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A key goal of systems biology is to elucidate molecular mechanisms associated

with physiologic and pathologic phenotypes based on the systematic and

genome-wide understanding of cell context-specific molecular interaction

models. To this end, reverse engineering approaches have been used to sys-

tematically dissect regulatory interactions in a specific tissue, based on the

availability of large molecular profile datasets, thus improving our mechanis-

tic understanding of complex diseases, such as cancer. In this paper, we

introduce high-order Algorithm for the Reconstruction of Accurate Cellular

Network (hARACNe), an extension of the ARACNe algorithm for the dissec-

tion of transcriptional regulatory networks. ARACNe uses the data processing

inequality (DPI), from information theory, to detect and prune indirect inter-

actions that are unlikely to be mediated by an actual physical interaction.

Whereas ARACNe considers only first-order indirect interactions, i.e. those

mediated by only one extra regulator, hARACNe considers a generalized

form of indirect interactions via two, three or more other regulators. We

show that use of higher-order DPI resulted in significantly improved perform-

ance, based on transcription factor (TF)-specific ChIP-chip data, as well as on

gene expression profile following RNAi-mediated TF silencing.
1. Introduction
Cellular phenotypes are determined by a complex web of physical interactions

between gene products [1]. Modelling these relationships helps to organize the

list of parts encoded in the genome into functional genetic networks, a crucial

step towards the understanding of mechanisms contributing to normal cell

physiology as well as of their dysregulation in disease.

With the advent of high-throughput technologies, a large amount of molecu-

lar profile data have been generated from large numbers of samples associated

with a variety of diseases. Through use of reverse engineering algorithms, these

data have shown great promise in the dissection of transcriptional regulatory

networks on a genomic scale [2–10]. While the caveats associated with the use

of gene expression data for transcriptional network inference have been well

documented and studied throughout the past decade [11], a preponderance of

studies and high-impact discoveries in systems biology have established such

approaches as widely accepted tools in a systems biologist’s arsenal [6,12–18].

Reverse engineering approaches have been developed using the mathematical

frameworks established in disciplines such as Bayesian networks [4,5,19], dyna-

mical systems [8] and information theory [2,6,7,11–13,16,17,20]. For instance,

the relevance network approach [2,21], one of the earliest proposed, assumes

that genes co-expressed above statistical significance are more likely to represent

regulatory interactions. Unfortunately, owing to long chains of regulatory events,
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a large number of gene pairs may be co-expressed without

necessarily implicating a physical interaction. Thus, relevance

networks, whether based on mutual information or Spearman

correlation, typically generate a large number of false positives.

A survey of such approaches and their relative merits is

reviewed in [11] and are outside the scope of this article. Rather,

the current study is intended to build on and improve the

body of research associated with the information theoretic algor-

ithm ARACNe (Algorithm for the Reconstruction of Accurate

Cellular Network), which has emerged as a widely referenced

approach that has been experimentally validated in numerous

applications, leading to key biological discoveries [6,12–14].

ARACNe was developed to maintain the simplicity of

relevance networks, while using rigorous information theoretic

principles to eliminate the vast majority of indirect interac-

tions (i.e. false positives). By limiting interactions only to pairs

where at least one of the genes is a transcription factor (TF),

ARACNe also addressed the issue of interaction directionality,

since a TF can regulate a non-TF but the opposite is not

true. Thus, the only undirected interactions in ARACNe net-

works are those between two TFs, where directionality cannot

be disambiguated.

To eliminate indirect interactions, ARACNe uses the data

processing inequality (DPI) theorem, from information theory,

stating that information transferred directly (i.e. through a

physical interaction) is always larger than information trans-

ferred indirectly, i.e. via an intermediary. Here, information is

formally computed by the mutual information, I(x;y) ¼ S(x) þ
S(y) 2 S(x, y), where S(u) represents the entropy of the variable

u. We note that the DPI does not apply for other measures, such

as Spearman correlation, unless interactions are linear, which is

clearly not the case in biological systems. Experimental vali-

dation shows that the DPI removes a vast majority of false

positive interactions, leading to highly accurate regulatory

models [6,7,20,22].

