and uridine triphosphate (UTP). Because
multiple types of metabolic molecules, including carbohy-
drates, amino acids, fatty acids, and nucleotides, regulate the
flux of HBP, UDP-GlcNAc has been considered an integrator
of nutritional and metabolic signals.5,6

As an activated N-acetylglucosamine (GlcNAc) donor,
UDP-GlcNAc is vital for the glycosyltransferase-catalyzed
formation of various glycosaminoglycans, glycoproteins,
glycolipids, and glycoRNAs.1,7 In mammalian cells, glyco-
sylation primarily occurs in the endoplasmic reticulum (ER)
and Golgi. The glycosylated products are typically translocated
to the extracellular space, playing critical roles such as
maintaining structural stability, modulating cell−matrix or
cell−cell interaction, regulating cell proliferation and migra-
tion, and initiating other types of signaling.1,6 Moreover, UDP-
GlcNAc is an essential substrate for O-GlcNAcylation, a
reversible post-translational modification of nucleocytoplasmic
proteins.2,8,9 O-GlcNAc transferase (OGT) catalyzes the
transfer of the GlcNAc subunit from UDP-GlcNAc to the
serine or threonine residues of proteins, while O-GlcNAcase

(OGA) hydrolyzes the modification to generate free proteins
and GlcNAc. This dynamic and tightly regulated process,
analogous to more well-known phosphorylation, is involved in
a large array of intracellular signaling processes.1,5,6,10−12

Aberrant O-GlcNAcylation has been linked to aging, neuro-
degeneration, cancer, cardiovascular diseases, and metabolic
disorders.2,6,13−15

The concentration of UDP-GlcNAc is one of the several key
factors regulating glycosylation. The drastic increase of the
β1,6-branched oligosaccharide levels was observed in B16
melanoma cells incubated with GlcNAc.16 In another example,
deleterious mutations in SLC35A3, the major Golgi UDP-
GlcNAc transporter, were identified in patients with autism
spectrum disorder, arthrogryposis, and epilepsy.17 These
mutations reduce UDP-GlcNAc transport into the ER, leading
to a massive decrease of highly branched N-glycans and a
drastic increase of lower branched glycoforms at the cell
surface.17 The UDP-GlcNAc level has also been found to
regulate intracellular O-GlcNAcylation. In vitro character-

Received: June 22, 2021
Published: September 30, 2021

Research Articlehttp://pubs.acs.org/journal/acscii

© 2021 The Authors. Published by
American Chemical Society

1763
https://doi.org/10.1021/acscentsci.1c00745

ACS Cent. Sci. 2021, 7, 1763−1770

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zefan+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jing+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hui-wang+Ai"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acscentsci.1c00745&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00745?ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00745?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00745?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00745?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acscentsci.1c00745?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acscii/7/10?ref=pdf
https://pubs.acs.org/toc/acscii/7/10?ref=pdf
https://pubs.acs.org/toc/acscii/7/10?ref=pdf
https://pubs.acs.org/toc/acscii/7/10?ref=pdf
http://pubs.acs.org/journal/acscii?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acscentsci.1c00745?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acscii?ref=pdf
https://http://pubs.acs.org/journal/acscii?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


ization of OGT demonstrated that the concentration of UDP-
GlcNAc was positively correlated with the O-GlcNAcylation of
the tested peptide substrates.18 Supplementing human
hepatocellular carcinoma HepG2 cells with glucosamine, a
metabolite used by HBP to synthesize UDP-GlcNAc,
significantly increased O-GlcNAc.19,20 Furthermore, hyper-
glycemia was shown to increase the O-GlcNAc level in
multiple tissue types via the HBP.21−23

