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Abstract: A two-stage model is developed in order to understand the scaling behaviors of single
polymers ejecting from a spherical cavity through a nanopore. The dynamics of ejection is derived by
balancing the free energy change with the energy dissipation during a process. The ejection velocity
is found to vary with the number of monomers in the cavity, m, as mz1 /(Nx1 D3z1) at the confined
stage, and it turns to be m−z2 at the non-confined stage, where N is the chain length and D the cavity
diameter. The exponents are shown to be z1 = (3ν− 1)−1, z2 = 2ν and x1 = 1/3, with ν being the
Flory exponent. The profile of the velocity is carefully verified by performing Langevin dynamics
simulations. The simulations further reveal that, at the starting point, the decreasing of m can be
stalled for a good moment. It suggests the existence of a pre-stage that can be explained by using the
concept of a classical nucleation theory. By trimming the pre-stage, the ejection time are properly
studied by varying N, D, and φ0 (the initial volume fraction). The scaling properties of the nucleation
time are also analyzed. The results fully support the predictions of the theory. The physical pictures
are given for various ejection conditions that cover the entire parameter space.
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1. Introduction

The ejection of polymer is a process concerning a polymer being ejected from a confined space into
a non-confined space through a small pore. A well-known example can be found in a bacteriophage,
a virus that is able to infect a bacterial cell by injecting its genetic materials that are encapsulated in
the capsid head into the cell through a channel tail [1,2]. During the process, it is noticed that the
capsid does not change the volume. In mimicking the nature, researchers have developed various
new techniques in order to manipulate genetic molecules, for example, trapping DNA molecules in a
cage and ejecting it through a pore [3], flossing a DNA chain between two nanocages [4], transporting
DNA into a double barrel nanopore device [5], and encapsulating genome molecules in engineered
protein cages for gene therapy [6]. For the successful development of these techniques, a fundamental
understanding of the packaging and ejecting mechanisms of biopolymers into and from a closed shell
is necessary.

For years, continuum mechanics models have been used in order to explain DNA ejection [2,7–13].
In this type of models, a DNA molecule is regarded as an elastic string that is packaged in a virion
capsid. The osmotic pressure in the virion is much higher than the one outside because of various
factors, such as the high packing fraction of the DNA chain in the virion, the large bending energy
in arranging the chain in the small space of the capsid, the strong electrostatic repulsion between the
strands of the packaged chain, and so on. The pressure difference is the driving force that pushes
the chain out of the capsid. However, the internal pressure decreases with advancing of the process.
The ejection shall be inhibited when the pressure drops to a value that is balanced with the external
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one [11,13,14]. Therefore, the models predict a full ejection timescale that is much longer than what
has been observed in experiments [1]. To solve the problem, a second mechanism was proposed,
in which the ejected DNA chain binds with some proteins in the cytoplasm [9]. The binding reduces
the energy of the system and, consequently, pulls the rest of the chain into the cell [10,12]. Recently,
a hydrodynamic type of models has been suggested, where the penetration of water molecules across
the capsid shell is considered [15–18]. It is thought that the inward flow of water provides the necessary
driving to flush the chain out of the virion through the tail channel. Moreover, a condensed DNA
molecule in the capsid is dehydrated. The rehydration of the DNA chain, when it leaves the capsid,
helps in the completion of the ejection.

Scaling analysis in the domain of polymer physics provides an alternative approach for
understanding the phenomena. Muthukumar used the Fokker–Planck equation and the classical
nucleation theory to study polymer ejection from a cavity [19–21]. The ejection time τ ∼
N1+(1/3ν)φ−1/3ν

0 was predicted, where N is the chain length, φ0 is the initial packing fraction of the
chain in the cavity, and ν is the Flory exponent [22]. Cacciuto and Luijten combined the scaling bound
for translocation time τ ∼ N1+ν/∆µ [23] with the free energy cost of confining ∆F ∼ Nφ

1/(3ν−1)
0 ,

and argued that the ejection time should scale as N1+νφ
−1/(3ν−1)
0 [24,25]. Sakaue and Yoshinaga

noticed that the chemical potential gradient ∆µ should gradually decrease as the process advanced [26].
The dynamics of ejection were studied by equating the free energy change with the energy dissipation
in the proximity of the pore within a correlation length ξ(t). The ejection time was deduced to be
τ ∼ N(2+ν)/(3ν)φ

−(2+ν)/(3ν)
0 in the osmotic-driven regime.

Simulations have been largely invested in the study of polymer ejection and translocation [27–29].
It was found that the ejection process evolves faster for an orderly packed DNA spool than a disordered
or knotted DNA chain [30,31]. The geometry of capsid plays a non-trivial role in the determination
of the dynamics of ejection [32–35]. Truncating the tail channel of the virion or increasing the
solvent temperature accelerates the evolution of ejection [36]. Other effects that are able to affect
the ejection include the chain rigidity [34,37–39], the solvent quality [40,41], the hydrodynamics [36,42],
the electrostatics [36,43], the pore dimension [44–46], and so on. These effects have been the main
topics of investigation in the past two decades. The simulations also calculated the free energy
landscape [33,34] that allow researchers to understand the variation of the thermodynamic state during
the ejection process. Despite the influence of the above factors and the complexity of the results, the
reported ejection behaviors display many similarities in various aspects. Thus, it is believed that there
exists a universal mechanism that fundamentally controls the evolution of an ejection.

In order to verify the conjecture, we have recently developed a scaling theory to explain polymer
ejection from a cavity through a small pore [47]. The central idea used is to balance the free energy
change with the energy dissipated as the chain passes the pore. The dynamics of ejection was studied
in the confined and non-confined stages separately. We were able to solve the two dynamical equations
and the ejection time was found to be τ ∼ N(2+ν)/(3ν)φ

−2/(3ν)
0 . Molecular dynamics simulations were

then performed and the results support the prediction of our theory. However, there are still various
scaling concepts and behaviors to be verified. Is our scaling theory a general and consistent theory that
is able to pass the stringent numerical examinations under broad and different simulation conditions?
What kinds of scaling pictures are we waiting for from a primitive model where a simple bead-spring
chain is ejected out of a spherical cavity? Only with a good knowledge of the primitive model we
are able to go further to assess the impacts that are brought in by the other effects, such as the chain
stiffness, hydrodynamics, electrostatics, etc., in order to gain a better understanding of a real ejection
process that happened in nature and the applications.

In this work, the details of the derivation of our scaling theory will be provided (Section 2).
The prediction will be then verified by performing elaborated molecular simulations described in
Section 3. The results of simulation will be reported and discussed in Section 4. The studied topics
include the scaling of the ejection velocity (Section 4.1) and the time evolution of the number of
monomers in a cavity (Section 4.2). We will show that an ejection process can be truly distinguished
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into the confined and non-confined stages. We further show that, prior to the confined stage, the change
of the number of monomers in the cavity can be stalled for a long while, depending on the channel
length. The phenomena can be explained by using the concept of the nucleation theory. The scaling
behaviors for the nucleation time and the following ejection time will be properly investigated by
systematically varying the chain length, the cavity size, and the initial packing fraction (Section 4.3).
Section 5 will provide the overall discussions and conclusions.

2. Scaling Theory of Ejection Dynamics

We deal with the problem of a polymer ejected from a spherical cavity, through a small pore, to an
open semi-space. The chain comprises N monomers, which are represented by N beads. The bead
diameter is σ and the length of the connecting bonds is b. For simplicity, we assume that b = σ.
The diameter of the cavity is D. Therefore, the initial volume fraction of monomers in the cavity is
φ0 = N(σ/D)3. The head monomer is positioned at the pore entrance. In order to guarantee the
success of an ejection, there exists some mechanism at the pore entrance that prevents the falling of the
head monomer into the cavity.