Given its simplicity and the fact that it could consi-

der each interaction independently, ARACNe was the first

reverse engineering algorithm to successfully scale up to

the complex regulatory networks of mammalian cells. For

instance, 90 per cent of ARACNe-inferred and experimen-

tally tested MYC targets in human B cells were validated as

directly regulated by MYC [6], validation of targets in high-

grade human glioma confirmed 40 out of 50 tested inter-

actions for the transcription factors C/EBPb, Stat3, RUNX1

and BHLHB2 [12], and the algorithm could correctly dissect

a large number of transcriptional interactions involved in

the synergistic control of germinal centre B cell prolifera-

tive programmes by FOXM1 and MYB [14,23,24]. More

importantly, interrogation of ARACNe-inferred regulatory

networks has allowed elucidation of key drivers of normal

and disease-related phenotypes [6,12,13,15].

In this study, we explore improvements based on the nes-

ted iterative application of higher-order DPI tests [25,26]. The

resulting algorithm, hARACNe (higher-order ARACNe), is

thus designed to identify and remove a significant number of

false positive interactions that could not be identified by first-

order DPI (DPI1) analysis. Use of higher-order DPI analysis

does not affect the generality of the method and is applicable to

any network analysis, including those using static, time-course

and even post-translationally predicted data [7,27].

Our analysis shows that hARACNe can systematically

eliminate false positive interactions that were missed by

DPI1 logic of ARACNe, thus significantly improving inferred
TF–target interaction accuracy, based on MYC-binding data

from ChIP-chip data [6,28] as well as gene expression profile

(GEP) analysis following RNAi-mediated silencing of BCL6

[16]. Thus, our data show that hARACNe constitutes an

advance in the identification of bona fide TF–target interactions

of biological relevance.
2. Material and methods
2.1. Data sources
For this study, 254 previously published [6,17,20] GEPs were used,

representing 17 distinct normal and tumour-related B-cell pheno-

types from primary patient biopsies and tumour-derived cell

lines. In addition, we used a set of 226 previously published [16]

GEPs from human B-cell lymphoma, including normal samples

from naive, memory and germinal centre B cells isolated from

human tonsils and patient derived tumour samples, including dif-

fused large B-cell lymphoma (DLBCL), follicular lymphoma and

chronic lymphocytic leukaemia (CLL). The first dataset was pro-

filed using the HG-U95Av2 GeneChip platform, whereas the

second set was profiled using the HG-U133 Plus2.0 GeneChip

(Affymetrix) [6,7,14,16,17,20]. All profiles discussed in this research

are accessible from the Gene Expression Omnibus (GEO; National

Center for Biotechnology Information), through GEO series acces-

sion nos. GSE2350 and GSE12195. The list of phenotypes is found

in table 1.

Ramos and Mutu (human Burkitt’s lymphoma) cell lines were

analysed in ChIP-chip assays to identify the genes whose proximal

promoter is bound the MYC protein. ChIP-chip significance analy-

sis (CSA) was applied, where p-values were first derived for each

probe from three replicate experiments, as described in [29].

Values of p were then integrated across a 500-base region sur-

rounding the transcription start site of the gene, using a gamma

cumulative distribution function. Each promoter was associated

with the highest 500-base MYC-localization segment, and the

false discovery rate (FDR) was computed using the Benjamini

Hochberg procedure, as a function of gene rank. More precise

procedures were described in [28].

In addition, DLBCL cell lines, including LY7, Pfeiffer

and VAL, were profiled following lentivirus-mediated shRNA

silencing of the BCL6 TF. The experimental procedures and con-

ditions used to perform these experiments are described in [16].

Following BCL6 silencing, differentially expressed genes were

identified (FDR , 0.05). ARACNE- and hARACNe-inferred BCL6

targets (BCL6 regulons) were then compared with differentially

expressed genes.

For both the ChIP-chip and shRNA experiments, the pro-

cedures described earlier were used to infer a list of ‘positive’

TF–target interactions, which were compared with the predic-

tions made by hARACNe and ARACNe to compute the number

of true positives versus false positives removed by the additional

pruning steps:

TPgain ¼ TP(hARACNe)� TP(ARACNe)

FPgain ¼ FP(ARACNe)� FP(hARACNe);

For comparison with ChIP-chip experiments, TP and FP are the

number of ARACNe- or hARACNe-inferred MYC targets that

were identified as bound and not bound by MYC, respectively.

