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Three human cancer cell lines (A549, HCT116, and HeLa) were used to investigate the molecular mech-
anisms and potential prognostic biomarkers associated with hypoxia. We obtained gene expression data
from Gene Expression Omnibus (GEO) datasets GSE11704, GSE147384, and GSE38061, which included 5
hypoxic and 8 control samples. Using the GEO2R tool and Venn diagram software, we identified common
differentially expressed genes (cDEGs). The cDEGs were then subjected to Gene ontology (GO) and Kyoto
Encyclopedia of Gene and Genome (KEGG) pathway analysis by employing DAVID. The hub genes were
identified from critical PPI subnetworks through CytoHuba plugin and these genes’ prognostic signifi-
cance and expression were verified using Kaplan-Meier analysis and Gene Expression Profiling
Interactive Analysis (GEPIA), respectively. The research showed 676 common DEGs (cDEGs), with 207
upregulated and 469 downregulated genes. The STRING analysis showed 673 nodes and 1446 edges in
the PPI network. We identified 4 significant modules and 19 downregulated hub genes. GO analysis
revealed all of them were majorly involved in ribosomal large subunit assembly and biogenesis, rRNA
processing, ribosome biogenesis, translation, RNA & protein binding frequently at the sites of nucleolus
and nucleoplasm while 11 were significantly associated with a better prognosis of hypoxic tumors.
Our research sheds light on the molecular mechanisms that underpin hypoxia in human cancer cell lines
and identifies potential prognostic biomarkers for hypoxic tumors.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is a devastating public health issue causing significant
global challenges (Hiatt and Beyeler, 2020; Leng et al., 2019). With
limited treatment options that often yield poor pro[gnosis and high
mortality rates, the medical community is constantly striving to
develop more effective methods of treatment (Ferrari et al.,
2021). The current treatments rely primarily on chemotherapy,
radiation therapy, and targeted therapy (Rosenbaum and
Gonzalez, 2021). Unfortunately, it has become increasingly difficult
to combat cancer as the cancer cells continuously gain resistance to
these treatments due to a range of intrinsic and extrinsic factors
(Fares et al., 2019; Hu-Lieskovan et al., 2021; Ulldemolins et al.,
2021). Extrinsic factors, such as hypoxia, significantly impact the
growth and spread of cancer, making it difficult to target
effectively and fully eradicate cancer cells (Ponomarev et al.,
2022). Hypoxia develops in most solid tumors, which outstrips
the capacity of the newly formed vasculature to provide adequate
oxygen (Muz et al., 2015). It has a variety of consequences on the
biological behavior of cancer cells, including neovascularization,
metabolism, cell survival, and cell death. Hypoxia is a prominent
pathogenic hallmark of solid tumors (Tan et al., 2021). Further-
more, it has been shown to confer cancer stem-cell-like properties,
such as resistance to treatment, which is a major concern in the
medical world. The adaptation processes of cancer cells to hypoxic
conditions are regulated by the HIF, NFjB, PI3K, and MAPK path-
ways, which are transcriptional programs activated by hypoxia
(Muz et al., 2015) that may aid in the development of targeted
therapies for hypoxic tumors.

Hypoxia has long been recognized as contributing to increased
tumor progression and aggressiveness, leading to poorer patient
prognosis and survival (Dekker et al., 2022). According to studies,
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individuals with hypoxic tumors are more susceptible to metasta-
sis and death (Jiang et al., 2021). To ascertain the hypoxic phe-
nomenon and to target it effectively, researchers are now
focusing on dissecting the hypoxia-inducible responses and signal-
ing pathways (Baxevanis and Bader, 2020; Lee et al., 2020; Fojtík
et al., 2021). Thanks to the technology, these targets can be
achieved through the utilization of bioinformatics and data mining,
these tools can help to verify various genes that are expressed dif-
ferently in two different conditions, allowing them to make better
comparisons between them (Baxevanis and Bader, 2020). Addi-
tionally, gene expression profiling arrays can also be employed to
investigate further the various metabolic and signaling pathways
of cancer under hypoxic conditions (Bartoszewski et al., 2019).
With the advancements in these fields, novel targets have emerged
with the potential to combat hypoxia in the near future.