An ejection process can be subdivided into two stages, which are demarcated by the overlap
volume fraction φ∗ of the space. It can be shown that φ∗ scales as (σ/D)1/(z1ν) with z1 = 1/(3ν− 1)
for the cavity. At the first stage, the volume fraction φ = m(σ/D)3 is higher than φ∗, where m denotes
the number of the monomers in the cavity at the instant. Thus, the chain “feels” the restriction of
the confinement and it is “pressed” to go outside through the pore. We call it the confined stage.
The second stage is called the non-confined stage, which takes place when φ < φ∗, or, equivalently,
when m becomes smaller than the critical value m∗ ∼ (D/σ)1/ν. At this stage, the internal monomers
do not feel the pressing of the confinement. They are driven out of the cavity by entropic pulling of
the external chain segments [48]. We remark that, for the case of the ejection starting with a short
chain N < N∗, or, equivalently, φ0 < φ∗, the process will only be proceeded via the non-confined stage,
because the chain size has been smaller than the cavity size since the beginning. Here, N∗ is the critical
chain length for the occurrence of a two-stage process and it scales as (D/σ)1/ν [49].

At the confined stage m ≥ m∗, the free energy F of the chain in the cavity can be calculated from
the blob theory. Each blob has a free energy kBT and, thus, F ∼ kBTm/g. Here, T is the temperature,
kB is the Boltzmann constant, and g is the number of the monomers in a blob. By equating the volume
fraction in a blob φb to the instantaneous volume fraction φ, we have g ∼ φ−z1 ∼ m−z1 m3νz1∗ and, thus,
F ∼ kBT(m/m∗)3νz1 . The dynamics of ejection can be studied by balancing the rate of the free energy
change, dF/dt, with the rate of the energy dissipation occurred at the pore, −ηV2

ej, where η is the
effective friction coefficient and Vej = −σ(dm/dt) is the ejection velocity. It yields

dm
dt
∼ − kBT

ησ2
d(m/g)

dm
∼ −1

∆t

(
m

m3ν∗

)z1

(1)

where ∆t = ησ2/kBT is the characteristic time. We will show later in the simulations that ∆t exhibits
a scaling dependence on N as ∆t ∼ Nx1 ∆t0. This additional dependence can be attributed to the
change of the friction coefficient under the form η ∼ η0Nx1 ; here, η0 is the friction coefficient of the
solvent. A number of the effects could cause the results, for example, the connectivity of a chain, the
geometrical restriction to transport chain segments from the cavity to the pore channel, the jamming of
the monomers accumulated outside the pore, which hinders the progress of ejection, and so on.

Solving the differential equation with the two conditions: (1) m = N at t = 0, (2) m = m∗ at t = τ1,
we obtain the ejection time for the first stage

τ1 ∼
∆t

z1 − 1

[
m2
∗ −m1+z1∗ N1−z1

]
∼ ∆t0Nx1

z1 − 1
m2
∗

[
1−

(m∗
N

)z1−1
]

. (2)
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Thus, the decrease of the number of monomers with time is predicted by

m ' N
(

1 +
t
t0

)−ζ1

(3)

where t0 ' ζ1m1+z1∗ N1−z1 ∆t and ζ1 = 1/(z1 − 1).
When m < m∗, the process is at the non-confined stage. The free energy is approximately

F ∼ kBT
[
(1− γ′i) ln m + (1− γ′o) ln(N −m))

]
− m∆µio, where γ′i and γ′o are the exponents for the

scaling of the partition function of a chain tethered inside and outside of the cavity, respectively,
and ∆µio is the chemical potential difference [19,21,22]. Equating the rate of the free energy change to
the rate of the energy dissipation, we have

dm
dt
∼ −1

∆t

[
1− γ′i

m
− 1− γ′o

N −m
− ∆µio

kBT

]
. (4)

In the long chain limit, N � m∗, the second term on the right-hand side is much smaller than
the first term and, thus, can be neglected. The third term can also be ignored because m is small
at the non-confined stage. Consequently, the dynamics of ejection is mainly determined by the
scaling equation

dm
dt
∼ −1

∆t
m−1 ∼ −1

∆t0
m−z2 . (5)

The simulations shown later suggest that η should scale as η0my2 . The effect enters the problem
through ∆t = my2∆t0. Hence, the dynamics has a m−z2 scaling dependence with z2 = 1 + y2.
The ejection time for the non-confined stage is obtained by solving Equation (5) with the boundary
conditions: (1) m = m∗ at t = τ1, (2) m = 0 at t = τ1 + τ2, and reads as

τ2 ∼
∆t0

1 + z2
m1+z2∗ (6)

The time variation of m before the ending of ejection is predicted by

m ' M0

(
1− t

τej

)ζ2

(7)

where M0 =
(

z2+1
∆t0

τej

)ζ2
, ζ2 = 1/(z2 + 1), and τej = τ1 + τ2 is the total ejection time.

We comment that, in the ejection problem, the condition of a process is controlled by the three
main parameters: the chain length N, the cavity diameter D, and the initial volume fraction φ0.
These parameters are not totally independent, because φ0 = N(σ/D)3. Thus, the ejection time can
be expressed by using any two of the three parameters. Table 1 provides three ways to express τej,
where A1 and A2 are the scaling prefactors for the two stages, respectively [50].

The τej function is divided into two pieces: one is applied for the ejection simply proceeded via the
non-confined stage, happened for small N, small φ0, or large D, and the other is applied for a typical
ejection experiencing the confined and then the non-confined stage. The two columns on the right side
of the table give the two relevant ways to regard the ejection time by fixing one of the two parameters.
For example, the second column on the right side of the table for formula (a) indicates that τej is studied
under the D-fixed condition. The expression is demarcated by the the critical value N∗ ∼ (D/σ)1/ν

and the two pieces of function are applied for the situations N < N∗ and N ≥ N∗, respectively.
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Table 1. Ejection time τej expressed as a function of (a) N and D, (b) φ0 and N, and (c) D and φ0.
Each expression comprises two pieces of function that are applied under different conditions. The right
two columns in the table provide the two ways to regard τej. For example, in the the right-most column
for (a), the conditions ‘D > D∗’ and ‘D ≤ D∗’ are given to separate τej into the two pieces as N is fixed.
The definition of the critical value D∗ is given below.

Ejection time as a function of N and D if D is fixed if N is fixed

(a) τej(N,D)
∆t0

∼


A2

1+z2
N1+z2

A1 Nx1

z1−1

[(
D
σ

) 2
ν −

(
D
σ

) 1+z1
ν N1−z1

]
+ A2

1+z2

(
D
σ

) 1+z2
ν

N < N∗
N ≥ N∗

D > D∗
D ≤ D∗

N∗ ∼
(

D
σ

) 1
ν D∗ ∼ σNν

Ejection time as a function of φ0 and N if N is fixed if φ0 is fixed

(b) τej(φ0,N)
∆t0

∼


A2

1+z2
N1+z2

A1 Nx1

z1−1

[(
N
φ0

) 2
3ν − N

φ
z1
0

]
+ A2

1+z2

(
N
φ0

) 1+z2
3ν

φ0 < φ∗
φ0 ≥ φ∗

N < N∗
N ≥ N∗

φ∗ ∼ N−
1

z1 N∗ ∼ φ−z1
0

Ejection time as a function of D and φ0 if φ0 is fixed if D is fixed

(c) τej(D,φ0)
∆t0

∼


A2

1+z2

[
φ0

(
D
σ

)3
]1+z2

A1φ
x1
0

z1−1

(
D
σ

)3x1
[(

D
σ

) 2
ν −

(
D
σ

)3
φ1−z1

0

]
+ A2

1+z2

(
D
σ

) 1+z2
ν

D > D∗
D ≤ D∗

φ0 < φ∗
φ0 ≥ φ∗

D∗ ∼ σφ−νz1
0 φ∗ ∼

(
D
σ

)− 1
νz1

To see the variation, we make the plots of the ejection time in Figure 1.
Panels (a) and (b) present τej vs. N under the D-fixed and φ0-fixed conditions, respectively.

