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An automatic vessel diameter measurement technique based on linear discriminant analysis (LDA) has been proposed. After
estimating the vessel wall, the vessel cross-section profile is divided into three regions: two corresponding to the background and
one to the vessel. The algorithm was tested on more than 5000 cross-sections of retinal vessels from the REVIEW dataset through
comparative study with the state-of-the-art techniques. Cross-correlation analyses were performed to determine the degree to
which the proposed technique was close to the ground truth. The results indicate that proposed algorithm consistently performed
better than most of other techniques and was highly correlated with the manual measurement as the reference diameter. The
proposed method does not require any supervision and is suitable for automatic analysis.

1. Introduction

Retina images allow noninvasive viewing of the in-vivo
vessels and have been established as indicator for incidence
of diabetic retinopathy [1, 2], early indicator of stroke [3, 4]
and hypertension [5]. It is the best modality to see the
microvascular abnormalities [6] such as change in the width
of the vasculature. Changes in the width of the retinal
arteriole and venules are known as direct indictors of retinal
vasculature abnormality [7]; detection of which requires
accurate measurement of retinal vessel diameter. However,
complex background and uneven lighting conditions result
in poor contrast at vessel edges [8], and this result in
inaccurate diameter measurement.

Several techniques have been published previously
for vessel diameter estimation and edge delineation.
Brinchmann-Hansen and Heier proposed the Half Height
Full Width (HHFW) method in which the diameter was
defined as the distance between the points on the vessel
intensity cross-section profile where the function reaches
50% of its maximum value to either side of the estimated
centre point [9]. Gregson et al. [10] fitted a rectangle to the
vessel profile and estimated the width by setting the area
under the curve equal to the area under the rectangle. In

[11], the vessel profile was approximated by 1D Gaussian
function based on the assumption that the intensity profile
follows a symmetric Gaussian-like shape. This was further
extended to 2D Gaussian by Lowell et al. [12] which was
more robust compared to 1D Gaussian method. Gao et
al. [13] established that the retinal vessel profile could be
fitted with twin-Gaussian model. The study found a linear
relationship between the standard deviation (SD) of the
Gaussian and the gold standard diameters obtained from the
sharper images of the angiograms. However, these methods
may fail when the fitted curves do not converge to the
model. An analysis was performed by Chapman et al. [14] to
compare different automated vessel diameter measurement
algorithms, showing that the sliding linear regression filter
(SLRF) was more precise than the twin-Gaussian technique.
However, the SLRF method relied on a parameter from
the twin-Gaussian analysis to adjust its window size. Al-
Diri et al. [15] proposed the extraction of segment profiles
(ESP) algorithms based on growing a Ribbon of Twins
(ROT) and active contour model over segmented vessels.
Two merging pairs of contours were used at each edge
(one inside and one outside the vessel) to converge to the
boundary and delineate the edges for diameter measurement.
The importance of independent boundary extraction led to
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the work by Xu et al. [8]. They established a graph-based
method in which the vessel boundaries were segmented
simultaneously using a 3D surface segmentation scheme.
While a number of these techniques have been shown to
be accurate [8, 15], asymmetry of the vessels’ cross-section
profile due to uneven illumination [11], limitations of the
imaging equipment, and blurred vessel boundaries can result
into incorrect detection of real edge location and therefore
imprecise diameter estimation by different algorithms and
observers [8].

In order to overcome the above limitation, a new vessel
diameter measurement based on an Unsupervised Linear
Discriminant Analysis (ULDA) [16] has been proposed. The
technique does not require any supervised training and is
suitable for automation purpose. It was assessed on the
publically available REVIEW [17] dataset and compared with
sate of the art methodology techniques.