This study sought to understand better and elucidate the funda-
mental genes and signaling pathways driving cancer progression in
hypoxic conditions, aiming to improve cancer prognosis and treat-
ment. An integrative bioinformatics analysis was performed on
various cancer cell lines to identify differentially expressed genes
(DEGs), analyze their protein–protein interaction networks, signif-
icant modules, and hub genes, determine functional annotations,
and assess their potential prognostic value. This study also
employed the Kaplan-Meier method to analyze the survival rate
associated with hub genes to better comprehend the intricate
molecular biology behind hypoxic tumors. We hoped to identify
new genes and the significant pathways that could serve as diag-
nostic biomarkers, prognostic indicators, or potential targets for
precise treatment. Our research could allow us a deeper compre-
hension of potential molecular mechanisms as well as the develop-
ment of preventive and therapeutic strategies. With the help of the
findings from this study, future research can be conducted to
understand better the hypoxia implications in cancer progression
and resistance, as well as to develop a variety of therapeutic
modalities that can be tested in pre-clinical and clinical trials.
2. Materials and methods

2.1. Microarray data and GEO database

The Gene Expression Omnibus (GEO) database contains a
wealth of data from high-throughput functional genomic studies.
These studies involve the processing and normalization of data
through various methods. Using the keywords ‘‘Homo sapiens” (or-
ganism), ‘‘Hypoxia” (study keyword), ‘‘A549” (cell line), ‘‘HCT116”
(cell line), ‘‘HeLa” (cell line) and ‘‘Expression profiling by array”
(study type), we searched for publicly available studies in the
GEO database (https://www.ncbi.nlm.nih.gov/geo/). This research
identified 3 GEO series in which cells were exposed to 1% hypoxia
and 21% O2 (normoxia) for 24 h. The selection criteria for the stud-
ies included the following: (1) cancer cell line (A549, HCT116,
HeLa) under hypoxic and normoxic conditions, (2) gene expression
profiling of mRNA. The expression profiles of GSE11704,
GSE147384, and GSE38061 were subsequently retrieved from the
GEO database for investigation.
2.2. Differentially expressed genes (DEGs) identification

In the current investigation, DEGs among hypoxic and normoxic
conditions were analyzed using GEO2R (https://www.ncbi.nlm.
nih.gov/geo/geo2r/) online tool on the NCBI-GEO website, which
uses the limma R packages and GEO query for the analysis of
high-throughput genomic data with |log2FC|>2 and the threshold
for differentially expressed genes (DEGs) was set at a p-value of
less than 0.05. Hypoxia-effect biomarkers were defined as DEGs
2

with a p-value less than 0.05 and a fold change (|FC|) greater than
0 in all three datasets. Venn diagrams were created using the Venn
diagram program (https://bioinformatics.psb.ugent.be/webtools/
Venn/) to illustrate the DEG overlap among the three selected
datasets.

2.3. Functional analysis of GO and KEGG pathways

The common DEGs (cDEGs) were analyzed for their Gene
ontology (GO) enrichment and KEGG pathway analysis, utilizing
a web-based application: Database for annotation, visualization,
and integrated discovery (DAVID) developed by the Laboratory of
Human Retrovirology and Immunoinformatic (ncifcrf.gov). The
GO analysis covered biological processes, cellular components,
and molecular functions. A t-test (ANOVA) was applied as a default
statistical analysis with a p-value greater than 0.05. cDEGs were
mapped to KEGG pathways as pathway functional analysis with
thresholds count >0 and p-value <0.05.