Similarly, Panels (c) and (d) are the plots of τej vs. D at fixed φ0 and fixed N; Panels (e) and (f) are
the time plot against φ0 at different values of N and D. The plots are made by setting ν = 0.6,
x1 = 1/3, y2 = 0.2, A1 = 0.04, and A2 = 1.0. We assume that the maximum allowed value of φ0 is 0.5,
being denoted by φM, which defines the ejection time boundary τM in each plot. The τ∗ curve shows
the ejection time at the critical point, either at φ0 = φ∗, at N = N∗, or at D = D∗. The yellow region on
the plots indicates the codomain of the τej function when a concerned parameter, N, D, or φ0, is varied.
A τej curve in the codomain shows how the ejection time varies at a given value of parameter.

The asymptotic scaling behaviors are drawn on the plots in dark-pink dashed or dotted lines.
In the long chain limit (refer to Panels (a) and (b)), the ejection time scales as Nx1 at a given D and
as N2/(3ν)+x1 at a given φ0. If the process solely lies at the non-confined stage, the predicted scaling
is N1+z2 . Panel (c) reveals that the scaling is D3(1+z2) when D ≤ D∗ and D(2/ν)+3x1 when D > D∗.
If it is N being fixed (see Panel (d)), τej scales as D2/ν for the situation pressed by the confinement.
Concerning the variation with φ0, a scaling decrease is expected in Panel (e) in the large φ0 region,
with the exponent being equal to − 2

3ν . If D is fixed (refer to Panel (f)), then the exponent is x1 for
φ0 ≥ φ∗ and 1 + z2 for φ0 < φ∗.

The ejection velocity in a process can be studied by combining Equation (1) and Equation (5) into
one equation

Vej ∼ ∆v0

[
1

A1Nx1

(
m

(D/σ)3

)z1

+
1

A2
m−z2

]
(8)

where ∆v0 ≡ σ/∆t0 is the characteristic velocity, and A1 and A2 are the two prefactors [50]. Figure 2
presents the predicted Vej vs. m at different N and D values. The curves are plotted using the same set
of setting as Figure 1, which gives z1 = 1.25 and z2 = 1.2. Because the instant number m of monomers
in the cavity decreases with time, the curves should be read from the right to the left, in order to follow
the direction of time evolution.
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Figure 1. (a) Ejection time τej vs. chain length N at fixed cavity diameter D; (b) τej vs. N at fixed initial
volume fraction φ0; (c) τej vs. D at fixed φ0; (d) τej vs. D at fixed N; (e) τej vs. φ0 at fixed N; (f) τej vs. φ0

at fixed D. The plots are made by setting ν = 0.6, x1 = 1/3, y2 = 0.2, A1 = 0.04, and A2 = 1.0. The τ∗
curve describes the ejection time occurred at the critical value. The τM curve presents the ejection time
at the maximum allowed φ0, assumed to be φM = 0.5. Important scaling behaviors are indicated in the
plots by using dark-pink dashed or dotted lines.

We can see that the combined equation, Equation (8), preserves the required scaling behavior mz1

at the confined stage and m−z2 at the non-confined stage. The turning point between the two scaling
behaviors defines the demarcating monomer number m∗. Noticeably, the departure velocity of ejection
at m = N exhibits an apparent decreasing behavior N−0.33 with the chain length at a fixed φ0 value,
as indicated in the figure by a dark-pink dashed line. It results from the Nx1 term that is given in the
denominator of the equation. We will come back to this topic later. It is quite amazing to discover
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that, despite the different departure conditions, the velocity curves all evolve to converge and, finally,
follow the ones for the cases with an infinitely large diameter.

The ejection time and ejection velocity will be systematically studied later in this paper by means
of molecular dynamics simulations. Analysis will be performed in order to verify all of the details of
the scaling behaviors.

V
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∆
v
0

m

N10=1024
N9=512
N8=256
N7=128
N6=64
N5=32
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Figure 2. Ejection velocity Vej as a function of m in an ejection process. The plots are made by setting
z1 = 1.25, z2 = 1.2, x1 = 1/3, A1 = 0.04, and A2 = 1. Different chain lengths Ni = 2i are studied and
given in the legend. The cavity diameter D is indicated near the right-top side of the branch curves,
and varied from D5 = 3

√
2.5× 25σ to D14 =

3
√

2.5× 214σ. The velocity curves for the infinite diameter
D∞ are plotted as references.

3. Simulation Model and Setup

We performed molecular dynamics simulations to examine the ejection theory of a polymer.
The polymer is modeled as a bead-spring chain and pumped into a spherical cavity for confinement.
The confined chain is then equilibrated under a constraint by attaching the chain end (i.e., the head
monomer) at the pore entrance, which blocks the exit of the chain. In order to start an ejection,
the constraint is removed, and the chain ejects out of the cavity through the pore spontaneously.
The three processing steps: pumping, equilibrating, and ejection, are sketched in Figure 3.

Each bead on the chain represents a monomer. The Weeks–Chandler–Andersen potential models
the excluded volume interaction between beads [51],

Uex(r) =

4ε
[(

σ
r
)12 −

(
σ
r
)6
]
+ ε for r ≤ 6

√
2σ

0 for r > 6
√

2σ

which is a Lennard–Jones (LJ) 12–6 potential, truncated and shifted at the minimum point, where r
is the distance between two beads, and ε and σ are the interaction strength and length of the LJ
potential, respectively. The bonding between two monomers is modeled by a harmonic potential and
read as Ubd(b) = 1

2 k(b− b0)
2, where k is the spring constant and b− b0 is the stretching length of a

bond. The beads interact with the cavity wall via a LJ 9–3 potential, Uw(r) = εw

[
2
15
( σw

r
)9 −

( σw
r
)3
]
,

truncated at r = 6
√

2
5 σw. We set εw = 3ε, σw = σ, k = 600ε/σ2, and b0 = σ. The thermal fluctuations

are modeled using the Langevin thermostat with the desired temperature set at T = 1.0 ε/kB and the
damping time set to tD = 1.0 σ

√
m/ε [52]. Here, kB is the Boltzmann constant and m is the mass of a

bead. Under this setting, the LJ 9–3 wall potential attains an energy that is equal to the thermal energy
kBT at r ' 0.75σ. It defines the thickness of the wall to be 0.25σ. Therefore, in order to simulate ejection
from a cavity of diameter D, we have to set the wall on a sphere of diameter equal to DC = D + 0.5σ,
centered at the cavity center. A pore is opened on the wall in order to connect the inner cavity space
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with the outer semi-space. It is modeled by a cylinder while using the same wall potential. The pore
diameter is effectively dp = 1.5σ and the pore length is Lp = 1.0σ.

Figure 3. Sketches of the three processing steps in a simulation: (a) pumping, (b) equilibrating,
and (c) ejection. D and dp denote the effective diameters of the cavity and the pore, respectively. Lp is
the length of the pore. The green line represent the chain. The red arrow indicates the direction of
transportation of the chain.

The ejection process is investigated by varying the number of beads on a chain, N, and the
diameter of the cavity, D. In order to study the scaling behavior, we change N systematically from
16 to 1024, as a power of 2, and denote it by NgN = 2gN . The diameter D is set in order to produce a
desired initial volume fraction of monomers in the cavity, φ0, at a given N value. The highest φ0 studied
is set to 0.4, because a typical volume fraction of DNA in a bacteriophage is around the value [2,11].
We decrease the value of φ0 by half for each time, in order to generate a series of the studied cases
at the initial volume fraction equal to 0.4× 2−gF , denoted by φ0,gF . Thus, the diameter D is equal to

(2.5× 2gN+gF )
1/3

σ, because of φ0 = Nσ3/D3. We denote it by D = DgD , and the relation between
the three generation numbers is gD = gN + gF. The organization of these studying cases allows for
us to investigate scaling behaviors in a logical way under different combinations of the parameters.
Five hundred independent runs are performed for each studied (NgN , DgD ) case. The simulation
trajectories are recorded and analyzed using standard statistical methods.