2. Unsupervised Linear Discriminant
Analysis Diameter Measurement (ULDM)

We have proposed, developed, and tested reliability of
ULDM to automatically measure the diameter of the retinal
vasculature. ULDM does not require any supervision, and
the grader only has to identify the region of interest (ROI).
After the ROI has been identified by the grader, the vessel
boundaries are estimated, and the intensity cross-section
profiles are obtained during the initialisation step. The next
step is to automatically generate the training data using the
Linear Discriminant Analysis (LDA) classifier [18] which
is trained to separate the profile into the three Sections; 1
corresponding to the vessel surface and the Sections 2 and 3
corresponding to the background at either side of the vessel.
The trained LDA identifies the three sections, and the width
of Section 1 is taken as the vessel diameter. These steps are
explained below in Section 2.1, and LDA has been explained
in Sections 2.2 and 2.3.

2.1. Initialization. During the initialization phase, the vessel
boundaries are automatically estimated and tracked using
the vector sum of image Hessian eigenvectors on circles
centered at vessel edges [19]. Using this method, the pixels
corresponding to the vessel boundaries are identified.

After estimating the vessel boundary, the intensity profile
along a line normal to the vessel edges and greater than the
actual vessel diameter is obtained for vessels with diameter
greater than 3 pixels. The length of the normal line was set
to 10% greater than the shortest Euclidean distance between
the estimated edge points to cover the background intensities
corresponding to its either side while not overlapping the
intensities for adjacent vessels. The normal line corresponds
to the shortest Euclidean distance between the points on
vessel boundaries. However, for fine vessels with distance
between the two boundaries equal to or less than 1 pixel
the normal cannot be estimated from the edges. In such
a case, the normal is estimated from the direction of the
progress of the vessel tracking as in [20]. This initialization
process estimates the boundary of the vessels and is used

only for cross-section profile recording. However, this is not
suitable for measuring the diameter as tracking methods
are sensitive to illumination conditions and not suitable for
subpixel measurement accuracy [21].

2.2. Training LDA. Linear discriminant analysis is a method
for data classification and dimensionality reduction [18].
LDA optimizes class separability by maximizing the ratio
of interclass to intraclass variances and is suitable for
applications with unequal sample sizes. This was applied
to the retinal vessel cross-section profiles after the average
intensity value was subtracted and was trained to classify
the intensities into the three sections (i) vessel surface, (ii)
background to the left, and (iii) background to the right of
the vessel to detect the points discriminating vessel from its
background.

The LDA is a supervised technique, and the training
process has to be done automatically so that the system is
suitable for unsupervised and automatic analysis. This is
performed using a cluster analysis technique, based on the
sharp transitions on vessel profile corresponding to the edges
[11–13]. However, uneven illuminations, background noise,
central light reflex phenomena [9], overlying structures
of the eye, and the capturing equipment [9, 19] distort
the profile of the vessel. Profile distortion is defined as
any change in the axial symmetry, shape, and smoothness
compared to the inverse single Gaussian function as the
model of retinal vessel profile [11]. As in our case, deliberate
inclusion of some pixel intensities corresponding to the
background region into the vessel profile highlights the
distortions as a number of extrema points on the profile.
These points which mainly appear in the area corresponding
to the background region were used for cluster analysis to
obtain the LDA training classes.

In order to perform cluster analysis to identify the
extrema points, the differential of the profile is computed.
In the differential of the profile plot, the zero-crossing points
corresponding to the location of the extrema are obtained to
find three critical points as the reference to initiate cluster
analysis. According to the Gaussian model of vessel profile
[11, 12], it is confirmed that generally the edge points have
high intensity values while the points on the surface of
the vessels contain lower intensities except for the central
light reflex area. Therefore, location of the lowest minima in
intensity which correspond to the vessel region is marked as
the first required critical point. The two highest maxima at
both side of this point are labelled as the two other points
each correspond to one background region at left and right
side of the vessel. Given the three points guarantees the
existence of a circle to pass through them by joining the
vertices in pairs (creating chords) and forming a triangle;
as the perpendicular bisectors of the chords always pass
through the centre of a circle which includes those vertices.
This circle is used as the basis for cluster analysis and
unsupervised classification of the local extremums to train
the LDA. An example of a vessel cross-section profile with
centre light reflex (CLR) is shown in Figure 1. As shown
in this figure, from the centre of this circle a radial line
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Figure 1: Obtaining the training classes for a sample vessel profile
(CLRIS, image no. 1, cross section no. 22). The extremums related
to the three classes are shown with asterisks in different colours
(Red, Green, and Blue). Blue curves are the regions related to
the detected classes. Red curves are the boundaries separating the
classes. θ4, θ9, and θ12 represent the first three largest angles.

