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Neuronal apoptosis induced by oxidative stress is a major pathological process that occurs after cerebral ischemia-reperfusion.
Calycosin-7-O-β-D-glucoside (CG) is a representative component of isoflavones in Radix Astragali (RA). Previous studies have
shown that CG has potential neuroprotective effects. However, whether CG alleviates neuronal apoptosis through antioxidant
stress after ischemia-reperfusion remains unknown. To investigate the positive effects of CG on oxidative stress and apoptosis of
neurons, we simulated the ischemia-reperfusion process in vitro using an immortalized hippocampal neuron cell line (HT22)
and oxygen-glucose deprivation/reperfusion (OGD/R) model. CG significantly improved cell viability and reduced oxidative
stress and neuronal apoptosis. In addition, CG treatment upregulated the expression of SIRT1, FOXO1, PGC-1α, and Bcl-2 and
downregulated the expression of Bax. In summary, our findings indicate that CG alleviates OGD/R-induced damage via the
SIRT1/FOXO1/PGC-1α signaling pathway. Thus, CG maybe a promising therapeutic candidate for brain injury associated with
ischemic stroke.

1. Introduction

Ischemic stroke is a neurodegenerative disease characterized
by hypoxemia of the brain tissue due to vascular obstruction.
This condition is characterized by high morbidity, disability,
mortality, and high recurrence rate, thus creating a heavy
burden on society [1–3]. When the blood supply is blocked,
many pathological mechanisms contribute to cell death,
including oxidative stress, inflammation, glutamate and cal-
cium toxicity, and mitochondrial dysfunction [4]. The tissue
plasminogen activator (tPA) and plasminogen activator
inhibitor 1 (PAI-1) are the key players of the fibrinolytic plas-
minogen activator system. The role of PAI-1 in brain injury
has been established [5, 6]. tPA is the only drug approved
by the US FDA for treating ischemic stroke [7]. However, this
drug is hampered by its narrow therapeutic window and can
cause secondary damage to the ischemic area, known as
ischemia-reperfusion injury [8–10]. It is estimated that only
5-7% of ischemic stroke patients receive tPA intravenous

injection [11, 12]. Therefore, it is imperative to find new
and effective drugs for treating ischemic stroke.

Radix Astragali (RA), also known as Huangqi in China, is
the dried root of Astragalus membranaceus [13]. Previous
bioactive studies showed that several types of bioactive com-
ponents in RA, such as isoflavonoids, triterpene saponins,
and polysaccharides, have a wide variety of biological activi-
ties such as cardioprotection, anti-inflammation, and antiox-
idative stress effects [14–18]. Calycosin-7-O-β-D-glucoside
(CG, Figure 1) is a representative isoflavone isolated from
RA, and studies have shown that CG may have neuroprotec-
tive effects [17]. CG was shown to attenuate ischemia-
reperfusion injury by activating the PI3K/Akt pathway [19]
and reducing myocardial injury in heat stroke rats through
its anti-inflammation effects [20]. However, the underlying
mechanism remains unclear.

Silent information regulator 1 (SIRT1) is a histone deace-
tylase, and its activity is mainly dependent on nicotinamide
adenine dinucleotide (NAD+) [21]. It plays a critical role in
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protecting against ischemic stroke [22]. In addition, it is con-
sidered as a lifespan gene because it plays an important role
in regulating longevity [23, 24]. Forkhead box O (FOXO)
and peroxisome proliferator-activated receptor γ coactivator-
1 (PGC-1α) may be the direct substrates of SIRT1 [25].
Numerous studies have shown that when SIRT1 is activated,
it can exert antioxidative stress, antiapoptosis, and anti-
inflammatory effects by deacetylating downstream FOXO1
and PGC-1α [26–29]. Interestingly, previous studies showed
that CG can alleviate the damage caused by ischemic stroke
[13]. Given the protective effects of CG on ischemic stroke,
we hypothesized that CG protects against ischemic stroke
via the SIRT1/FOXO1/PGC-1α signaling pathway.

To investigate the positive effects of CG on apoptosis
induced by ischemic stroke, we used the immortalized mouse
hippocampal neuron cell line (HT22) and oxygen glucose
deprivation reperfusion (OGD/R) model to mimic ischemic
reperfusion in vitro.