In the following text, the quantities m, σ, and ε will be used as the mass, the length, and the energy
unit, respectively, in order to describe data. A physical quantity will be reported by only giving the
value without mentioning the unit. For example, the ejection time “τej = 80.0” means τej = 80.0 tu,
where tu = σ

√
m/ε is the time unit. The velocity “Vej = 2.5” means Vej = 2.5 σ/tu.

4. Results

4.1. Ejection Velocity

We first investigate the mean ejection velocity 〈Vej〉 in an ejection process. The velocity is a
function of the number of monomers m in the cavity. It can be calculated from the waiting time
function. The waiting time function W(m) describes the dwelling time for an ejected chain to stay at a
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given state m. Thus, the average velocity at m can be calculated by taking the reciprocal of the waiting
time function as σ/〈W(m)〉. Figure 4 presents the calculated velocity with N varied from N5 = 32 to
N10 = 1024 and D varied from D5 = 2 3

√
10 to D14 = 16 3

√
10. The cases with infinite diameter D∞ are

also studied; they are plotted in the figure as references.
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Figure 4. Averaged ejection velocity 〈Vej〉 vs. the number of the monomers m in the cavity. The chain
length N is varied from N5 = 25 to N10 = 210, indicated in the legend. The cavity diameter D is varied
from D5 = 3

√
2.5× 25 to D14 =

3
√

2.5× 214, indicated on the outer side of the branch curves. The cases
with infinite diameter D∞ are plotted as references. The three scaling lines, m1.25, m−1.2, and N0.33,
are drawn in dark-pinked color.

We can see that 〈Vej〉 decreases first and then increases in a typical ejection process. Recall that,
to follow the time evolution, the 〈Vej〉 curve should be traced from the right to the left of the figure.
The two variational behaviors divide the ejection process into the mentioned confined stage and
non-confined stage. At the confined stage, the velocity decreases, because the driving (owing to
the confinement) reduces with time, due to the decrease of the number of monomers in the cavity.
A scaling behavior of m1.25 is observed. At the non-confined stage, 〈Vej〉 turns to show increasing
behavior and scales as m−1.2. It is because the rest of the chain occupies a space smaller than the cavity.
There is no mechanical force to drive the chain anymore. In this situation, the system is driven by the
thermodynamic (entropy) force from the external chain segments. The velocity increases, because the
number of the external segments increases with time.

At a given chain length, increasing D reduces φ0 and, thus, decreases the confinement.
Consequently, a decrease in the ejection velocity is expected. We do observe that the velocity decreases
at the confined stage, with the whole curve moving downward in a parallel manner. However,
at the non-confined stage, the velocity curve is basically not altered by increasing D. It shows that
the mechanical influence does not last to the non-confined stage. All of the velocity curves evolve
eventually toward the single curve profile for D = D∞.

If D is fixed, then we found that the 〈Vej〉 curves for different N join together to form a branch
of curves at the confined stage. The branches D5, D6, . . . , and D14 can be seen in the figure.
Our simulations show that the velocity is, in fact, slightly smaller for a longer chain in a given branch.
It suggests a weak scaling dependence, Nx1 , on the chain length, as formulated in the denominator
of Equation (8). The exponent x1 is estimated to be 1/3 by varying the chain length at a fixed φ0.
The departure velocity of ejection for φ0 = 0.4 exhibits a N−0.33 behavior when N is varied from N5 to
N10, as shown in the figure. The whole 〈Vej〉 curves look quite similar to the ones that are predicted in
Figure 2. It asserts that Equation (8) can describe the scaling characteristics of ejection velocity well.

A physical explanation for x1 = 1/3 is given below. When entering the pore, a monomer is subject
to a drag from the chain segments in the cavity because of the chain connectivity. The drag effectively
raises the friction coefficient by an amount of η0mx1 . Because the monomer is transferred from the
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three-dimensional cavity space into the one-dimensional pore channel, the exponent is expected to
be 1/3, which reflects the change of the geometrical dimension [53]. In addition to the drag from
the inside, there exists an impedance from the outside: the ejected monomers are accumulated near
the pore exit, as a result of the fast ejection at the confined stage, and they have not yet been relaxed.
It hinders the pore monomers to go outside and, therefore, the friction coefficient is raised by a second
amount η0(N −m)x1 . Figure 4 has revealed that, at a given m, a longer chain on a Di-branch exhibits
a smaller velocity. It is clearly related to the impedance that is given by the accumulated monomers.
Thus, the friction coefficient η for the pore monomers is about η0(mx1 + (N − m)x1), which scales
roughly as η0Nx1 if N is large.

The scaling exponents for 〈Vej〉 is z1 = 1/(3ν− 1) at the confined stage and z2 = 1 + y2 at the
non-confined stage. Here, we argue that y2 is 2ν− 1. At the confined stage, the monomers fill up the
cavity space and have no net drift velocity. Thus, the dissipation of the free energy mainly occurs at
the pore, dominated by the ejection velocity. As the process goes into the non-confined stage, the rest
of the monomers can no longer fill up the cavity and exhibit a net drift velocity toward the pore.
Thus, the dissipation is contributed from the m monomers inside the cavity and it reads as m · η0V2

d .
The drift velocity Vd can be estimated by dRm/dt, where Rm ∼ σmν is the internal chain size, and,
thus, is related to the ejection velocity by mν−1Vej. The rate of dissipation is simply expressed by ηV2

ej
in deriving Equation (5). To take the change into account, the friction coefficient should possess a
scaling η ∼ η0m2ν−1, which gives y2 = 2ν− 1. We have performed non-linear fitting for the velocity
at N = 256, 512 and 1024 for D = D∞ over a range of m between 10 and 0.8N. The obtained result is
m−1.21(3), which is in good agreement with the prediction if one sets ν = 0.6.

In order to make the scaling properties evident, we replot the 〈Vej〉 curves by multiplying the
velocity with a factor Nx1+z1 /mz1 . Figure 5 presents the results, where z1 = 1.25 and x1 = 0.33
are used.
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Figure 5. 〈Vej〉 × N1.58/m1.25 vs. m in an ejection process. The cases with the same initial volume
fraction φ0 = φ0,g are plotted in the same color where φ0,g = 0.4× 2−g. The chain length Ni = 2i can
be read near the bottom of the figure and the corresponding curves can be traced from there.

In the replot, the curves with the same generation number of φ0 are expected to show a horizontal
branch at the confined stage. This is exactly what we observe in the figure. At the non-confined stage,
the rescaled velocities, coming from a given N but different φ0, collapse together. The scaling exponent
is found essentially −(z1 + z2) = −2.45. The results again ascertain that the velocity in an ejection
process can be generally described by Equation (8).

The critical monomer number m∗, which separates the confined and non-confined stage, can be
determined by searching for the minimum of the 〈Vej〉 curve in Figure 4. The scaling behaviors are
then studied by varying D and φ0, with N being fixed, as shown in Figure 6.
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Figure 6. Critical monomer number m∗, which separates the confined and the non-confined stage in
an ejection process, as a function of (a) the cavity diameter D and (b) the initial volume fraction φ0.
The chain length can be read in the legend of (a) where Ni = 2i.