2.4. PPI network construction

The protein–protein interaction network (PPI) was generated
using the online database of Search Tool for the Retrieval of Inter-
acting Genes (STRING), version 11.5 (string-db.org). To ensure sta-
tistically significant results, PPI networks of upregulated and
downregulated DEGs were generated as full string networks in
which the edges indicate both physical and functional interactions
with the highest confidence score: of 0.900 and hidden the uncon-
nected nodes in the data. The PPI analysis was then imported into
Cytoscape (version 3.7.2) in order to visualize the PPI network.

2.5. Hub genes

The core subgroups, in the PPI network, were identified using
module analysis, which included genes with the same expression
patterns appearing under many circumstances. Relevant modules
were extracted from the PPI network using Cytoscape’s Molecular
Complex Detection (MCODE) plugin, with a degree cut-off of 2,
max depth of 100, node score cut-off of 0, and k-core of 2, MCODE
score >5, and nodes �10 thresholds. The PPI network has a number
of nodes and edges that, respectively, represent proteins and their
interactions. The PPI network was searched for common hub genes
(cHubGs) using the Cytoscape cytoHubba plugin. A node is
regarded as the highest ranking cHubGs if it has the most signifi-
cant connections, interactions, or edges with other nodes. The
common Hub genes were chosen by analyzing the topological
Degree algorithm of the PPI network. These hub genes were sub-
jected to another round of GO analysis, and the functional enrich-
ment of prognostic genes was determined.

2.6. Common hub genes (cHubGs)

To comprehend the potential biological domains and pathways
of the 19 selected hub genes, Gene ontology, and KEGG pathway
enrichment was re-analyzed via DAVID (P < 0.05).

2.7. Hub gene expression and prognostic value

Given the complexity of cancer, its etiopathogenesis is thought to
be the result of multiple interactions and compound gene expres-
sion. RNA sequencing expression data available on ‘‘Gene Expression
Profiling Interactive Analysis GEPIA 2 (cancer-pku.cn)” a website
tool that can perform principal component analysis (PCA) of genes
and present results in 2D plots, were analyzed to investigate the
potential clinical importance of hub genes. It uses the information
regarding the hub gene’s RNA sequencing expression, including
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hundreds of samples from the GTEx studies and TCGA. In addition,
the Kaplan-Meier analysis was implemented to perform survival
analysis on several cancer types, including colon adenocarcinoma
(COAD), cervical squamous cell carcinoma and endocervical adeno-
carcinoma (CESC), and lung adenocarcinoma (LUAD). The hazard
ratio (HR), log-rank P value, and 95% confidence intervals were
determined using this internet tool and presented in the plot. Fur-
thermore, the comparison of multiple hub genes provided a refer-
ence for assessing the prognosis of various genes in different
cancer species.
3. Results

3.1. DEGs identification under hypoxic conditions

The gene expression datasets GSE11704, GSE147384, and
GSE38061 were analyzed to identify DEGs between hypoxic and
normoxic samples in A549, HCT116, and HeLa cell lines. In the cur-
rent study, 5 hypoxic and 8 control samples were used. The volcano
plots were used to display the DEGs in each dataset (Fig. 1a-c).
GEO2R online tool identified 8854 DEGs with 4337 upregulated
and 4517 downregulated genes in GSE11704; 3501 DEGs with
Fig. 1. Evaluation of the overlapping DEGs among GSE11704, GSE147384, and GSE38061
regulated while blue dots indicate up-regulated. (d) upregulated and (e) downregulated
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1762 upregulated and 1739 downregulated genes in GSE147384;
and 41,379 DEGs with 36,732 upregulated and 4647 downregulated
genes in GSE38061 with |logFC| > 0 (p-value < 0.05). According to
Venn diagram software, there were 676 genes differentially
expressed as cDEGs in all three datasets, including 207 upregulated
DEGs and 469 downregulated DEGs in hypoxic conditions compared
to normoxia (Fig. 1d, e; Table S1).
3.2. DEGs GO functions