2. Materials and Methods

2.1. Reagents. CG was from Chengdu Keloma Biotechnology
Co., Ltd. (Chengdu, China); the purity was greater than 98%.
Nimodipine was purchased from Guangdong Huanan Phar-
maceutical Group Co., Ltd. (Guangdong, China). Dulbecco’s
modified Eagle’s medium (DMEM), glucose-free DMEM,
fetal bovine serum (FBS), and penicillin-streptomycin were
obtained from Gibco (Grand Island, NY, USA). Cell Count-
ing Kit-8 (CCK-8) was obtained from Dojindo Laboratories
(Kumamoto, Japan). Lactate dehydrogenase (LDH), super-
oxide dismutase (SOD), and malondialdehyde (MDA) assay
kits were obtained from Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). The Annexin V-FITC Apoptosis
Detection Kit was from KeyGEN BioTECH (Nanjing,
China). The reactive oxygen species (ROS) Detection Kit
was obtained from BestBio (Shanghai, China). PGC-1α
enzyme-linked immunosorbent assay (ELISA) kits were from
Jiangsu Enzyme Biotechnology Co., Ltd. (Jiangsu, China).
Anti-SIRT1 antibody was supplied by Cell Signaling
Technology (Danvers, MA, USA). Anti-FOXO1, anti-Bcl-
2, anti-Bax, and anti-β-actin antibodies, and goat anti-rabbit
secondary antibodywerepurchased fromAffinity (Cincinnati,
OH, USA). The TRIzol reagent was supplied by Takara Bio-
medical Technology (Shiga, Japan). The reverse-transcribed
cDNA synthesis kit and qPCR kit were from Beijing TsingKe
Biotech Co., Ltd. (Beijing, China).

2.2. OGD/R Model and Medical Treatment. HT22 cells were
cultured in medium composed of DMEM, 10% FBS,

100U/mL penicillin, and 100mg/mL streptomycin in the cell
culture incubator at 37°C under 5% CO2. When the cell den-
sity reached 70–80%, the medium was removed and the cells
were washed three times with phosphate-buffered saline,
followed by incubation in a three-gas incubator (94% N2,
5% CO2, and 1% O2) with glucose-free medium for 8 h at
37°C to mimic hypoxic injury (OGD). Next, the medium
was replaced with normal medium, and the cells were incu-
bated in an incubator with 5% CO2 at 37

°C for another 6 h.
In addition to reperfusion treatment, the cells were treated
with CG (15 μg/mL) or nimodipine (2.5μg/mL), a drug used
clinically to treat ischemic brain damage. Cells cultured in
complete medium and normal environment were used as
the control group.

2.3. Cell Viability. Cell viability was detected by the CCK-8
assay. Briefly, cells were seeded in 96-well plates at a density
of 1:5 × 104 cells/cm2; after treatment, CCK-8 was added to
the medium for another 2 h at 37°C. Absorbance was mea-
sured at 450nm using a microplate reader. Cell viability
was shown as a percentage of the control group. The experi-
ment was repeated three times.

2.4. LDH Release Assay. The release of LDH represents the
integrity of the cell membrane [30]. LDH activity was mea-
sured with an LDH assay kit according to the manufacturer’s
instructions. Cells were seeded in 96-well plates; after expo-
sure to OGD/R, the cells were collected and sonicated, and
then centrifuged to collect the supernatant for analysis. The
supernatant was reacted with substrate solution at 37°C for
15min. It was then reacted with 2,4-dinitrophenylhydrazine
for another 15min. The absorbance was detected with a
microplate reader at 450nm. The results were expressed as
a multiple relative to the control group. The experiment
was performed in triplicate.

2.5. MDA Content and SOD Activity. Cells were seeded in 96-
well plates; after treatment, the cells were sonicated and cen-
trifuged to collect the supernatant. The thiobarbituric acid
method was used to detect the MDA content. The superna-
tant was reacted with WST (a highly water-soluble tetrazo-
lium salt) and enzyme working solution to measure SOD
activity. All operations were according to the manufacturer’s
instructions. The results were shown as a multiple relative to
the control group. The experiment was replicated thrice.

2.6. Detection of ROS. The levels of ROS in hippocampal cells
were assessed with the fluorescent probe 2′,7′-dichlorfluor-
escein-diacetate (DCFH-DA) kit. Briefly, cells were seeded
in 96-well plates; after exposure to OGD/R, the cells were
reacted with the working solution for 20min at 37°C in the
dark. After washing 3 times with serum-free medium, images
were obtained under a fluorescence microscope. The experi-
ment was repeated three times.