Because of the importance of UDP-GlcNAc in metabolic
sensing, signaling, and disease, methods for monitoring UDP-
GlcNAc levels in living systems are highly needed. Tradition-
ally, chromatography methods are used to determine cellular
UDP-GlcNAc levels,3,24,25 but these methods require cell lysis
and provide little spatiotemporal resolution. To address this
technical gap, we engineered the first genetically encoded
fluorescent sensor, UGAcS, for detecting UDP-GlcNAc in
living cells. We inserted a cpGFP into an inactive mutant of
murG,26−28 an Escherichia coli UDP-GlcNAc transferase, and
performed directed evolution to optimize the biosensor.
Because UDP and UTP interfere with the response of
UGAcS to UDP-GlcNAc, we developed an additional control
biosensor, UXPS, which is only responsive to UDP and UTP.
We demonstrated the use of the biosensors to follow UDP-
GlcNAc concentration changes in cultured mammalian cells in
response to various nutritional, pharmacological, and genetic
perturbations.

■ RESULTS AND DISCUSSION

Design, Engineering, and in Vitro Characterization of
the UGAcS.MurG is a well-characterized E. coli UDP-GlcNAc
transferase involved in synthesizing lipid-linked precursors to
assemble peptidoglycan, the polymeric cell wall outside the
bacterial cell membrane.28,29 MurG has a high binding affinity
to UDP-GlcNAc (∼1.4 μM), and its structures in the apo and
UDP-GlcNAc-bound forms have been reported.27,29 We
selected murG as the sensory domain to build a UDP-GlcNAc

sensor. By carefully examining the structures of murG, we
identified that the binding of UDP-GlcNAc triggers a structural
conversion of residues 60−70 in murG from a loop into an α-
helix (Supporting Information, Figure S1). We further
confirmed the significant conformation change at this loop
by analyzing the changes of dihedral angles of every four
consecutive Cα atoms (Figure S2).
We next inserted cpGFP to the above-identified loop

between residues 64 and 65 of murG (Figure 1A and Figure
S3). A fully randomized residue was introduced to each of the
two junctions as the linkers. We screened the library and
identified a UGAcS0.1 mutant with a 30% response ((R −
R0)/R0 or ΔR/R0, where R is the ratio of fluorescence with 488
nm excitation to that with 400 nm excitation) to UDP-
GlcNAc. To increase the sensor’s response to UDP-GlcNAc,
we performed three rounds of error-prone PCR, and the
screening of these libraries resulted in UGAcS0.2 showing a
300% (ΔR/R0) response.
Although our primary goal is to apply the fluorescent

biosensors in mammalian cells, and murG is unlikely to be
active in mammalian cells where its lipid-linked peptidoglycan
substrate is not present, we still performed saturation
mutagenesis on the catalytic His19 residue of murG in
UGAcS0.2. This residue is essential for catalysis and conserved
in murG from 73 orthologues.26,27 Our screening of the
mutants led to an enzymatically inactive His19Ser mutant
(UGAcS0.3) but is comparable to UGAcS0.2 in terms of the
UDP-GlcNAc responsiveness.
Because UDP is a natural inhibitor and regulator of UDP-

sugar transferases, we examined the fluorescence of UGAcS0.3
upon the addition of UDP. UGAcS0.3 showed a higher
response to UDP than UDP-GlcNAc. Therefore, we next
devoted our effort to engineering UGAcS0.3 for increased
specificity to UDP-GlcNAc versus UDP. We chose five pairs of
residues (residues 192 and 193, residues 16 and 127, residues
164 and 269, or residues 244 and 245) in the ligand-binding

Figure 1. Design and in vitro characterization of the biosensors. (A) Illustration of the sensor design, showing the cpGFP insertion between
residues 64 and 65 of the murG glycosyltransferase. Also highlighted is a UDP-GlcNAc molecule in the substrate-binding pocket. (B) Fluorescence
excitation and emission spectra of UGAcS before and after addition of 1 mM UDP-GlcNAc. Responses of UGAcS (C) or UXPS (D), presented as
normalized fluorescence excitation ratios (488 nm/400 nm), to 100 μM of various nucleoside sugars and other related cellular metabolites. Data are
presented as mean ± SD (n = 3 technical repeats). Dose-dependent responses of UGAcS (E) or UXPS (F) to UDP or UDP-GlcNAc.
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pocket and performed saturation mutagenesis. Screening of
these libraries resulted in UGAcS0.4 with mutations at residues
192 and 193. In comparison with UGAcS0.3, UGAcS0.4
showed increased responsiveness to UDP-GlcNAc and
reduced responsiveness to UDP. Despite the progress, we
were unable to identify a mutant to exclude the UDP
interference entirely.
From UGAcS0.4, we performed two more rounds of random