DAVID software was employed to perform GO and KEGG analy-
ses on the 676 cDEGs to investigate their functional and biological
properties. The top five significantly enriched GO terms of hypoxic
conditions (Table 1; Fig. S1). Gene ontology research findings
showed that 1) for biological processes (BP), the top five upregu-
lated DEGs were significantly enriched in response to hypoxia, cel-
lular response to hypoxia, glycolytic process, canonical glycolysis,
positive regulation of the apoptotic process, and downregulated
DEGs were enriched in mitochondrial translation, translation,
positive regulation of telomerase RNA localization to Cajal body,
rRNA processing, protein folding, 2) In terms of cell components
(CC), upregulated cDEGs were significantly enriched in the cytosol,
dataSets. (a) GSE11704, (b) GSE147384, and (c) GSE38061, red dots indicate down-
cDEGs in hypoxic conditions (log2FC > 0).



Table 1
Gene ontology analysis of DEGs in hypoxic conditions (p value < 0.001).

Expression Category Term Count % p-Value FDR

Upregulated GOTERM_BP_DIRECT GO:0001666 � response to hypoxia 18 9 2.78E-12 4.27E-09
GO:0071456 � cellular response to hypoxia 15 7.5 1.24E-10 9.50E-08
GO:0006096 � glycolytic process 10 5 3.39E-10 1.74E-07
GO:0061621 � canonical glycolysis 6 3 3.30E-07 1.27E-04
GO:0043065 � positive regulation of apoptotic process 14 7 2.33E-05 0.007159

GOTERM_CC_DIRECT GO:0005829 � cytosol 89 44.5 4.82E-08 1.33E-05
GO:0070062 � extracellular exosome 46 23 7.94E-07 1.10E-04
GO:0005737 � cytoplasm 80 40 5.34E-05 0.004913
GO:1904724 � tertiary granule lumen 6 3 1.80E-04 0.010699
GO:1904813 � ficolin-1-rich granule lumen 8 4 1.94E-04 0.010699

GOTERM_MF_DIRET GO:0051213 � dioxygenase activity 6 3 3.82E-05 0.011269
GO:0031418 � L-ascorbic acid binding 5 2.5 5.28E-05 0.011269
GO:0042802 � identical protein binding 35 17.5 1.12E-04 0.015899
GO:0005515 � protein binding 151 75.5 2.19E-04 0.023358
GO:0005536 � glucose binding 4 2 3.40E-04 0.029058

Downregulated GOTERM_BP_DIRECT GO:0032543 � mitochondrial translation 30 6.651885 2.14E-25 3.60E-22
GO:0006364 � rRNA processing 31 6.873614 2.39E-22 2.01E-19
GO:0006412 � translation 28 6.208426 5.92E-13 3.31E-10
GO:0006457 � protein folding 21 4.656319 1.28E-09 5.38E-07
GO:1904874 � positive regulation of telomerase
RNA localization to Cajal body

8 1.773836 1.26E-08 4.25E-06

GOTERM_CC_DIRECT GO:0005739 � mitochondrion 107 23.72506 9.51E-30 3.82E-27
GO:0005743 � mitochondrial inner membrane 54 11.97339 7.99E-23 1.61E-20
GO:0005654 � nucleoplasm 171 37.91574 2.68E-21 3.59E-19
GO:0005762 � mitochondrial large ribosomal subunit 22 4.878049 6.80E-21 6.83E-19
GO:0005730 � nucleolus 79 17.51663 6.95E-15 5.59E-13

GOTERM_MF_DIRET GO:0003723 � RNA binding 131 29.04656 5.90E-43 3.81E-40
GO:0003735 � structural constituent of ribosome 30 6.651885 6.56E-16 2.12E-13
GO:0005515 � protein binding 363 80.4878 3.47E-14 7.47E-12
GO:0034513 � box H/ACA snoRNA binding 5 1.108647 1.39E-06 2.25E-04
GO:0019843 � rRNA binding 9 1.995565 3.80E-06 4.90E-04

Table 2
KEGG pathway analysis of DEGs in hypoxic conditions (p value < 0.001).