was connected to each point. Starting from 0 degree and
rotating anticlockwise, all the angles (θ1, θ2, . . . , θn) between
the two consecutive radial lines were obtained sequentially
and sorted from the largest to the smallest value. The first
three largest angles corresponding to the largest arcs on
the circle were considered as the boundaries separating the
three training classes (e.g., θ4, θ9, and θ12 in Figure 1).
All the extrema that fell within the same section between
the two boundary arcs were categorized as the same class.
Group 1 and 3 were considered as the maxima and minima
relating to the background at either side of the vessel and
group 2 to the extremums corresponding to the trunk as
shown by asterisks in a unique colour (Figure 1). In order to
increase the number of training samples for more accurate
cluster analysis, all the points on the vessel profile within the
distance between the two horizontally farthest extremums of
each class were considered as the member of that class and
used as training samples.

2.3. Linear Discriminant Analysis (LDA). Linear discrimi-
nant analysis has gained popularity in feature extraction and
pattern recognition due to its uncomplicated processing as
well as providing higher discrimination power compared
to the principal component analysis (PCA) as another
alternative method for data classification and dimensionality
reduction [18]. Therefore, a generalization of the Fisher’s
LDA (1936) is applied to the intensities of retinal vessel cross-
section profiles after the mean value is removed, in order

to classify them into three major regions based on their
physical location on the profile (vessel or background). The
decision boundaries are used to find the midpoint between
the maximum and minimum intensities corresponding to
the vessel edges and to measure the diameter based on the
definition available in Gang et al. [22]. The obtained training
samples (intensities versus sample) with three known classes
from Section 2.2 are given as the training inputs to estimate
the corresponding dispersion matrices according to [16],
train the classifier, and obtain three discriminant functions
(DFs) corresponding to the three classes. This method is
valid due to the robustness of linear discriminant function
(LDF) to unequal dispersion matrices and the assumption
of similarity existence between the three sample dispersion
matrices [16].

2.4. Diameter Measurement. In order to measure the diam-
eter, the intensity versus sample plane of the vessel profile
is padded with a set of test points as input to the classifier.
Given these points, the trained LDA generates three decision
boundaries corresponding to the three training classes. Two
of these intersect with the intensity profile and segment the
profile into three regions. The intersection points with the
vessel profile specify the midpoint between the maximum
and minimum intensities corresponding to the vessel edges.
The horizontal distance between the two midpoints gives the
vessel diameter (Figure 2).

3. Materials

The publicly available REVIEW database was used to assess
the ULDM vessel diameter measurement technique. This is
a widely accepted database of retinal images and has four
datasets of mixed quality images [8, 17]. It contains 5066
vessel diameters measured by three different observers from
193 segments. Only the green channel was used as it provides
better contrast between the vessels and the background [23].
The database is summarized as follows.

(1) Kick-Point Image Set (KPIS) dataset, consisting of
two good quality retina images (288× 119 and 170×
192 pixels) with 3 segments and 164 cross-sectional
measurements. The edges were determined based
on the kick-points present in cross-sections of the
vessels. The kick-points are normally observed in
highly focused retina images with sharp transition
from the background intensity to the vessel edges.

(2) High Resolution Image Set (HRIS) represents dif-
ferent severity of diabetic retinopathy. The abnor-
malities that appear near the vessel edges provide
a challenge when trying to determine the vessel
diameter. It contains four images (3584× 2438 pixels
each) and 90 segments with 2368 manually marked
profiles.