mutagenesis. By screening these libraries for improved UDP-
GlcNAc responsiveness, we arrived at UGAcS, which showed a
nearly 700% response (ΔR/R0) to 1 mM UDP-GlcNAc
(Figure 1B and Figure S4). We further tested the specificity of
UGAcS using various nucleotide sugars and other related
compounds at physiologically relevant concentrations (Figure
1C). UGAcS responded to UDP-GlcNAc, UDP, and UTP.
Other tested nucleotide sugars, including uridine diphosphate
N-acetylgalactosamine (UDP-GalNAc) and uridine diphos-
phate glucose (UDP-Glc) that are structurally very close to
UDP-GlcNAc, induced little fluorescence change.
After we realized that it might be unrealistic to engineer a

fully specific UDP-GlcNAc biosensor from the glycosyltrans-
ferase, we sought to identify a UDP sensor, which could be
used as a control to cross-check the responses of the UGAcS
variants. From one of the ligand-binding-pocket mutagenesis
libraries mentioned above, we identified a mutant (UXPS),
which is responsive to UDP and UTP, not to UDP-GlcNAc
and other nucleotide sugars (Figure 1D and Figure S4).
We next titrated UGAcS and UXPS with various

concentrations of UDP-GlcNAc and UDP (Figure 1E,F).
The apparent dissociation constant (Kd) values (deduced from
the fluorescence responses of the sensors) for UGAcS were
determined to be 72 ± 4 and 26 ± 1 μM in the presence of
UDP-GlcNAc and UDP, respectively, while UXPS responded
to UDP with an apparent Kd of 6 ± 1 μM.
Monitoring of UDP-GlcNAc Changes in HEK 293T

Cells. 2-Deoxy-D-glucose (2-DG) is a glucose analogue, and 2-
deoxy-D-glucose-6-phosphate (2-DG6P) intracellularly formed
from 2-DG competitively inhibits hexokinase (HK) and
phosphoglucose isomerase (PGI), the enzymes involved in
the first two steps of glycolysis (Figure 2A).30 To validate the
function of UGAcS in mammalian cells, we expressed the
sensors in human embryonic kidney (HEK) 293T cells and
examined sensor responses to glycolysis inhibition by 2-DG.
HEK293T cells transiently expressing UGAcS emitted strong
green fluorescence. Upon 3 h of incubation with 10 mM 2-DG,
the ratio of the fluorescence with 488 nm excitation to that
with 400 nm excitation (denoted as R488/400) decreased by
∼27.6% (Figure 2B). The fluorescence change could be
reversed by washing out 2-DG, confirming the reversibility of
UGAcS. Meanwhile, we expressed the control sensor UXPS in
HEK 293T cells and treated the cells using the same
procedure. The fluorescence change of UXPS was minimal,
and the magnitude of the difference was not statistically
significant (Figure 2C).
To cross-verify the results, we adapted a hydrophilic

interaction chromatography−mass spectrometry (HILIC-MS)
method to quantify UDP-GlcNAc from cell extracts.3,31 Briefly,
we prepared the lysates of HEK 293T cells treated or untreated
with 2-DG and doped in 13C-double-labeled UDP-GlcNAc
(13C2-UDP-GlcNAc) as an internal standard. The samples
were separated on a zwitterionic polymer-based high-perform-
ance liquid chromatography (HPLC) column before being
fused into an electrospray ionization (ESI) single quadrupole