For comparison with shRNA experiments, TP and FP are the

number of ARACNe- or hARACNe-inferred BCL6 targets that

were identified as differentially regulated or not differentially regu-

lated, respectively, following BCL6 inhibition. We note that the

decrease in true positives due to removing interactions is equivalent

to the increase in false negatives.

As with most ‘gold standards’ used in assessment of systems

biology applications, we note that both the ChIP-chip and



Table 1. Human B-cell phenotypes in the two GEPs.

HG-U95 Av2 HG-U133 Plus2.0

cell type no. cell type no.

diffuse large B-cell lymphoma 68 naive B cell 5

Burkitt’s lymphoma 33 memory B cell 5

follicular lymphoma 14 germinal centre B cell 11

mantle cell lymphoma 8 B-cell chronic lymphocytic leukaemia 16

B-cell chronic lymphocytic leukaemia 34 follicular lymphoma 38

hairy cell leukaemia 16 diffuse large B-cell lymphoma 128

multiple myeloma 4 undefined 23

Hodgkin’s lymphoma 4

primary effusion lymphoma 9

splenic lymphoma with villous lymphocytes 12

large cell lymphomas 5

Burkitt’s lymphoma type III 3

undefined 2

germinal centre B cells 17

naive B cell 5

memory B cells 5

cord blood 5

total 254 total 226
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shRNA experiments are imperfect tests to identify true TF–target

regulatory interactions. In particular, each assay only measures

one (necessary but not sufficient) criterion of a regulatory interac-

tion, and therefore may over-estimate the number of interactions.

Moreover, each assay is performed in only a subset of tumour

sub-types that were profiled in the microarray dataset, and there-

fore may underestimate the number of interactions, as only those

active in the tested sub-types will be detected. Thus, although the

exact number of true and false positives reported for each

method are inexact, the TFgain and FPgain statistics should rep-

resent fair tests of the relative performance of each method.

Moreover, the ChIP-chip and shRNA experiments measure dif-

ferent aspects of TF–target interactions and were performed on

different TFs; therefore, consistent performance increases in com-

parison with these two distinct experiments lend strong support

to the benefit of a method.
2.2. hARACNe algorithm design
The DPI is a simple but powerful theorem that starts from

the simple axiom that as information is transferred through a

lossy network, it can only be reduced and never increased.

A Markov chain is at the heart of the DPI concept. A Markov

chain is a linear sequence of states such that knowledge of the

state at position i0 makes all states at position i . i0 indepen-

dent of states at position i , i0. In other words, any state

provides all the necessary information to infer downstream

states in the chain [26,30]. In a gene regulatory network, a

Markov chain may represent a sequence of regulatory inter-

actions R1! R2! � � � ! RN. In this case, DPI1 analysis can

remove indirect interactions of the type Ri! Riþ2, where a dis-

tinct Markov state Riþ1 exists that makes Riþ2 independent of

Ri (figure 1a). In this case, the DPI states that, if any information
is lost through interactions (an obvious true statement for any

biological regulatory cascade), then I(Ri; Riþ2) is strictly smaller

than both I(Ri; Riþ1) and I(Riþ1; Riþ2), i.e.

IðRi; Riþ2Þ , min(IðRi; Riþ1Þ; IðRiþ1; Riþ2Þ)

; DPIðRi )
Riþ1

Riþ2Þ: ð2:1Þ

This means that the Ri! Riþ2 interaction is removed because it is

indirect through Riþ1.

To extend DPI1 to higher-order DPIs, consider a Markovian

quadruplet Ri! Riþ1! Riþ2! Riþ3. Then, the second-order

DPI (DPI2) could be expressed as follows:

IðRi; Riþ3Þ , min(IðRi; Riþ1Þ; IðRi; Riþ2Þ; IðRiþ2; Riþ3Þ)

with DPIðRi )
Riþ1

Riþ2Þ and DPIðRiþ1 )
Riþ2

Riþ3Þ

; DPIðRi )
Riþ1 ;Riþ2

Riþ3Þ: ð2:2Þ

Or, in other words, the Ri! Riþ3 interaction is removed as indir-

ect through Riþ1 and Riþ2.