2.7. Cell Apoptosis Assay. Apoptosis was detected by using an
Annexin V-FITC Apoptosis Detection Kit. Cells were seeded
in 10 cm cell culture dishes at a density of 1:5 × 104 cells/cm2,
according to the supplier’s instructions; after treatment, the
cells were collected by adding trypsin without EDTA,
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Figure 1: Structure of Calycosin-7-O-β-D-glucoside.
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followed by washing twice with phosphate-buffered saline and
centrifugation for 5min at 2000 rpm. The cells were suspended
in binding buffer and incubated with FITC-labeled Annexin V
and propidium iodide (PI) at room temperature in the dark for
10min. The apoptotic rate was measured by flow cytometry
within 1h. The experiment was performed in triplicate.

2.8. PGC-1α Content. The expression of PGC-1α was
detected with an ELISA kit according to the manufacturer’s
instructions. Briefly, cells were seeded in 96-well plates; after
exposure to OGD/R, the cells were lysed and centrifuged. The
supernatant was added to the bottom of the plate and incu-
bated at 37°C for 30min. After washing 5 times, the enzyme
labeling reagent was added and incubated for 30min,
followed by washing and addition of color developer which
was incubated with the sample for 10min. The absorbance
was detected with a microplate reader at 450 nm. The exper-
iment was replicated thrice.

2.9. Western Blotting. Cells were seeded in 10 cm cell culture
dishes; after treatment, total protein was extracted from cells
lysed by RIPA, and the protein concentration was deter-
mined with a BCA protein assay kit. Ten μg of total protein

samples was loaded into an 8–10% polyacrylamide gel for
separation by SDS-PAGE and then transferred to polyvinyli-
dene fluoride membranes. After the membranes were
blocked with 5% nonfat milk, they were incubated with pri-
mary antibodies against SIRT1 (1 : 1000), FOXO1 (1 : 1000),
Bcl-2 (1 : 1000), Bax (1 : 1000), and β-actin (1 : 1000) at 4°C
overnight. The membrane was incubated with secondary
antibodies (1 : 3000) for 1 h at room temperature. Finally,
the membranes were exposed using the Bio-Rad ChemiDoc
Touch Imaging System (Bio-Rad, Hercules, CA, USA) and
analyzed with ImageJ software (NIH, Bethesda, MD, USA).
The relative protein levels were normalized to that of β-actin.
The experiment was repeated three times.

2.10. Real-Time Polymerase Chain Reaction (PCR). Cells
were seeded in 10 cm cell culture dishes; after exposure
to OGD/R, total RNA was extracted from hippocampal
cells after OGD/R by using TRIzol reagent and one μg
of RNA was reverse transcribed to cDNA using the
reverse-transcribed cDNA synthesis kit. Real-time PCR
was performed on an ABI 7500 Sequence Detection
System (Applied Biosystems, Foster City, CA, USA). The
sequences of primers were as follows: SIRT1: forward:
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Figure 2: HT22 cells were treated with 8 h of OGD and then reoxygenated in the presence of CG for 6 h. (a) Cell viability was detected
by CCK-8 assay. (b) Cytotoxicity was determined with LDH assays. (c) Cell morphology was evaluated by a biological microscope.
Three independent experiments were performed, and data were expressed as the mean ± SD. ##P < 0:01vs. control group, ∗∗P < 0:01
vs. OGD/R group.
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Figure 3: HT22 cells were treated with 8 h of OGD and then reoxygenated in the presence of CG for 6 h. CG elevated the SOD activity and
reduced the MDA level and ROS generation: (a) SOD activity; (b) MDA level; (c) ROS fluorescence intensity; (d) ROS level. Three
independent experiments were performed, and data were expressed as the mean ± SD. #P < 0:05, ##P < 0:01vs. control group; ∗P < 0:05,
∗∗P < 0:01vs. OGD/R group; ++P < 0:01vs. nimodipine group.
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5′-CTCCTTGGAGACTGCGATGT-3′, reverse: 5′-GTGTTG
GTGGCAACTCTGAT-3′; FOXO1: forward: 5′-AAGTAC
ACATACGGCCAATCC-3′, reverse: 5′-GGGAGGAGAGT
CAGAAGTCA-3′; PGC-1α: forward: 5′-AAGGTCCCCAG
GCAGTAGAT-3′, reverse: 5′-TCCCTCTTGAGCCTTTCGT-
3′; Bcl-2: forward: 5′-AGCCTTGGCCAGGGAATTAT-3′,
reverse: 5′-GGACTTGGTGCATGGAACAC-3′; Bax: forward:
5′-GAACTGGACAGCAATATGGA-3′, reverse: 5′-GAAGTT
GCCATCAGCAAAC-3′; and β-actin: forward: 5′-GCTTCT
AGGCGGACTGTTAC-3′, reverse: 5′-CCATGCCAATGTTG
TCTCTT-3′. All operations were repeated three times, and
the data were indicated with 2-ΔΔCt method and expressed
as fold difference normalized to β-actin.