We can see that the m∗ data fall on a universal line in Panel (a) for different N values, with a
fitting exponent equal to 1.63(4). It agrees with the theoretical description D ∼ σmν

∗ or, equivalently,
m∗ ∼ (D/σ)1/ν. If the varying variable is φ0 (see Panel (b)), m∗ is found to show decreasing behavior
with an exponent −0.54(2). The longer the chain length, the larger the m∗ value, and the m∗ curves are
parallel for different N. The scaling behavior fulfills the description of m∗ ∼ (N/φ0)

1/(3ν). Further
verification for the scaling of m∗ against N can be found in the Supporting Information in Figure S1.
It shows that m∗ ∼ N0.58(2) at a fixed φ0. If D is fixed, then m∗ is essentially constant, scaling like N0.

4.2. Time Variation of the Number of Monomers in the Cavity

The evolution of the averaged number of monomers 〈m〉 in the cavity with time is studied in
this subsection. In order to compare the results across different simulation conditions, the monomer
number is normalized by the chain length N and time is normalized by 〈τ〉. Here, 〈τ〉 is the mean
time that is needed to transport all of the monomers from the cavity to the outside since the beginning.
The results, 〈m〉/N vs. t/〈τ〉, for different φ0 values, are presented in Figure 7a.
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Figure 7. (a) 〈m〉/N versus t/〈τ〉 at φ0 = φ0,0 (in solid line), φ0,4 (in dashed line), and φ0,∞ (in dotted
line) for different chain lengths. Different colors denote different chain lengths, which can be read in
the legend of Panel (b) with Ni = 2i. The three φ0 values are φ0,0 = 0.4, φ0,4 = 0.025, and φ0,∞ = 0.0.
(b) Replot of the curves in Panel (a) by trimming the the plateau region. The definitions of the two
coordinate variables are t̃ = (t− 〈τn〉)/(〈τ〉 − 〈τn〉) and 〈m̃〉 = (〈m〉 −mn)/(N −mn).
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At φ0 = 0.4 (that is φ0,0), the curve decreases immediately. A longer chain is found to give
a faster decreasing behavior. As φ0 reduces, a plateau appears and extends on the curve, prior to
the happening of the fast decreasing. We noticed that, following the plateau, the 〈m〉 value is only
decreased by 1, which corresponds to the pore length Lp = 1.0. It suggests that considerable time
is spent for the head monomer to go across the pore and search for the exit. The appearance of the
plateau can be interpreted as a formation of nucleus before entering to the phase of a true ejection, in
analogue of a nucleation phenomenon [54,55]. After reaching the critical nucleus size, which, here, is 1,
the number of monomers outside the cavity can grow continuously without stalling, resulting in a
smooth decreasing 〈m〉/N curve, as shown in the figure. It is analogous to the growth of a crystal after
nucleation. The smaller the initial volume fraction, the longer the nucleation time, upper bounded by
the one at the zero initial volume fraction φ0,∞. Here, the nucleation time is defined to be the mean
time that is required for a system to produce the critical nucleus size, i.e., for one monomer to leave the
cavity in this case.

In order to properly investigate the evolution of the number of the monomers in an ejection
process, we trim the mean nucleation time 〈τn〉. Figure 7b presents the new plots while using the
trimmed and normalized variables: t̃ = (t− 〈τn〉)/〈τej〉 and 〈m̃〉 = (〈m〉 − mn)/(N − mn), where
〈τej〉 = 〈τ〉 − 〈τn〉 and mn = Lp/σ is the critical nucleus size. We can see that the plateau is gone and
the normalized 〈m〉 value decreases directly without stalling. At φ0 = φ0,∞, the decreasing curve is
completely concave and not sensitive to the chain length. It fulfills the description of Equation (7),
where M0 is approximately N at the zero volume fraction. For the other two cases, φ0 = φ0,0 and
φ0 = φ0,4, the main portion of the curve is convex and it can be described by Equation (3).

Analysis is done by studying the trimmed “〈m〉 −mn vs. t− 〈τn〉” curves. The starting portion
of the curves is fit by Equation (3) with the two fitting parameters ζ1 and t0, while the terminating
portion is fit by Equation (7) with ζ2 and M0 being the parameters. An example of fitting is given in
Figure 8a, where the chain length is 1024. We can see that the trimmed 〈m〉 curves can be well fit by
the two equations, as shown in dashed and dotted black lines, from the two sides of the curves.
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Figure 8. (a) Variation of the trimmed mean monomer number 〈m〉 − mn against the time t− 〈τn〉.
The chain length is N = 1024. The φ0 value is given in the legend with φ0,g = 0.4× 2−g. The curves
are fit by Equation (3) from the starting side, while fit by Equation (7) from the ending side. The fitting
curves are plotted in dashed and dotted lines, respectively. (b) the obtained ζ1 and ζ2 exponents are
plotted as function of φ0. The chain length Ni = 2i is given in the legend.

Figure 8b plots the obtained ζ1 and ζ2 exponents as a function of φ0 at different chain lengths.
We found that the two exponents converge to a value of 4.0(2) and 0.45(4), respectively. It agrees well
with the theoretical predictions: ζ1 = 1/(z1 − 1) and ζ2 = 1/(z2 + 1), with z1 = 1.25 and z2 = 1.2.

Figure 9 presents the scaling behaviors of the t0 parameter for Equation (3).
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Figure 9. Fitting parameter t0 for Equation (3) as a function of (a) the initial volume fraction φ0 and (b)
the chain length N. The parameter N is fixed in Panel (a), while φ0 is fixed in Panel (b). The values of
the parameters are given in the legends through the formula Ni = 2i and φ0,g = 0.4× 2−g.

Panels (a) and (b) show that t0 scales as φ
−1.21(7)
0 N1.35(3). Recall that our theory predicts t0 ∼

φ−z1
0 N1+x1 ∆t0. Again, the results are consistent with the prediction by setting z1 and x1, respectively,

to the values 1.25 and 1/3.
Figure 10 presents the variation of the obtained M0 parameter for Equation (7). The parameter is

expected to behave as 〈τej〉ζ2 .
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Figure 10. Fitting parameter M0 for Equation (7) as a function of (a) the initial volume fraction φ0 and
(b) the chain length N. The values of the fixed parameters N and φ0 are given in the legends of the two
panels, respectively, through the formula Ni = 2i and φ0,g = 0.4× 2−g.

The scaling looks similar to the ones in Figure 13a,e, shown later in Section 4.3, with the exponents
being multiplied by a factor ζ2. For example, the scaling exponent is −0.44(3) in Panel (a) when M0

varies in the large φ0 region. It is close to the predicted value 0.5. The N-exponents changes from
0.77(5) to 1.04(5) as φ0 decreases. It agrees well with the expected values, 0.72 and 1.0, respectively.
We will explain these behaviors later.

We performed simulations by varying the pore length in order to understand whether the stalling
occurred prior to the ejection shows characteristics of nucleation. Figure 11a shows the variation of
〈m〉 against t at three φ0 values. The chain length is 32 and pore length Lp is varied from 1.0 to 5.0.
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Figure 11. (a) 〈m〉 versus t/〈τ〉 for N = 32 at the three φ0 values: 0.4 (in the bottom panel), 0.2 (in the
middle panel), and 0.0 (in the top panel). The pore length Lp is varied and the value is given in the
legend of Panel (b). (b) Replot of the time variation of the number of monomers in the cavity using the
re-scaled coordinate variables: t̃ = (t− 〈τn〉)/(〈τ〉 − 〈τn〉) and 〈m̃〉 = (〈m〉 −mn)/(N −mn).

Using the line-point plot, we can see that the plateau becomes wider with increasing Lp at
φ0 = φ0,1, and the value of 〈m〉 is decreased by a small value, approximately Lp/σ. It shows that the
critical nucleus size is directly related to the pore length. Similar behavior can be seen for the case
with φ0 = φ0,∞. Shifting the time and the monomer number to be t− 〈τn〉 and 〈m〉 −mn, respectively,
we eliminate the plateau from the curve. The curves are then replotted in Figure 11b using the
normalized coordinates t̃ and 〈m̃〉. We discover that the curves collapse together for different pore
lengths at the same φ0 value and follow the description of the ejection equations. It demonstrates that
the plateau is a stage independent of the following ejection process.