Expression Category Term Count % P value Genes

Upregulated KEGG_PATHWAY hsa04066:HIF-1
signaling pathway

18 9 1.56E-14 EGLN1, MAP2K1, EGLN3, CDKN1B, PFKFB3, SERPINE1, SLC2A1, PRKCA,
ENO2, HK2, VEGFA, LDHA, PFKL, PGK1, ALDOC, ALDOA, GAPDH, PFKP

KEGG_PATHWAY hsa00010:
Glycolysis /
Gluconeogenesis

11 5.5 8.54E-09 LDHA, PFKL, TPI1, PGK1, ALDOC, ALDOA, ENO2, GAPDH, PGM1, HK2,
PFKP

KEGG_PATHWAY hsa00051:Fructose
and mannose
metabolism

8 4 1.31E-07 PFKFB4, PFKL, PFKFB3, TPI1, ALDOC, ALDOA, HK2, PFKP

KEGG_PATHWAY hsa01230:
Biosynthesis of
amino acids

10 5 3.44E-07 PFKL, TPI1, IDH2, PGK1, ALDOC, ALDOA, ENO2, GAPDH, ASS1, PFKP

KEGG_PATHWAY hsa01200:Carbon
metabolism

10 5 1.27E-05 PFKL, TPI1, IDH2, PGK1, ALDOC, ALDOA, ENO2, GAPDH, HK2, PFKP

Downregulated KEGG_PATHWAY hsa03008:
Ribosome
biogenesis in
eukaryotes

24 5.321508 4.68E-14 POP5, RBM28, POP7, POP1, WDR3, POP4, RPP40, HEATR1, WDR75,
IMP4, GTPBP4, GNL3, NOL6, RRP7A, RCL1, EMG1, GNL3L, DKC1, GAR1,
NHP2, SBDS, RIOK2, UTP14A, NOP10

KEGG_PATHWAY hsa03050:
Proteasome

13 2.882483 2.08E-09 PSMD12, PSMD8, PSMA5, PSMB6, PSMB7, PSMD6, PSMA4, PSMB2,
PSMB3, PSMC1, PSME3, PSMC2, PSMD1

KEGG_PATHWAY hsa03010:
Ribosome

22 4.878049 3.47E-09 MRPS17, MRPS15, MRPL18, MRPS12, MRPL19, MRPL36, MRPL15,
MRPL12, MRPL13, MRPL24, MRPL21, MRPL32, MRPL22, MRPS18C,
MRPL4, MRPL30, MRPL20, MRPL3, MRPS9, MRPL1, MRPL9, RPL26L1

KEGG_PATHWAY hsa05014:
Amyotrophic
lateral sclerosis

26 5.764967 1.68E-05 PSMD12, SEH1L, NUP188, NUP160, PSMD8, PSMB6, PSMB7, PSMD6,
PSMB2, PSMB3, CASP3, PSMD1, UQCRFS1, NUP88, UBQLN4, MAP2K3,
NDUFA8, SIGMAR1, PSMA5, PSMA4, PSMC1, PSMC2, NDUFS3, SRSF3,
NUP35, SRSF7

KEGG_PATHWAY hsa03013:
Nucleocytoplasmic
transport

12 2.660754 1.59E-04 SEH1L, NUP188, TMEM33, CSE1L, NUP35, PHAX, NUP88, RANGAP1,
KPNA2, TNPO2, IPO4, NUP160
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extracellular exosome, cytoplasm, ficolin-1-rich granule lumen,
mitochondrion, mitochondrial inner membrane, tertiary granule
lumen, nucleoplasm, mitochondrial large ribosomal subunit, nucle-
olus, and nucleolus. 3) In the case of molecular function (MF),
4

upregulated DEGs were significantly involved in dioxygenase activ-
ity, L-ascorbic acid binding, identical protein binding, protein bind-
ing, and glucose binding, whereas downregulated DEGs were
enriched in RNA binding, rRNA binding, structural constituent of



Fig. 2. cDEGs PPI network using the STRING online database and Cytoscape software.
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the ribosome, protein binding, box H/ACA snoRNA binding
(p-value < 0.001; Table 1).