mass spectrometer. 606 and 608 m/z ions, which are the major
isotope peaks for UDP-GlcNAc and 13C2-UDP-GlcNAc,
respectively, were monitored (Figure S5). The intensity ratio
of the two peaks is thus an indicator for the relative UDP-
GlcNAc concentrations in the cell lysates. Since our chromato-
graphic condition did not separate UDP-GlcNAc from UDP-
GalNAc, and the two nucleotide sugars have identical
molecular formulas, the HILIC-MS method in fact measured
UDP-GlcNAc and UDP-GalNAc (referred to as UDP-
HexNAc) collectively. Specific epimerases are responsible for
the interconversion of UDP-GlcNAc and UDP-GalNAc in
cells. The concentration ratio of UDP-GlcNAc to UDP-
GalNAc is usually ∼3:1.32 Thus, the UDP-HexNAc measure-
ments from HILIC-MS can be used to approximate UDP-
GlcNAc level changes. The HILIC-MS analysis confirmed that
2-DG reduced the UDP-HexNAc level by ∼13.4% (Figure
2D,E), and the result corroborates the UGAcS-based
fluorescence assay.
The glutamine fructose-6-phosphate aminotransferase

(GFAT) is a feedback-regulated rate-limiting enzyme in the
HBP.33 Since glucosamine (GlcN) enters the HBP down-
stream of GFAT (Figure 2A), GlcN is a potent stimulator of
HBP and can rapidly increase the intracellular concentration of
UDP-GlcNAc.20 We used a confocal microscope equipped
with 488 and 405 nm lasers to follow GlcN-stimulated UDP-
GlcNAc elevation in HEK 293T cells. Upon GlcN stimulation,

Figure 2. UDP-GlcNAc level changes in HEK 293T cells perturbed
with 2-DG. (A) Schematic illustration of the hexosamine biosynthetic
pathway (HBP) responsible for the production of UDP-GlcNAc. 2-
DG (2-deoxy-D-glucose) is a glycolysis inhibitor acting on hexokinase
(HK) and phosphoglucose isomerase (PGI), which are highlighted in
magenta. Responses of UGAcS (B) or UXPS (C), given as normalized
fluorescence excitation ratios (488 nm/400 nm), to 3 h of incubation
with 10 mM 2-DG, or 3 h of 10 mM 2-DG incubation followed by
washout and an addition 3 h culture in normal medium. (D) HILIC-
MS analysis of relative UDP-HexNAc concentrations in extracts of
HEK 293T cells untreated or treated with 10 mM 2-DG. (E)
Representative mass spectrograms of the samples in panel D. The m/z
= 606 peak represents the major isotope peak for UDP-HexNAc. 13C-
double-labeled UDP-GlcNAc (13C2-UDP-GlcNAc) was doped into
the cell extracts as an internal standard, contributing primarily to the
m/z = 608 peak. Data in panels B−D are presented as mean ± SEM
(n = 3 wells of cells for each group). P values were determined by
one-way ANOVA with Dunnett’s multiple comparisons test (***P <
0.001; *P < 0.05; and n.s., not significant, P ≥ 0.05).
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the fluorescence with 488 nm excitation increased along with
the simultaneous decrease of the fluorescence with 405 nm
excitation (Figure 3A,B), resulting in an overall ∼70%

ratiometric change (ΔR/R0). Most of the change was
completed within the first 30 min poststimulation. In contrast,
GlcN triggered an ∼33% ratiometric change (ΔR/R0) of the
UXPS fluorescence in the opposite direction (Figure 3C,D).
The observed fluorescence change of UXPS is not surprising
because the GlcN-dependent UDP-GlcNAc synthesis process
may consume UTP quickly. Although the opposite responses
of UGAcS and UXPS can exclude the possibility of the
observed UGAcS response being caused by pH changes, we
further introduced Arg164Ala and Glu269Ala double muta-
tions into UXPS, resulting in a deactivated mutant (termed
dUGAcS) unresponsive to UDP-GlcNAc, UTP, and UDP
(Figure S6). We tested dUGAcS-expressing HEK 293T cells
against GlcN stimulation and observed no response (Figure
3E,F). Collectively, these results confirmed that GlcN indeed
increased the intracellular UDP-GlcNAc concentration and
that UGAcS successfully detected this relatively rapid increase
of UDP-GlcNAc in HEK 293T cells.
We next utilized the biosensors to examine UDP-GlcNAc