We further find that the plateau region does not show up at φ0 = 0.4, as seen in the bottom panel
of Figure 11a. In this case, no nucleation is required before the ejection and, therefore, mn = 0 and
〈τn〉 = 0.0. The reason for the absence of the nucleation can be understood, as follows. The osmotic
pressure for a monomer to be presented in the pore channel is estimated to be Πp = kBT/(πr2

pσ),
which has a value of 0.566 kBT/σ3 by plugging in the pore radius rp = 0.75 σ of this study. The osmotic
pressure of monomers in the cavity, on the other hand, can be calculated by Πc = kBTφ0/( 1

6 πσ3).
At φ0 = 0.4, the interior osmotic pressure Πc is 0.764 kBT/σ3, which is higher than Πp. Therefore,
the ejection can proceed in an imminent way since the starting of the process. For the other studied
cases φ0 = φ0,g with g ≥ 1, Πc is smaller than Πp. The heading monomers need to overcome the energy
barrier that is created by the osmotic pressure difference to go outside. Consequently, a nucleation-like
phenomenon appears, as we have observed in Figures 7 and 11. When the monomer enters the outer
semi-space, the osmotic pressure drops to zero and the process turns to follow the ejection description
that is given in Section 2. We have verified that the nucleation stage appears at a lower φ0 value if
the pore radius rp is increased. It firmly supports that the nucleation is determined by the osmotic
pressure difference.

Figure 12a plots the variation of the nucleation time 〈τn〉 against the pore length Lp. We find that
〈τn〉 grows exponentially with Lp, because the data are linear when plotted with a logarithmic scale on
the y-axis.
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Figure 12. (a) Average nucleation time 〈τn〉 versus the pore length Lp at different φ0. The φ0 value can
be calculated by the formula φ0,g = 0.4× 2−g, read in the legend. We fit the 〈τn〉 curve by the equation
an exp(bnLp). The results of the fitting, bn and an, are plotted in Panels (b) and (c), respectively, as a
function of φ0.

It suggests a Kramers’ escape problem, which gives the nucleation time 〈τn〉 ∼ σ2η
kBT exp

(
Lp∆µcp
σkBT

)
,

where ∆µcp = µp − µc is the chemical potential difference between the cavity and pore. When an
ejection begins, the heading Lp/σ monomers on the chain have to traverse the pore channel first.
A total amount of energy (Lp/σ)∆µcp is required for boosting the system. This energy is the activation
energy Ea and the rate of escape over it is the key to understanding the problem. Kramers has
predicted the escape rate to be ρ ∼ η−1 exp(−Ea/kBT) under a condition of large viscosity [56,57].
The nucleation time formula that is given here is obtained by taking the reciprocal of the escape rate.
In this study, 〈τn〉 is called “the nucleation time”, rather than “the escape time”. We do it to emphasize
the similarity of the phenomena with the nucleation. The Kramers’ escape theory that is used here is
for estimating the formation time of a “nucleus”.

The nucleation time 〈τn〉 is studied by fitting with the function an exp(bnLp). Figure 12b,c
provides the fitting parameters bn and an. Both bn and an decrease with increasing φ0. Noticeably,
the extrapolation of the bn curve shows a tendency to hit zero at a φ0 value around 0.3. It defines
the threshold for the disappearance of a nucleation. The value corresponds well to the local volume
fraction of a monomer in the pore channel, which is φp = (π

6 σ3)/(πr2
pσ) = 0.296 in this study. The

results suggest that ∆µcp is a function of the osmotic pressure difference ∆Πcp = Πp −Πc. Figure 12b
further reveals that bn is approximately linear with ∆φ0 = φ0p − φ0c, with the drawing of the blue
dashed line. Because the osmotic pressure is proportional to the volume fraction to the first order,
we conjecture that the chemical potential difference is approximately linear with ∆Πcp.

4.3. Ejection Time and Nucleation Time

Following the analysis of the previous subsection, we decompose the processing time 〈τ〉 into
the two parts, the nucleation time 〈τn〉 and the ejection time 〈τej〉, and separately study their scaling
behaviors. Figure 13 presents the variations of 〈τej〉 as a function of the chain length N (in Panels (a)
and (b)), the cavity diameter D (in Panels (c) and (d)), and the initial volume fraction φ0 (in Panels
(e) and (f)). We recall that the three variables, N, D, and φ0, are not completely independent, because
φ0 = N(σ/D)3. Thus, the ejection time can be expressed in terms of any pair of the three variables.
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Figure 13. (a) Average ejection time 〈τej〉 vs. chain length N at fixed cavity diameter D; (b) 〈τej〉 vs. N
at fixed initial volume fraction φ0; (c) 〈τej〉 vs. D at fixed φ0; (d) 〈τej〉 vs. D at fixed N; (e) 〈τej〉 vs. φ0 at
fixed N; (f) 〈τej〉 vs. φ0 at fixed D. The data are connected by fixing a parameter, indicated near the

curve. The value of the parameter can be calculated by the formulas: Ni = 2i, Dj =
3
√

2.5× 2j, and
φ0,g = 0.4× 2−g. The blue line indicates the location of the ejection time occurred at the critical point.
Dark-pink lines show noticed scaling behaviors.

Two distinguishable scaling behaviors are observed in Figure 13a. When D is small, 〈τej〉
shows slow growing behavior with N as N0.36(3). An increasing D moves upward the 〈τej〉 curve.
The paralleled curves are observed to deflect downward, from the small N side, to show a steepened
variation; the scaling changes to N2.25(4). The picture is given here: decreasing N eventually sends the
chain into the non-confined stage at a given D value. In that situation, the ejection is similar to a pure
translocation and, thus, follows the strong increasing behavior, like the D∞ case.
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If the φ0 value is large and fixed (refer to Figure 13b), then the scaling of 〈τej〉 is N1.48(1). The curve
also moves upward in a parallel way with decreasing φ0, and it deflects to follow N2.25(4) when
approaching the limiting line that is defined by φ0,∞. The data that are connected by the blue segments
in the plots indicate the critical chain length N∗, which was obtained by studying the velocity curves
in Figure 4. When N < N∗, the ejection velocity increases monotonically in a process and it has
no minimum. Consequently, above the blue connected data, the process is only proceeded via the
non-confined stage, while, below the data, it passes the two stages with the confined stage being the
dominated one.

The results that are presented here look quite similar to the theoretical curves given in Figure 1,
where the exponent of N is predicted to change from x1 to 1 + z2 with increasing D in Panel (a) and
from 2

3ν + x1 to 1 + z2 with decreasing φ0 in Panel (b). The exponents that are extracted from the
simulations are x1 = 0.36(3) and z2 = 1.25(4). They are very close to the theoretical values x1 = 1/3
and z2 = 2ν.

Figure 13c provides the variation of 〈τej〉 with D under the φ0-fixed condition. The time curve
scales as D4.43(2) at φ0 = 0.4, and then moves to the right with decreasing φ0. The behavior eventually
changes to D6.71(2) as φ0 becomes small. The demarcation is indicated by the blue connected line on
the plot that shows the location of the critical diameter D∗. On the right side of the line, the chain
feels free in the cavity; on the left side, the chain suffers the confinement of the cavity and the
pressing strongly influences the ejection. The observed scaling behaviors are in agreement with
Figure 1c. The D-exponent is expected to be 2

ν + 3x1 at large φ0 and it turns to be 3(1 + z2) as the
confinement disappears.

If it is the chain length N being fixed (refer to Figure 13d), we can see that 〈τej〉 increases with D
with a scaling exponent that is equal to 3.2(2) in the confinement region. It agrees with the prediction
D2/ν of Figure 1d. When entering to the non-confined region (the region right to the blue line), the time
curves are quickly leveled off. It shows that the ejection of chain is no more affected by the cavity wall.