The outcomes of KEGG analysis revealed that upregulated
cDEGs were particularly enriched in the HIF-1 signaling pathway,
gluconeogenesis/ glycolysis, biosynthesis of amino acids, carbon
metabolism, fructose, and mannose metabolism. In contrast,
downregulated cDEGs were enriched in ribosome biogenesis in
eukaryotes, proteasome, ribosome, amyotrophic lateral sclerosis,
nucleocytoplasmic transport, and spliceosome (P < 0.001; Table 2).
Fig. 3. Screening of Hub genes through Cytoscape’s CytoHuba plugin.
3.3. Building PPI networks, module analysis, and identifying hub genes

To build the PPI network, 676 cDEGs were uploaded to the
STRING database (K-means clustering: number of clusters 3, inter-
action score: highest confidence 0.900). The PPI network is
depicted in Fig. 2, with 673 nodes and 1446 edges (PPI enrichment
P < 1.0E-16). While a total of 368 GO terms, 20 KEGG pathways,
and 147 Reactome pathways were reported in the functional
enrichment analysis of the PPI network.

The Cytoscape plugin MCODE was used to identify the most sig-
nificant modules, with an MCODE score >5 and nodes �10. Four
significant modules were identified and analyzed using gene ontol-
ogy. Module 1 was enriched in GO terms like mitochondrial trans-
lation, DNA damage response, structural constituent of the
ribosome, and RNA binding (Tables S2, S3). Module 2 was enriched
in GO terms like regulation of proteasomal protein catabolic pro-
cess, endopeptidase activity, and enzyme regulator activity. Mod-
ules 3 and 4 were involved in RNA processing and ribosome
biogenesis (Tables S4, S5). Hub genes were extracted using
5
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Cytoscape software plugin CytoHubba on the PPI network data. The
top 19 hub genes were selected as the Hub genes on the basis of
the degree algorithm (Fig. 3).

3.4. Hub genes analysis

DAVID tool was used for enrichment analysis of biological pro-
cesses, cell components, molecular functions, and the KEGG path-
way of the 19 hub genes. The findings indicate that all the hub
genes except RNA binding motif protein 28 (RBM28) were involved
in biological processes i.e., rRNA processing, ribosomal large sub-
unit assembly and biogenesis, translation, etc (Fig. 4a), in the cell
components, all the hub genes were involved many components
i.e., nucleolus, nucleoplasm, chromosome, etc (Fig. 4b) and in the
molecular functions all the hub genes were involved in RNA bind-
ing, protein binding, rRNA binding, etc (Fig. 4c). Regarding statis-
tics pathway enrichment of hub genes, they were found to be
abundant in 25 pathways from biological processes, cell compo-
nents, and molecular functions (p-value < 0.05; Fig. 4d). Next, we
performed functional annotation clustering using DAVID to cluster
the hub genes into common GO functions. Fig. S1 shows the com-
mon functions performed by MRPL13, MRPL32, MRPL20, and NOL6
gene clusters. MRPL13, MRPL32, and MRPL20 genes were involved
in mitochondria, mitochondrial ribosome, mitochondrial transla-
tion, translation, and mitochondrial inner membrane. In contrast,
the NOL6 gene was involved in only mitochondria.
Fig. 4. Gene ontology analysis of hub genes. (a) Biological processes, (b) Cellular compo
genes.