2.11. Statistical Analysis. Results were presented as the
mean ± SD from three independent experiments. The signif-
icance of differences between two groups was analyzed by
Student’s t-test, while the significance of differences between
more than two groups was assessed by one-way analysis of
variance (ANOVA). SPSS 17.0 software (SPSS, Inc., Chicago,
IL, USA) was used for the analyses. A value of P < 0:05 was
considered as statistically significant.

3. Results

3.1. CG Protects Hippocampal Cells against OGD/R-Induced
Injury. To explore the protective effects of CG on hippo-

campal cells after OGD/R, we first tested the cell viability
and release of LDH. As shown in Figures 2(a) and 2(b),
after the cells were treated with OGD/R, the viability of
cells reduced to 64% and the release of LDH increased
to 505U/L (P < 0:01), indicating that the OGD/R model
was successfully established. However, CG alleviated cell
death and LDH leakage caused by OGD/R. Additionally,
OGD/R injury caused cell shrinkage, but after CG inter-
vention, the cell morphology tended to be normal
(Figure 2(c)). These results indicate that CG alleviates
OGD/R-induced cell injury.

3.2. CG Alleviates OGD/R-Induced Oxidative Stress in
Hippocampal Cells. Oxidative stress plays a major role in
ischemia-reperfusion injury [31, 32]. As shown in
Figures 3(a)–3(c), we observed a significant increase in
MDA and ROS levels and decrease in SOD activity compared
to those in the normal group. However, the changes were
reversed by CG administration. These results indicate that
CG significantly affects oxidative damage caused by OGD/R.

3.3. CG Alleviates OGD/R-Induced Apoptosis. The hippo-
campus is very vulnerable to ischemia, and ischemia-
reperfusion leads to neuronal apoptosis [33, 34]. To further
investigate the protective effect of CG on OGD/R hippo-
campal cells, we examined the apoptosis rate. As shown
in Figure 4, the apoptosis rate increased from 5-28% after
exposure to OGD/R (P < 0:01), whereas treatment with
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Figure 4: Apoptosis rate of HT22 cells after treatment with 8 h of OGD and reoxygenated in the presence of CG for 6 h. Three independent
experiments were performed, and data were expressed as the mean ± SD. ##P < 0:01vs. control group, ∗∗P < 0:01vs. OGD/R group.
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Figure 5: HT22 cells were treated with 8 h of OGD and then reoxygenated in the presence of CG for 6 h. Protein expression of SIRT1 (a),
FOXO1 (b), Bcl-2 (c), and Bax (d) detected by Western blotting and PGC-1α (e) detected by ELISA. Three independent experiments were
performed, and data were expressed as the mean ± SD. #P < 0:05, ##P < 0:01vs. control group; ∗∗P < 0:01vs. OGD/R group; ++P < 0:01vs.
nimodipine group.
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Figure 6: The expression of SIRT1 (a), FOXO1 (b), Bcl-2 (c), Bax (d), and PGC-1α (e) mRNA after HT22 cells were treated with 8 h of OGD
and reoxygenated in the presence of CG for 6 h. Three independent experiments were performed, and data were expressed as themean ± SD.
##P < 0:01vs. control group; ∗∗P < 0:01vs. OGD/R group; ++P < 0:01vs. nimodipine group.
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CG alleviated apoptosis caused by OGD/R. Taken together,
these results demonstrate that CG can alleviate OGD/R-
induced apoptosis.