Figure 13e shows how 〈τej〉 varies with φ0 for a given N. It is essentially a replot of Figure 13d
by reversing the direction of the x-axis in the log-log plot via the following coordinate mapping:
D −→ φ0 = Nσ3D−3. On the left side of the blue demarcation line, the ejection time is constant and
not affected by the cavity size. On the right side, 〈τej〉 decreases with increasing φ0 and the obtained
exponent is −1.07(4), being consistent with the theoretical value − 2

3ν .
With D being fixed, the plot of Figure 13f reveals different scaling behaviors. In the region φ0 < φ∗

(left to the blue line), a power-law growth φ
2.22(8)
0 is found for 〈τej〉. In the region φ0 > φ∗ (right to the

blue line), the growth slows down and a smaller exponent 0.33(4) is observed. Our scaling theory
states a consistent result, with the exponent being 1 + z2 and x1, respectively (refer to Figure 1f).

Figure 14 presents how the average nucleation time 〈τn〉 varies with N, D, and φ0.
Panel (a) shows that 〈τn〉 decreases with increasing N in the region N > N∗ (below the blue

demarcation line) if D is fixed. It follows the intuition that the osmotic pressure in the cavity increases
with the chain length and, therefore, the energy barrier to overcome inside the pore becomes smaller,
which reduces the nucleation time. In the region above the blue line (N < N∗), the chain size is smaller
than the cavity size, so the chain is not suffered from the pressing of the cavity. A longer chain gives a
stronger drag to the head monomer, which increases the resistance for the chain in order to traverse
the pore. Therefore, the nucleation time increases. Our simulation shows that 〈τn〉 ∼ N1.58(6) at the
infinite D.

A physical explanation is given below. The nucleation time is described by the Kramers equation

〈τn〉 ' σ2η
kBT exp

(
Lp∆µcp
σkBT

)
. For the cases with D∞, the chemical potential difference ∆µcp is a constant

and it does not change with the chain length. Thus, the variation of 〈τn〉 is contributed from the change
of η, which is the effective friction coefficient for the head monomer to traverse the pore. The value
of η is directly proportional to the drag exerting on the head monomer, which is η0N, multiplying a
geometrical restriction factor for the chain coil to go into the one-dimensional pore, being estimated to
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be N1/d f , where d f = 1/ν is the fractal dimension of the chain coil [53]. Consequentlys, η scales with
N with a scaling exponent equal to 1 + ν, which is in good agreement with our observation.
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Figure 14. (a) Average nucleation time 〈τn〉 vs. N at fixed D; (b) 〈τn〉 vs. N at fixed φ0; (c) 〈τn〉 vs. D
at fixed φ0; (d) 〈τn〉 vs. D at fixed N; (e) 〈τn〉 vs. φ0 at fixed N; (f) 〈τn〉 vs. φ0 at fixed D. The data are
connected by fixing a variable, indicated near the curve. The value of the variable can be calculated by
the formulas: Ni = 2i, Dj =

3
√

2.5× 2j, and φ0,g = 0.4× 2−g. The blue line indicates the location of the
nucleation time occurred at the critical point. Dark-pinked lines show noticed scaling behaviors.

If φ0 is fixed in the study, as shown in Figure 14b, the scaling is found to follow N0.32(2), as φ0 is
large, for example, at φ0 = 0.2. A similar physical picture can be used in order to explain the behavior.
Because ∆µcp is constant under the φ0-fixed condition, the dependence of 〈τn〉 on N merely comes from
the variation of η. In this situation, the drag of the chain body on the head monomer is “blocked” by
the confinement; η is only contributed from the geometrical restriction factor, which is N1/3, because
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the fractal dimension of the confined chain is three. As φ0 decreases, we find that the nucleation time
curve moves upward in a parallel manner. The left portion of the curve deflects when intercepting
with the φ∗ line and it turns to follow the scaling for the null φ0 case.

Figure 14c is related to Figure 14b by mapping the abscissa from N to D via the relation
N = φ0(D/σ)3. Therefore, the scaling behaviors are expected to be D1 at large φ0 and D3(1+ν) at
small φ0. We obtained a consistent simulation result with the exponent being 0.95(4) and 4.71(8) for
the two situations, respectively. It is worth noticing that, with decreasing φ0 from the large value,
the time curve moves upward and deflects as it touches the blue demarcation line at D = D∗. It looks
like the up-moving curve is reflected by the demarcation line and bounced to the right-hand side. We
have measured the demarcation line, which exhibits a scaling of D2.48(6).

If N is fixed (refer to Figure 14d), we can see that 〈τn〉 drastically increaseswith D and is leveled off
after touching the demarcation line. The leveling-off value defines the upper bound of the nucleation
time for a given N, which occurs when the cavity is too large to impose a real confinement pressure in
order to help the ejection.

Figure 14e is basically an abscissa-reversed plot of Figure 14d. A notable difference is that the
drastically diminished curves in the large φ0 region tend to bundle together and become nulled (which
is negative infinity in the log-log plot) at a φ0 value of around 0.3. It corresponds well to the picture that
is described in the previous subsection that the nucleation occurs when the initial volume fraction in
the cavity, φ0, is smaller than the volume fraction of a monomer that is presented in the pore, which is
φp ' 0.296 in this study. The nucleation time drops to zero at a different place in Figure 14d, which is
estimated at D = σ(N/φp)1/3. Therefore, the dropping curves appear in parallel to each other for the
different chain lengths.

The last panel of the figure, Panel (f), shows the variation of the nucleation time with respect
to φ0 at different cavity sizes. It can be related to Panel (a) by mapping N to φ0 via the equation
N = φ0(D/σ)3. The observed scaling φ

1.59(9)
0 in the small φ0 region corresponds to the behavior N1+ν

in Panel (a), because N scales directly with φ0 if D is fixed. The results also reveal that the nucleation
time first increases with φ0 and then decreases. The peak of the transition is located at φ0 = φ∗.

5. Discussions and Conclusions

Our simulations have showed that the order of the nucleation time 〈τn〉 can be as large as the
ejection time 〈τej〉. Thus, it is important to separate the two time and study their properties properly.
An analysis using the total processing time 〈τ〉 = 〈τn〉+ 〈τej〉 in order to study the scaling behavior
of ejection should be not accurate. It might explain why the scaling exponents that are reported in
literature are not always consistent [27,28], because people usually thought that the nucleation time is
negligible and would not influence greatly the ejection or translocation time. In order to demonstrate
the influences, we present in Figure 15 the total processing time 〈τ〉 as a function of N, D, and φ0.

We can see that the scaling behavior is significantly affected in the small φ0 or large D region due to
of the growing importance of the nucleation. For example, 〈τ〉 gives a underestimated scaling N1.85(6)

at D = D∞ in Figure 15a, as compared to N2.25(4) in Figure 13a, owing to the mixture with the weak
scaling N1.58(6) of 〈τn〉. The D-exponent for 〈τ〉 is 5.4(2) at φ0 = φ0,13 in Figure 15c, being significantly

smaller than 6.71(2) for 〈τej〉 in Figure 13c. Rather than showing φ
2.22(8)
0 behavior in Panel (f) at

small φ0, the 〈τ〉 curve exhibits a weaker scaling φ
1.66(2)
0 , because of the influence of 〈τn〉. Moreover,

the transition between the two scalings, deflecting from one branch of the paralleled curves to the
other, appears less neatly in Figure 15. For example, the time curves are not so in parallel and curve
up in the small N region in Panels (a) and (b). The decreasing portions of the curves in Panel (e) look
less paralleled in comparison with Figure 13e. The results show that the scaling cannot be accurately
studied without removing the nucleation time.
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Figure 15. (a) Average total time 〈τ〉 = 〈τej〉+ 〈τn〉 vs. N at fixed D; (b) 〈τ〉 vs. N at fixed φ0; (c) 〈τ〉
vs. D at fixed φ0; (d) 〈τ〉 vs. D at fixed N; (e) 〈τ〉 vs. φ0 at fixed N; (f) 〈τ〉 vs. φ0 at fixed D. The data are
connected by fixing a variable, indicated near the curve. The value of the variable can be calculated by
the formulas: Ni = 2i, Dj =

3
√

2.5× 2j, and φ0,g = 0.4× 2−g. The blue line indicates the location of the
total time occurred at the critical point. Dark-pinked lines show noticed scaling behaviors.