(3) Central Light Reflex Image Set (CLRIS) represents
exaggerated vascular light reflex which appears as a
small Gaussian in the middle of the vessel profile.
CLRIS consists of two retinal images (2160 × 1440
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Figure 2: Example of ULDM output showing a vessel cross-section
profile (CLRIS, image no. 1, cross-section no. 22) with classified
padded intensity values and the decision boundaries between the
classes. The horizontal distance between the two points where the
decision boundaries cross the vessel edges (approximately at 50%
intensity change) was considered as the diameter (18.9 pixels in this
example).

pixels each) with total number of 21 segments and
285 cross-sections.

(4) Vascular Disease Image Set (VDIS) includes eight
noisy retina images (1360 × 1024 pixels each), six of
which suffer from diabetic retinopathy. It consists of
79 segments and 2249 measured profiles. The VDIS
dataset provides a greater challenge to the diameter
measurement due to its inherent variations.

4. Data Analysis

ULDM was compared with the HHFW, 1D and 2D Gaussian
models, ESP, and the graph based on comparison method
as provided in [8]. The edge points of more than 5000
cross-sections from the REVIEW database were used as
ground truth to validate the technique. Following the result
evaluation and presentation method used in [8] the average,
μ1, and standard deviation (SD), σ1, of the estimated
diameters were calculated in pixels for each single database
and presented together with the reported values from other
methodologies. The signed μ2 and corresponding σ2 were
also defined as the average and SD of point by point
difference between the measured and the reference diameter.
The reference was considered as the average of the three
diameter values measured by the three observers.

For performance and efficiency estimation, the success
rate was first calculated as the ratio of the number of
measureable cross-sections to the total number of available
profiles in the database reported by observers. The higher
success rate and lower deviation from the reference diameter
(lower μ2 and σ2) indicated more precise estimation. Measure
of similarity between the ULDM and the three different
manual measurements and the ground truth measure-
ments (average) was obtained by cross-correlation analysis
performed on all the reported segments in the database
(Table 5).

5. Results

Tables 1, 2, 3, and 4 give the comparison of the accuracy
and precision between the three manual measurements
(observer 1, 2, and 3), the HHFW [9], 1D Gaussian [11],
2D Gaussian [12], ESP [15], graph-based [8], and the
proposed ULDM techniques. The four tables compare the
four different datasets of the REVIEW database. The Tables
1 to 4 correspond to the HRIS, CLRIS, VDIS, and KPIS
datasets, respectively. The reporting format in these tables is
the same as the one used by previous studies [8, 15], with the
addition of row corresponding to the proposed technique,
ULDM.

The second column of these four tables presents the
success rate in percent corresponding to each measurement
method as defined earlier. From this column of Tables 1–4,
it is observed that ULDM has a high success rate similar to
other five computerized diameter measurement techniques;
HHFW, 1D Gaussian, 2D Gaussian, ESP, and graph based.
The Average value of the estimated vessel widths μ1 together
with the standard deviation σ1 from the mean is provided
in columns three and four, respectively. Columns 5 and 6
are the indicator of the signed average (μ2) and SD (σ2)
of the difference between the measured diameter and the
gold-standard diameter obtained by averaging the three
manual measurements, respectively. From these columns, it
is observed that different techniques have the least difference
from the gold standard for the different datasets. While 2D
Gaussian has the smallest μ2 for HRIS dataset, graph-based
method has the smallest μ2 for CLRIS dataset, ESP has the
smallest μ2 for VDIS dataset, and ULDM has the smallest μ2

for KPIS dataset. From these tables, it is observed that while
other techniques are more suited for one dataset, ULDM is
more consistent and has the smallest or second smallest error
for all the datasets.