3.4. CG Regulates SIRT1/FOXO1/PGC-1α Signaling Pathways
in Hippocampal Cells. To investigate the mechanism of CG in
hippocampal neuronal cells after OGD/R, we evaluated the
effects of CG on the SIRT1/FOXO1/PGC-1α signaling path-
way related to apoptosis. As shown in Figure 5, after OGD/R,
the protein expression of SIRT1, FOXO1, PGC-1α, and Bcl-2
was significantly reduced. However, CG treatment reversed
these inhibitions. Additionally, the protein expression of
Bax was increased after OGD/R compared to that in the con-
trol group, whereas CG downregulated the expression of Bax.
We also examined the effects of CG intervention on the
mRNA expression of SIRT1, FOXO1, PGC-1α, Bcl-2, and
Bax (Figure 6), and the results were consistent with those of
Western blotting and ELISA. These results indicate that CG
can alleviate damage to OGD/R to hippocampal neurons
via the SIRT1/FOXO1/PGC-1α signaling pathway.

4. Discussion

Despite tremendous advances in the theoretical understand-
ing of ischemic stroke in the past several decades, stroke
remains the third leading cause of death and permanent dis-
ability [35]. Oxygen glucose deprivation reperfusion is an
in vitro model that mimics the in vivo process of a series of
pathological reactions initiated by ischemia-reperfusion
[36, 37]. Resveratrol is a natural polyphenol compound
[38]. It has significant protective effects on ischemic stroke,
such as antiapoptotic, antioxidant, anti-inflammatory, and
neuroprotective properties [39–41]. In addition, it can pro-
mote synaptogenesis and neurite outgrowth and prevents
axonal degeneration after injury [42, 43]. However, there
are few natural active ingredients which have similar efficacy
to resveratrol. CG has been reported to protect cardiomyo-
cytes from ischemia/reperfusion injury [19] and endothelial
cells from bacterial endotoxin-induced vascular cell injury
[16]. Liu et al. found six core bioactive components in Xue-
shuantong capsule to promote blood circulation, among
which CG showed obvious anticoagulant activity [44]. Some
studies have shown that CG could eliminate oxygen-free
radicals [45, 46] and inhibit high glucose-induced mesangial
cell proliferation and glomerular endothelial cell apoptosis
[47]. However, its exact role is unclear. In this study, we
demonstrated that CG prevented OGD/R-induced hippo-
campal cell injury by alleviating oxidative stress and apopto-
sis through the SIRT1/FOXO1/PGC-1α signaling pathway.

Cerebral ischemia-reperfusion leads to imbalanced ROS
production and clearance, followed by oxidative stress [48].
Accumulating evidence has indicated that oxidative stress
plays a major role in OGD/R and is directly related to the
clinical prognosis of ischemic stroke [49, 50]. A recent study
confirmed the antioxidative effects of CG [16]. Consistent
with previous findings, our data indicated that CG can reduce
OGD/R-induced ROS and MDA production and decrease
SOD activity, suggesting that CG attenuates OGD/R-induced

hippocampal neuronal damage through antioxidative stress
and by inhibiting apoptosis.

SIRT1 senses changes in the cellular environment through
the redox state of NAD+/NADH and participates in antiapop-
tosis, anti-inflammatory, and metabolism processes to
enhance cell viability by deacetylation by FOXO1 and PGC-
1α [51–55]. The FOXO family is closely related to apoptosis
and oxidative stress. Studies have shown that SIRT1 can exert
antioxidative stress by regulating the PTEN/JNK/FOXO1 sig-
naling pathway [56]. PGC-1α plays an important role in neu-
roprotection [57]. It has been reported that SIRT1 promotes
the transcription of PGC-1α to regulate the expression of
Bcl-2 and Bax proteins, thereby increasing the antioxidant
capacity of nerve cells [58]. In the present study, we found that
CG treatment upregulated the expression of SIRT1, FOXO1,
and PGC-1α. Additionally, the expression of Bcl-2 and Bax
was analyzed. The results indicated that CG can increase
Bcl-2 and decrease Bax expression. The results showed that
CG reduces oxidative stress and neuronal apoptosis through
the SIRT1/FOXO1/PGC-1α pathway.

5. Conclusions

In conclusion, our results suggest that CG protects against
ischemic stroke by activating SIRT1, which in turn upregulates
FOXO1 and PGC-1α expression. Taken together, these find-
ings indicate that CG alleviates OGD/R-induced damage via
the SIRT1/FOXO1/PGC-1α signaling pathway, and CGmaybe
a promising therapeutic candidate for brain injury associated
with ischemic stroke. However, more in-depth studies are
required to determine the actual role of CG in ischemia stroke.
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