concentration changes in response to the genetic disruption of
two key enzymes in the HBP. GFAT is the first and rate-

limiting enzyme, while UDP-N-acetylglucosamine pyrophos-
phorylase (UAP) is the last enzyme in the pathway and is
responsible for the direct synthesis of UDP-GlcNAc (Figure
4A). We used short hairpin RNAs (shRNAs) to knock down

GFAT or UAP. The effectiveness of the shRNAs was first
confirmed using fluorescence assays with HEK 293T cells
coexpressing corresponding shRNAs and the GFAT1 or UAP1
gene fused to a red fluorescent protein (RFP) mScarlet-I via a
P2A self-cleaving peptide, as well as reverse transcription-
quantitative PCR (RT-qPCR) assays (Figure S7). The GFAT
and UAP shRNA variants that induced the most significant
decrease of mScarlet-I fluorescence and mRNA abundance
were selected for further experiments. A scramble nontargeting
shRNA sequence (shNC) was included as a negative control.
Next, we used the shRNA lentiviral vectors to infect HEK
293T cells, to which the gene of UGAcS or UXPS was further
introduced by transfection. As expected, GFAT or UAP
knockdown decreased the UDP-GlcNAc level, as the
fluorescence excitation ratios (R488/400) of UGAcS were
reduced compared to the shNC control group (Figure 4B).
Meanwhile, the fluorescence excitation ratios (R488/400) of
UXPS in the experimental groups were slightly higher
(statistically insignificant) than the shNC control group
(Figure 4C). Furthermore, the same response trend was
observed when GFAT was pharmacologically inhibited using
DON (6-diazo-5-oxo-L-norleucine) (Figure S8).
We also examined the impact of overexpressing GFAT1 or

UAP1 on the UDP-GlcNAc level. The sensor responses are

Figure 3. Glucosamine (GlcN)-induced UDP-GlcNAc increase in
HEK 293T cells. Representative ratiometric images of HEK 293T cell
expressing UGAcS (A), UXPS (C), or dUGAcS (E) with two
excitation wavelengths (488 nm/405 nm) before and after treatment
with 5 mM GlcN (scale bars, 40 μm). Quantitative traces of
normalized fluorescence excitation ratios (488 nm/405 nm) for
UGAcS (B), UXPS (D), or dUGAcS (F) in HEK 293T cells. Data are
presented as mean ± SD (n = 10 cells from 3 replicating wells for each
group).

Figure 4. UDP-GlcNAc level changes in response to knockdown or
overexpression of GFAT or UAP in HEK 293T cells. (A) Schematic
illustration of the HBP UDP-GlcNAc synthesis pathway. Highlighted
in magenta are the two enzymes selected for genetic manipulation in
this study. Responses of UGAcS (B) or UXPS (C), presented as
normalized fluorescence excitation ratios (488 nm/400 nm), to
shRNA knockdown of GFAT or UAP. A negative shRNA control,
shNC, was used for comparison and normalization. Responses of
UGAcS (D) or UXPS (E), given as normalized fluorescence
excitation ratios (488 nm/400 nm), to the overexpression of UAP1-
P2A-mScarlet-I or GFAT1-P2A-mScarlet-I. The overexpression of
mScarlet-I alone was used for comparison and normalization. Data in
panels B−E are presented as mean ± SEM (n = 3 wells of cells for
each group). P values were determined by one-way ANOVA with
Dunnett’s multiple comparisons test (****P < 0.0001; **P < 0.01;
*P < 0.05; and n.s., not significant, P ≥ 0.05).
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opposite to those in the knockdown experiments: GFAT1 or
UAP1 overexpression increased the fluorescence excitation
ratios (R488/400) of UGAcS and decreased the fluorescence
excitation ratios (R488/400) of UXPS (Figure 4D,E). Moreover,
in both the knockdown and overexpression experiments,
manipulating the GFAT1 expression level induced more
dramatic fluorescence responses than manipulating UAP1.
This is again expected because GFAT plays the rate-limiting
role in the HBP.
Imaging of UDP-GlcNAc Levels in Pancreatic MIN6 β-