Proof. It follows from the Markov property satisfying conditional

independency among a Markov triplet as I(Ri;Riþ3jRiþ1)¼

I(Riþ1;Riþ3jRiþ2) ¼ 0. Therefore, by repeatedly using the chain

rule, I(Ri;Riþ1, Riþ2) ¼ I(Ri;Riþ1) þ I(Ri;Riþ2jRiþ1), we obtain this

inequality as follows:

IðRi; Riþ3Þ � IðRi;Riþ1; Riþ3Þ
¼ IðRiþ1; Riþ3Þ þ IðRi; Riþ3jRiþ1Þ ¼ IðRiþ1; Riþ3Þ
� IðRiþ1; Riþ2;Riþ3Þ
¼ IðRiþ1; Riþ2Þ þ IðRiþ1; Riþ3jRiþ2Þ ¼ IðRiþ1; Riþ2Þ:

Figure 1b shows graphically how the DPI2 can be nested itera-

tively applied to identify additional false positive interactions

within a Markov quadruplet.
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Figure 1. (a) Pruning process by DPI in triplet, (b) DPI2 nested iterative procedure to detect indirect interaction in quadruplet, (c) DPI3 sequential procedure to
detect indirect interaction in quintuplet, and (d ) DPI4 sequential procedure to detect indirect interaction in sextuplet.

Table 2. The number of interactions: comparisons with the adaptive
partitioning method with nested iterative application of higher-order DPIs. The
number of interactions inferred by ARACNe and hARACNe. Mutual information
values were computed using the adaptive partitioning method [31]. See
http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE.

adaptive partitioning HG-U95 Av2 HG-U133 Plus2.0

ARACNe 155 526 198 766

h1ARACNe 134 452 142 037

h2ARACNe 132 018 138 697

h3ARACNe 131 738 137 164
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Next, consider a Markovian chain of any length n þ 2, Ri!
Riþ1! � � � ! Riþn! Riþnþ1. We can apply the nth-order DPI

(DPIn) with conditional independence among any sub-chain

as follows:

IðRi; Riþnþ1Þ � min(IðRi; Riþ1Þ; . . . ; IðRiþn; Riþnþ1Þ)
with {1st DPI}; {2nd DPI}; . . . ; {ðn� 1Þth DPI}

; DPIðRi )
Riþ1 ;...;Riþn

Riþnþ1Þ; ð2:3Þ

where fkth DPIgmeans the super set of all possible combinations

of kth-order DPI. Figure 1c,d, for instance, show examples for

DPI3 and DPI4.

Higher-order DPI pruning process is always sequentially

conducted after lower-order DPI is processed in advance, and pair-

wise mutual information between TFs and TGs are once computed

in original ARACNe (DPI1), and we iteratively prune indirect

interactions from lower DPI to higher DPI. Thus, kth-order DPI

does not need to revisit lower-order DPI application. This sequen-

tial pruning with higher-order DPIs may be applicable to

any modified versions of ARACNe, which uses DPI1 to prune

indirect interactions.
3. Results
3.1. Reverse engineered transcriptional networks

comparing ARACNe and hARACNe
The number of transcriptional interactions in the recon-

structed networks was compared, and the distribution of

TF targets is shown in table 2. In the human B-cell data pro-

filed with the Affymetrix U95 platform, there were 12 600

probe IDs, of which 1225 corresponded to TFs, representing
848 unique genes. ARACNe identified 155 526 transcriptio-

nal interactions at the probe ID level. After applying DPI2,

134 452 interactions were left and 21 074 were removed as

indirect interactions. When DPI3 was applied, 132 018 inter-

actions were left and an additional 2434 were removed as

indirect. Analysis with fourth- and fifth-order DPI removed

only 280 and no interaction, respectively. Thus, it appears

that high-order DPI reaches saturation rapidly and that

only DPI2 and DPI3 provide substantial false positive filtering

power. Yet, high-order DPI, DPI4 and above, have relatively

high computational cost compared with efficiency of filtering

power. With the second B-cell dataset, profiled using the

Affymetrix U133 platform, there were 14 090 probe IDs, of

which 1290 were TFs representing 1209 unique genes.