While the above reporting technique [8, 15] provides
the measure of the accuracy in terms of average diameter
difference, this does not provide a good measure of precision
to compare the proposed method with other methodologies
or the manual measurements. Therefore cross-correlation
analysis was performed for further investigation and is
reported in Table 5. In Table 5, the columns 2, 3, and 4
correspond to the correlation between the three manual
measurements, the forth is of the average of the three manual
measurements that results in Obs avg, while the column 6 is
that of the ULDM. This was repeated for each of the four
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Table 1: Comparison of vessel diameter measurement accuracy and precision between the proposed ULDM, established techniques, and
manual measurement for the HRIS databasea.

HRIS database

Method name Success rate (%) Diameter Difference

Average μ1 SD σ1 Average μ2 SD σ2

Observer 1 100 4.12 1.25 −0.23 0.288

Observer 2 100 4.35 1.35 0.002 0.256

Observer 3 100 4.58 1.26 0.23 0.285

HHFW 88.3 4.97 — 0.62 0.926

1D Gaussian 99.6 3.81 — −0.54 4.137

2D Gaussian 98.9 4.18 — −0.17 6.019

ESP method 99.7 4.63 — 0.28 0.42

Graph-based method 100 4.56 1.30 0.21 0.567

Proposed ULDM 99.6 4.19 1.35 0.21 0.79

Table 2: Comparison of vessel diameter measurement accuracy and precision between the proposed ULDM, established techniques, and
manual measurement for the CLRIS databasea.

CLRIS database

Method name Success rate (%) Diameter Difference

Average μ1 SD σ1 Average μ2 SD σ2

Observer 1 100 13.19 4.01 −0.61 0.566

Observer 2 100 13.69 4.22 −0.11 0.698

Observer 3 100 14.52 4.26 0.72 0.566

HHFW 0 — — — —

1D Gaussian 98.6 6.3 — −7.5 4.137

2D Gaussian 26.27 7.0 — −6.8 6.019

ESP method 93.0 15.7 — −1.90 1.469

Graph-based method 94.1 14.05 4.47 0.08 1.78

Proposed ULDM 98.2 13.23 3.55 −0.55 1.79

Table 3: Comparison of vessel diameter measurement accuracy and precision between the proposed ULDM, established techniques, and
manual measurement for the VDIS databasea.

VDIS database

Method name Success rate (%) Diameter Difference

Average μ1 SD σ1 Average μ2 SD σ2

Observer 1 100 8.50 2.54 −0.35 0.543

Observer 2 100 8.91 2.69 0.06 0.621

Observer 3 100 9.15 2.67 0.30 0.669

HHFW 78.4 7.94 — −0.91 0.879

1D Gaussian 99.9 5.78 — −3.07 2.110

2D Gaussian 77.2 6.59 — −2.26 1.328

ESP method 99.6 8.80 — −0.05 0.766

Graph-based method 96.0 8.35 3.00 −0.53 1.43

Proposed ULDM 96.3 8.68 2.82 −0.64 1.18

datasets. The correlation matrix being symmetrical, only the
lower half is reported. As expected, the diagonal elements
are unity. From this table it is observed that the correlation
between ULDM and the Obs avg (bench mark) is similar
to the correlation between the three manual measurements
and Obs avg. For HRIS, VDIS, and CLRIS datasets, this
ranged between 0.87 and 0.91, while for the KPIS, this was
significantly lower (0.52).

6. Discussion

In this work, an unsupervised retinal vessel diameter
measurement technique has been proposed and validated
using expert annotated publically available dataset (REVIEW
database) through comparison with other state-of-the-art
methodologies. The advantage of this method is that it does
not require any supervision and measures the vessel diameter
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Table 4: Comparison of vessel diameter measurement accuracy and precision between the proposed ULDM, established techniques, and
manual measurement for the KPIS databasea.