Cells. Pancreatic β-cells are responsible for the synthesis and
secretion of insulin, a key endocrine regulator of glucose levels
in the blood and other tissues.34 The glucose metabolism of
pancreatic β-cells is tightly coupled to insulin synthesis and
secretion.34 Meanwhile, O-GlcNAc levels in β-cells have been
linked to the regulation of insulin gene expression, proinsulin-
to-insulin processing, and glucose-stimulated insulin secre-
tion.35−37 In this context, we used our new biosensors to
examine UDP-GlcNAc levels in MIN6 β-cells, a mouse
insulinoma cell line, in response to various nutritional
conditions. Expression of the biosensors in MIN6 cells resulted
in bright green fluorescence. Upon 5 mM GlcN stimulation,
the fluorescence excitation ratios (R488/400) of UGAcS-
expressing cells increased by ∼30% (Figure 5AB) within 1 h.
In contrast, an ∼25% decrease was observed for UXPS-
expressing cells (Figure 5CD), and no response was observed
for dUGAcS-expressing cells (Figure S9A,B). The results

suggest that GlcN, which bypasses the rate-limiting GFAT in
the HBP, can stimulate the biosynthesis of UDP-GlcNAc in
MIN6 cells in a manner similar to that in HEK 293T cells.
Next, MIN6 cells expressing these biosensors were subjected

to glucose deprivation (replacing 25 mM glucose medium with
2 mM or no glucose medium) and imaged 20 h later. The
fluorescence excitation ratio (R488/400) of UGAcS under the no
glucose condition was ∼50% lower than that under the 25 mM
glucose condition, while we only observed a quite minimal
decrease (statistically insignificant) of the fluorescence
excitation ratio (R488/400) of UGAcS from the 25 mM to the
2 mM glucose condition (Figure 5E,F). The fluorescence
changes of UXPS (Figure 5G,H) or dUGAcS (Figure S9C,D)
were not significant under all conditions. We further examined
the time course of UGAcS fluorescence changes in MIN6 cells
from 25 to 0 mM glucose and found that 10 h of glucose
deprivation was adequate to complete all fluorescence changes
(Figure S10). Taken together, the UDP-GlcNAc level in MIN6
cells was sensitive to severe hypoglycemia but relatively
insensitive to glucose concentration changes from 25 to 2
mM within the examined time frame. These findings
corroborate a recent study on the mouse heart tissue with
5.5 and 25 mM glucose, which concluded that glucose
availability alone does not regulate the HBP flux.3 In other
studies, UDP-GlcNAc has been shown to directly inhibit
GFAT via a negative feedback mechanism.33,38 The tight
regulation of the HBP, however, does not necessarily