6

In KEGG pathway analysis, five genes (RBM28, DKC1, IMP4,
GTPBP4, NOL6) were markedly enriched in ribosome biosynthesis
in eukaryotes, and three genes enriched in the ribosome were
MRPL20, MRPL13, and MRPL32 (P < 0.05, Table S6; Fig. 5, Fig. 6).
3.5. Hub gene expression and prognostic significance

The significance of 19 hub genes was further validated to iden-
tify the survival and expression analyses by GEPIA2 and GTEx stud-
ies. GEPIA2 analysis showed that 11 (DKC1, BRIX1, BYSL,
EBNAIBP2, GTPBP4, MRPL13, MRTO4, RPF2, RRS1, RSL1D1, and
WDR12) out of 19 hub genes were significantly more expressive
in one or more of CESC, COAD, and LUAD as shown in Figure S2
and S3 (P < 0.05) as compared to the control cells.

The association between each gene’s expression and the aver-
age survival time of cancer patients was examined in the hub genes
survival analysis. According to the Kaplan-Meier analysis, high
expression of DDX56 and IMP4 in LUAD, RBM28 in CESC, and
MRPL20 in COAD found (p < 0.05; Fig. S4a). In contrast, high
expression of BYSL, MRPL13, MRPL32, RBM28, RPF2, and WDR12
in LAUD and high expression of GTPBP4 and RSL1D1 in CESC had
significantly worse survival probability (p < 0.05; Fig. S4b). How-
ever, the survival analysis of the remaining 7 hub genes did not
reveal a statistically significant association (p > 0.05 and
pHR > 0.05).
nents, (c) Molecular functions, and (d) Statistics of pathway enrichment of the hub



Fig. 5. Ribosome biogenesis pathway; Five genes (RBM28, DKC1, IMP4, GTPBP4, NOL6) were enriched in ribosome biogenesis pathway (P < 0.05).
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The tissue-specific hub genes’ expression in various cancer
types is depicted as an interactive heat map in Fig. S5. The target
gene expression in various tumor samples was analyzed using a
7

heat map. When compared to other genes, RSL1D1 and MRPL20
were discovered to be significantly expressed in all tumor tissues
and may provide more accurate prognostic indicators (Fig. S5).



Fig. 6. The ribosome pathway; Three genes (MRPL20, MRPL13, MRPL32) were enriched in ribosome pathway (P < 0.05).
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4. Discussion

Alteration of metabolic pathways due to hypoxia can enable
cells to adapt to the local microenvironment and promote their
survival (Sohrabi et al., 2020). Moreover, hypoxia can control the
activity of tyrosine kinases receptor and incite a number of signal-
ing pathways that encourage the survival, proliferating, metasta-
sizing, and epithelial-mesenchymal transition (EMT) of tumor
cells (Yotnda et al., 2010; Torrisi et al., 2020). Oxygen concentra-
tion has been observed to affect chemotherapeutic agents’ sensitiv-
ity; thus, characterizing and identifying hypoxia-regulated genes
in cancer could be advantageous from a therapeutic perspective
(Jing et al., 2019).

The current study aimed to examine how hypoxia affects dif-
ferent cancer types. This study analyzed gene expression datasets
of lung, colon, and cervical cancer cell lines (A549, HCT116, and
HeLa, respectively) under hypoxic and control conditions to iden-
tify DEGs using GEO2R online tool (GSE11704, GSE147384, and
GSE38061 datasets). A number of 8854 DEGs were verified in
GSE11704, 3501 in GSE147384, and 41,379 in GSE38061, with
676 genes differentially expressed in all three datasets. Gene
Ontology (GO) and KEGG pathway enrichment analysis of DEGs
showed significant enrichment in hypoxic conditions for response
to hypoxia, glycolysis, HIF-1 signaling pathway, and ribosome
8

biogenesis. GO analysis and the KEGG pathway confirmed 19
hub genes enrichment in ribosomal biogenesis which were
further validated for their expression and prognostic value using
GEPIA2 and Kaplan-Meier plotter. Many of our hub genes were
significantly upregulated in various cancer cells compared to
the normal cells when analyzed by GEPIA2. However, some of
the hub genes were not significantly upregulated. Interestingly,
these genes cause high survival probability when highly
expressed in any cancer type (DDX56 and IMP4 in LUAD,
RBM28 in CESC, and MRPL20 in COAD), as shown by Kaplan-
Meier plots. These four genes can perform the tumor suppressor
function in respective cancer types and can be effectively targeted
(Lu et al., 2021).