We comment that there exist two situations where the nucleation will not occur prior to the
ejection: either the osmotic pressure inside the cavity is higher than the one in the pore or the chain has
been placed to traverse the pore channel since the beginning. For bacteriophages, both of the situations
can help to skip or minimize the nucleation, because the packing fraction of DNA in the capsid is
very high and the DNA chain could also have been hanged inside the tail tube of the virion before
the ejection [1,2,58]. Concerning the dynamics, we do observe that the ejection slows down quite a lot
for the major part of the process, because the internal pressure decreases, owing to the reduction of
the number of monomers inside the cavity. However, a complete inhibition in the progress of ejection
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is not witnessed in our primitive model. From the view point of thermodynamics, the entropic force
from the external portion of chain is stronger than the one from the internal. Consequently, the chain
should be eventually retrieved out of the cavity. Hence, the rest of the process is accomplished by an
acceleration of the ejection velocity. In order to understand the importance of the duration for the
two stages, we calculate the ratio of the time at the confined stage to the total ejection time, 〈τ1〉/〈τej〉.
The results are plotted in Figure 16 as a function of D and φ0 for different chain lengths.
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Figure 16. Ratio 〈τ1〉/〈τej〉 as a function of (a) D and (b) φ0. The chain length can be read in the legend
of (a) where Ni = 2i.

We can see that 〈τ1〉/〈τej〉 decreases with increasing D or decreasing φ0. For the long chain
case N = 1024 with φ0 lying between 0.1 and 0.4 (a typical packing fraction for a bacteriophage),
the ratio is around 0.9. It shows that about 90% of the ejection time is spent at the confined
stage. The slow process at the second (non-confined) stage does not take a very long time,
as imagined by some others. However, the inhibition of ejection for bacteriophages did happen
in well-controlled experiments [11,13,14]. Therefore, some mechanisms beyond the scope of our model
and thermodynamics must exist to cause the results.

The balance method that is used in this study can be derived under the framework of a general
principle, called Onsager’s variational principle [59,60]. In it, a physical function, called Rayleighian,
is established, which is the energy dissipation function plus the rate of change of the free energy. In our
case, the Rayleighian is written as

R(ṁ; m) =
1
2

ησ2ṁ2 +
∂F
∂m

ṁ (9)

where the number of monomers in the cavity, m, is the state variable for describing the evolution of
the ejection. The Rayleighian is regarded as a function of the time derivative of the state variable.
The kinetic equation for m can be then determined by minimizingR with respect to ṁ. Thus, we have

dm
dt

= − 1
ησ2

∂F
∂m

(10)

The same equation has been used in order to derive the dynamical equations in Equation (1) and
Equation (4) for the confined and non-confined stages, respectively, as in Section 2. This principle is
also called the principle of the least energy dissipation.

Concerning the confinement, the geometry of cavity is not always a sphere. For example,
a common structure for virion is icosahedron [61,62]. Certain viruses, like T4 bacteriophages, have their
icosahedral capsid elongated in the polar direction [63]. In addition to the icosahedral, helical
nucleocapsid is also observed in nature, like in tobacco mosaic virus and Ebola virus; in this case,
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the morphology of virus is cylindrical [64,65]. In applications, biopolymers can be ejected from a
confined space of any engineered shape, like an ellipsoid, a cylinder, a cone, or a slit. Equation (10)
permits us to investigate these problems in a general way, provided that the free energy is known as a
function of the state variable. Because the confining free energy of chain in an icosahedral container
or an ellipsoid can be essentially described by the blob theory under the same form F ∼ kBTm/g,
we expect that the ejection behavior maintains in a similar scaling class. The ejection exponents from
an icosahedral or ellipsoidal cavity should be close to the ones from a spherical cavity.

In summary, we have developed a scaling theory in order to explain polymer ejection from a
cavity in this study. The dynamical equation of ejection was derived by balancing the rate of the free
energy change with the rate of the energy dissipation when the chain passes the pore. A two-stage
model was used in order to describe the ejection process. At the confined stage, the chain suffers

from the cavity confinement and it is pressed out of the cavity with a velocity Vej ∼ ∆v0
Nx1

(
m

(D/σ)3

)z1
.

At the successive non-confined stage, the chain is driven by the entropic pulling from the external
segments and the velocity scales as m−z2 ∆v0. We have performed large-scaled molecular dynamics
simulations to examine the velocity profile and confirmed that Equation (8) can describe the ejection
velocity well with z1 = (3ν− 1)−1, z2 = 1 + y2, x1 = 1/3, and y2 = 2ν− 1. The physical pictures for
the origin of the four exponents have been clearly explained in the text. The exponent z1 describes the
decreasing behavior of the ejection velocity at the confined stage, while z2 depicts the scaling increase
of the velocity at the non-confined stage. x1 is the exponent concerning the geometrical restriction and
jamming that occurred at the pore when a chain is pressed out of the cavity and y2 is the one accounting
for the extra scaling dependence on m in the final phase of the process. The scaling properties of the
threshold m∗, which separates the two stages, have also been investigated.

When studying the time evolution of 〈m〉 in the cavity, we observed that the number is stalled
against decreasing for a long while. Detailed analysis revealed that a pre-stage exists for the heading
monomers in order to find a way out of the pore and it is responsible for the stalling. By varying the
pore length and the other simulation parameters, we have demonstrated that the pre-stage fulfills the
characteristics of the Kramers escape problem and they can be thought as a nucleation phenomenon.
After trimming the nucleation stage, the evolution of the monomer number in the cavity can be
properly described by Equation (3) and Equation (7), and the fitting parameters were found to acquire
the predicted exponents and scaling behaviors.

The total processing time 〈τ〉 was split into the ejection time 〈τej〉 and nucleation time 〈τn〉.
Our simulations showed that 〈τej〉 and 〈τn〉 possess their own scaling. 〈τej〉 scales as Nx1 D2/ν when
N ≥ N∗ or D ≤ D∗, and N1+z2 when N < N∗ or D > D∗. The previous scaling changes to
Nx1+(2/3ν)φ−2/3ν

0 if D is replaced by (N/φ0)
1/3, applied for the large N or large φ0 (φ0 ≥ φ∗) case.

If it is N being replaced by φ0(D/σ)3, then the two scalings change to the forms φx1
0 D3x1+(2/ν) and

φ1+z2
0 D3(1+z2) for the large φ0 (or small D) and small φ0 (or large D) cases, respectively. For the

nucleation time, we found that 〈τn〉 ' σ2η
kBT exp

(
Lp∆µcp
σkBT

)
gives a good description. 〈τn〉 increases

with decreasing φ0 and the scaling changes from Nx1 to N1+ν when passing the demarcation line.
A physical picture has been given, which connected the scaling variation with the change of the
effective friction coefficient η. The picture also predicted the scaling D3x1 at large φ0 and D3(1+ν) at
small φ0. The simulations support fully the predictions, which are verified by stringent and various
ejection conditions. It shows that the presented ejection theory is a consistent and complete theory
for the primitive model. The results provide deep insight into the complex phenomena of ejection for
biopolymers that occurred in nature and nanotechnology.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/12/3014/s1 ,
Figure S1: m∗ versus N under (a) the φ0-fixed condition and (b) the D-fixed condition.
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