ARACNe identified 198 766 transcriptional interactions at

the probe ID level. DPI2 produced 142 037 interactions, with

http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE
http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE
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56 729 removed as indirect interactions. DPI3 produced 138

697 interactions, with 3340 additional ones removed as indir-

ect interactions. Finally, DPI4 removed an additional 1533

interactions as indirect. We did not apply DPI of order greater

than four.

In our comparative analyses, every TF had a different

number of ARACNe- and hARACNe-inferred transcriptional

targets. The distributions of transcriptional targets for

ARACNe and hARACNe in the human B-cell analysis are

shown in figure 2. For instance, from the U95 dataset, the

ELK1 TF has 233 ARACNe-inferred targets, and we randomly

selected ELK1 among the TFs which have more than 200 targets

in ARACNe. Of these, 97 were removed by DPI2, leaving only

136 targets (figure 3). However, DPI3 removed only seven

additional targets and no additional targets were removed by

DPI4. An identical pattern was observed in the U133 human

B-cell dataset analysis. Among all TFs, ZNF267 had the largest

number of targets removed by higher-order DPI analysis. Of

223 ARACNe-inferred targets, 121 were removed by DPI2, and

30 and 5 additional targets were removed by DPI3 and DPI4,

respectively, leaving only 86 targets.

As described, hARACNe removed a significant percentage

of interactions inferred by ARACNe. This may improve the

accuracy of inferred networks if the filtered interactions were

enriched in false positives (i.e. indirect interactions). To test

this hypothesis, we compared the ARACNe and hARACNe

predictions against two datasets providing orthogonal evidence

of TF–target interactions (see figure 2 for more details).

The first dataset was generated through ChIP-chip exper-

iments designed to detect direct biochemical interactions

between the MYC proto-oncogene and genome-wide promo-

ter regions. The second dataset used RNAi experiments to

detect genes differentially regulated upon inhibition of

BCL6. We used data related to MYC and BCL6 based on

availability of datasets and based on their central role as

proto-oncogene B-cell leukaemias and lymphomas.
3.2. ChIP-chip functional validation of MYC targets
We first compared ARACNe- and hARACNe-inferred targets

of the MYC TF against genes with experimentally assessed

interactions between the MYC protein and their proximal

promoter regions. The assessment was based on existing

ChIP-chip assays in Ramos and Mutu (human Burkitt’s lym-

phoma) cell lines [29]. Based on the CSA algorithm [28], 5307

and 3310 putative MYC-binding targets could be predicted

in Ramos and Mutu cell lines, respectively. Comparing

ARACNe- and hARACNe-inferred MYC regulons, from the

U95Av2 data, 18 interactions were removed by hARACNe.

Based on Ramos cell assays, 13 of these 18 interactions (hyper-

geometric test: p-value ¼ 0.0178) were identified as false

positives (i.e. no detected interaction between MYC and the

gene’s promoter region) and only five were identified as true

positives (table 3). Based on Mutu cell assays, 14 of the 18 inter-

actions were identified as false positives, and only four of

18 were identified as true positives (hypergeometric test:

p-value ¼ 2.8713�1027).

As a result, it appears that hARACNe was three times more

likely to remove false interactions not supported by a corre-

sponding MYC-binding site in the proximal promoter region

than to remove interactions with target whose promoter was

bound by MYC.
3.3. Differentially expressed genes following
shRNA-mediated BCL6 silencing

To further check whether the additional pruning produced by

higher-order DPI improved the accuracy of TF–target pr-

diction, we performed lentivirus-mediated shRNA silencing

of the BCL6 gene and tested the enrichment of differentially

expressed genes in ARACNe- versus hARACNe-inferred

BCL6 targets. GEPs were measured using the Affymetrix HG-

U95A GeneChip platform with DLBCL and CLL cell lines
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(LY7, Pfeiffer and VAL cell lines), where cells were infected

with control non-target shRNA or validated shRNA targeting

BCL6. Differentially expressed genes were identified using

fold-change criteria and a 0.05 FDR threshold using a non-para-

metric U-test. In LY7, Pfeiffer and VAL cell lines, 1507, 3706 and

3199 differentially expressed genes were identified, res-

pectively. From LY7 data, out of 334 ARACNe-inferred BCL6

targets, 318 were identified by sequential application of DPI2,

DPI3 and DPI4. Twenty gains were achieved by hARACNe.