In contrast to the above findings, all of the hub genes, found in
our study were downregulated in hypoxic conditions than in nor-
moxia as shown by Geo2R data. Then, why GEPIA2 analysis gives
us their high expression in cancer cells? One of the possible
answers to this question is that cancer cells respond differently
in hypoxic conditions, as proved by many studies (Nakayama and
Kataoka, 2019; Ke et al., 2019). It is not inappropriate to say that
the outer cells of the tumor mass respond differently to the tumor
microenvironment than the inner cells. This results in heterogene-
ity in gene expression of the different tumor cells (Nakayama and
Kataoka, 2019).
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One of the most important findings of this study is that all of
our hub genes belong to ribosome biogenesis, as confirmed by GO
and KEGG pathway analysis. It is a well-studied phenomenon that
ribosomal biogenesis alters in cancer cells. The nucleolar
organizer regions (NORs) of the genome, organized in repetitive
patterns, are typically engaged in ribosomal biogenesis (McStay,
2016). The resulting 47S pre-rRNA transcript is a single poly-
cistronic molecule that undergoes further modifications within
the nucleolus. Co-transcriptional initiation and a number of
processing steps, such as endo- and exonucleolytic cleavages,
pseudouridylation, and 20-O-methylation, are all a part of the
maturation process (Henras et al., 2015). The small ribosomal
subunit (SSU) contains the 18S rRNA, whereas the large ribosomal
subunit (LRS) contains the 5.8S, 28S, and 5S rRNA (LSU) (Turi
et al., 2019) but in cancer cells, 20-O-methylation patterns vary
as compared to normal cells (Marcel et al., 2015). In these cells,
alterations in 20-O-methylation have been reported, with
some studies showing an overall decrease in the levels of
20-O-methylation (Turi et al., 2019). These changes in
20-O-methylation have been associated with alterations in the
expression of RNA methyltransferases and changes in ribosome
composition, which can affect the translational landscape of
cancer cells and contribute to their malignant phenotype
(Elhamamsy et al., 2022).

Hypoxia can also affect 20-O-methylation levels in cells but
in a different way. Under hypoxic conditions, cells activate
various adaptive mechanisms to promote cell survival, includ-
ing ribosome biogenesis and function changes. Some studies
have shown that hypoxia can lead to an increase in the levels
of 20-O-methylation in specific nucleotides of rRNA, which may
play a role in promoting cell survival and adaptation to low
oxygen conditions (Erales et al., 2017; Metge et al., 2021).
Thus, it is clear that the tumor cells respond differently in
the presence and absence of oxygen in many aspects, one of
which is ribosome biogenesis. This ribosomal biogenesis in
cancer cells with and without hypoxia could be a better target
for treating hypoxic tumors (bigger tumors). We identified 11
significant genes which expressed differently in tumors with
and without hypoxia. These genes could prove better prognosis
markers to identify cancers with and without a hypoxic
microenvironment.

5. Conclusion

Our bioinformatics analysis revealed that 11 genes (DKC1,
BRIX1, BYSL, EBNAIBP2, GTPBP4, MRPL13, MRTO4, RPF2, RRS1,
RSL1D1, and WDR12) were downregulated in hypoxic tissues com-
pared to normoxic tissues. These genes were identified as promis-
ing prognostic markers and were found to play crucial roles in the
development and progression of hypoxic tumors. Additionally, we
identified four genes (DDX56 and IMP4 in LUAD, RBM28 in CESC,
and MRPL20 in COAD) as potential tumor suppressors. However,
further research is necessary to verify our predictions and compre-
hend the underlying mechanisms. Such findings offer new perspec-
tives and insights into exploring molecular markers and potential
therapeutic targets for cancer.
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