Figure 5. Imaging of UDP-GlcNAc levels in pancreatic MIN6 β-cells. Representative ratiometric images of a MIN6 cell expressing UGAcS (A) or
UXPS (C) with two excitation wavelengths (488 nm/405 nm) before and after a 1 h treatment with 5 mM GlcN (scale bars, 40 μm). Responses of
UGAcS (B) or UXPS (D), given as normalized fluorescence excitation ratios (488 nm/405 nm), to 1 h of incubation with 5 mM GlcN.
Representative ratiometric images of MIN6 cells expressing UGAcS (E) or UXPS (G) with two excitation wavelengths (488 nm/405 nm) cultured
in high (25 mM), low (2 mM), or no glucose DMEM (scale bars, 40 μm). Responses of UGAcS (F) or UXPS (H), given as normalized
fluorescence excitation ratios (488 nm/405 nm), after replacing high glucose (25 mM) medium with low (2 mM) or no glucose medium for 20 h.
Data in panels B, D, F, and H are presented as mean ± SEM (n = 12 cells from 3 replicating wells for each group). P values in panels B and D were
determined by an unpaired two-tailed t-test (**P < 0.01). P values in panels F and H were determined by one-way ANOVA with Tukey’s multiple
comparisons test (***P < 0.001; **P < 0.01; and n.s., not significant, P ≥ 0.05).
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undermine the importance of UDP-GlcNAc in nutritional
signaling. First, multiple types of metabolic molecules are
funneled into the HBP, and a collection of these molecules
may be needed to drastically shift the HBP flux. In addition,
the GFAT expression level and activity are highly responsive to
other signals, and the HBP is thus likely regulated to different
extents in diverse tissue types and under various pathophysio-
logical conditions.39−41

■ CONCLUSION

We have engineered a genetically encoded UDP-GlcNAc
sensor (UGAcS) by inserting cpGFP into an inactivated UDP-
GlcNAc transferase. Because UGAcS is also responsive to UDP
and UTP, we further engineered a control sensor, UXPS,
which is only responsive to UDP and UTP but not UDP-
GlcNAc. We successfully applied the biosensors to monitoring
UDP-GlcNAc level changes in HEK 293T cells in response to
2-DG-induced glycolysis inhibition, glucosamine stimulation,
DON-induced GFAT inhibition, and the genetic manipulation
of two key enzymes (GFAT and UAP) in the HBP. Finally, we
used our biosensors to monitor UDP-GlcNAc levels in
pancreatic MIN6 β-cells under various cell culture conditions.
Our results suggest that glucose metabolism via the HBP is
tightly regulated across a large glucose concentration range.
Further research is clearly needed to further understand the
regulatory mechanism of the HBP flux, and the fluorescent
biosensors described here should facilitate these studies.
In addition to being used as research tools in studying the

crucial roles of UDP-GlcNAc in disease and normal conditions,
the biosensors may have translational applications. Modulation
of the HBP has been considered as a promising method to
treat diseases, such as cancer and diabetes.42,43 We envision the
use of the biosensors to screen for chemical or genetic
modulators of the HBP. In addition, murG is a key enzyme for
peptidoglycan synthesis in bacteria,44 so these murG-based
biosensors may be used to discover novel murG inhibitors as a
new class of antibiotics.
Our effort to develop the first genetically encoded

nucleotide sugar sensor will spur the development of future
biosensors. UDP and UTP interfere with the response of
UGAcS. Although UXPS can be used for cross-checking, a
subset of treatment conditions may move the fluorescence
ratios of both sensors toward the same direction, and it would
become difficult to interpret the results. In addition, the
interference makes the quantitative measurement of intra-
cellular UDP-GlcNAc levels difficult. Directed evolution,
machine learning, and computation-assisted design may be
combined to further tune the specificity of UGAcS. Also, it
may be possible to use alternative strategies to develop
fluorescent UDP-GlcNAc sensors with different selectivity
profiles. Furthermore, future research may lead to biosensors
with altered affinities, in additional fluorescence colors, and for
other important nucleotide sugars and carbohydrates.
Moreover, nucleotides, such as UTP and UDP, are

important cell metabolites involved in diverse processes, such
as nucleotide biosynthesis, transcription, purinergic signaling,
and apoptotic cell clearance.45−47 Previous studies have
developed several synthetic fluorescent indicators for UTP
and UDP.48−50 Our genetically encoded UXPS will comple-
ment these efforts and be useful new tools for visualizing UTP
and UDP dynamics in living systems.
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