Eighteen out of 20 were not differentially expressed following

BCL6 silencing and may thus be considered false positives.

Conversely, two BCL6 targets were newly identified due to con-

sensus scoring analysis followed by 100 bootstrappings

(hypergeometric test: p-value ¼ 5.5955�10214), which were dif-

ferentially expressed following BCL6 knockdown and may

have been considered true positives (table 4). In Pfeiffer cells,

all 16 interactions removed by hARACNe(nested iterative pro-

cedures of DPI2, DPI3 and DPI4) were identified as false

positives and none were identified as true positives (hypergeo-

metric test: p-value ¼ 8.6441�1027). Finally, in VAL cells, all 16

interactions removed by hARACNe(nested iterative procedures

of DPI2, DPI3 and DPI4) were also identified as false positives
and none were identified as true positives (hypergeometric

test: p-value ¼ 2.5294�1028). Tables 3 and 4 also include the

statistical analysis (Fisher’s exact test) with TPs and FPs from

experimentally validated targets with each step of hARACNe-

inferred targets in order to show how significantly targets

were identified by either ARACNe or each cumulative order

of hARACNe.
4. Discussion
The goal of this work was to improve the widely used ARACNe

algorithm by further reducing false positive interactions,

thus leading to more accurate inference of interaction net-

works. We note that our work is not intended to address

other foundational issues of reverse engineering approaches

or of the ARACNe algorithm, such as the assumptions inherent

to the use of mRNA data. Rather, we use the widely accepted

ARACNe assumptions as a starting point and assess the ability

of higher-order DPI analysis to improve prediction accuracy

based on theoretical arguments and comparison with indepen-

dent ‘gold standard’ datasets. Within this limited context, we
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believe that this work represents a useful contribution to the

field, based on the widespread use of ARACNe and the benefit

of an extension improving its accuracy.

From a theoretical standpoint, we note that higher-order,

indirect Markov chain interactions detected by hARACNe

would also be eliminated by repeated application of the

DPI1, under certain assumptions. Specifically, these would

require that (i) the network have a tree (or locally tree-like)

structure, (ii) the network contain only pairwise interactions,

and (iii) mutual information be measured without errors.

Given that each of these assumptions may be individually

violated and given the large number of potential pairwise

interactions, higher-order DPIs provide additional filters to

increase the global Markov chain stringency in ARACNe-

inferred networks, thus eliminating indirect interactions

that may have been missed by DPI1. In this context, the

experimental data we have provided, demonstrating a

higher accuracy of hARACNe networks, represents the most

meaningful test of the method.

Yet, there are a few computational limitations in hAR-

ACNe. First, since hARACNe starts from an ARACNe-

inferred network, on which it nested iteratively applies

higher-order DPI analyses, it must consider a large number

of candidate Markov chain paths, traversing up to four
interactions, and is thus computationally intensive. Our

results, however, show that DPI2 provides the greatest prun-

ing effect while higher-order DPIs have a significantly lower

detection rate. Thus, one may want to consider whether to

apply only DPI2 or up to DPI3 to obtain the highest increase

in accuracy at the lowest computational cost.

Our experimental design for evaluating hARACNe relied

on two datasets providing orthogonal evidence of direct TF–

target interactions. Specifically, we used ChIP-chip assays

and shRNA-mediated silencing to show that hARACNe pre-

ferentially removes false positive interactions. In BCL6

silencing experiments, interactions removed by hARACNe

had significantly more false positives than true positives.

Similarly, when considering ChIP-chip experimental data

on MYC-binding sites, a similar improvement in the false

positive predictions was introduced by hARACNe. Overall,

the higher-order DPI analysis inferred a more reliable net-

work, compared with the DPI1 procedure of the original

ARACNe algorithm.

This project was partly supported by grant no. U54CA149237 from
the Integrative Cancer Biology Program of the National Cancer Insti-
tute and National Institutes of Health grant no. U54CA121852
(National Centers for Biomedical Computing).
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