KPIS database

Method name Success rate (%) Diameter Difference

Average μ1 SD σ1 Average μ2 SD σ2

Observer 1 100 7.97 0.47 0.45 0.234

Observer 2 100 7.60 0.42 0.08 0.213

Observer 3 100 7.00 0.52 −0.52 0.233

HHFW 96.3 6.47 — −1.05 0.389

1D Gaussian 100 4.95 — −2.57 0.399

2D Gaussian 100 5.87 — −1.65 0.337

ESP method 100 6.56 — −0.96 0.328

Graph-based method 99.4 6.38 0.59 −1.14 0.67

Proposed ULDM 100 7.02 0.67 −0.50 0.60

Table 5: Cross-correlation comparison between the ULDM, manual measurements, and their average value.

Observer 1 Observer 2 Observer 3 Obs avga ULDM

HRIS

Observer 1 1

Observer 2 0.93 1

Observer 3 0.91 0.94 1

Obs avg 0.97 0.98 0.97 1

ULDM 0.83 0.86 0.87 0.87 1

CLRIS

Observer 1 1

Observer 2 0.96 1

Observer 3 0.97 0.96 1

Obs avg 0.99 0.98 0.99 1

ULDM 0.89 0.88 0.89 0.90 1

VDIS

Observer 1 1

Observer 2 0.93 1

Observer 3 0.92 0.90 1

Obs avg 0.97 0.97 0.96 1

ULDM 0.88 0.90 0.87 0.91 1

KPIS

Observer 1 1

Observer 2 0.69 1

Observer 3 0.65 0.64 1

Obs avg 0.90 0.87 0.87 1

ULDM 0.50 0.47 0.41 0.52 1
a
Obs avg is the data sequence containing average of vessel diameters measured by the three observers for each vessel cross-section.

to subpixel accuracy. The results also show that while other
techniques are biased towards a specific dataset, this method
appears to have a good accuracy for all the datasets.

According to Tables 1 to 4, among the four datasets,
the proposed method had the highest performance on the
KPIS with 100% success rate and the signed mean and
SD difference of 0.50 and 0.60, respectively. The test on
HRIS resulted into the success rate of 99.6% and the signed
mean and SD difference of 0.21 and 0.79. This success rate
degradation was mainly due to the appearance of diabetic
abnormalities near the vessel boundaries which is still a
challenge among all measurement techniques. The central
light reflex validation test on CLRIS dataset revealed the
success rate of 98.2% with −0.55 and 1.79 as the mean and

SD difference. The proposed technique indicated the success
rate of 96.3% when tested on the noisy pathological images
(VDIS dataset) with mean and SD difference of −0.64 and
1.18, respectively.

As stated before, the earlier reporting method does
not determine the precision of the measurements. For this
purpose, the correlation between the ULDM, the manual
measurements, and the Obs avg as the benchmark has
also been reported (Table 5). This reporting is essential to
establish the precision of the measurements by providing
point by point similarity comparison between the measured
diameters and the ground truth. According to the cross-
correlation analysis in Table 5, the ULDM and Obs avg were
highly correlated with each other when tested on HRIS,
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VDIS, and CLRIS databases with the correlation coefficients
of 0.87, 0.90, and 0.91, respectively. The lowest value of 0.52
was obtained for the KPIS database. This was expected as
the interobserver correlation of 0.6 denoted measurement
inconsistencies and poor correlation even between the three
experts’ estimations making the KPIS very challenging image
set to the graders.

Overall, the ULDM was found to be a robust technique
for retinal vessel diameter measurement against the images
representing different severity of diabetic retinopathy, vascu-
lar disease, and exaggerated vascular light reflex. The values
measured by the proposed technique showed very similar
trend to average of the ones reported by the observers. In
future, it is expected to have potential applications in medical
section for quantification and early detection of retinal and
cardiovascular diseases.

References

[1] T. T. Nguyen, J. J. Wang, F. M. A. Islam et al., “Retinal arteriolar
narrowing predicts incidence of diabetes,” Diabetes, vol. 57,
no. 3, pp. 536–539, 2008.

[2] T. Y. Wong, R. Klein, A. Richey Sharrett et al., “Retinal
arteriolar narrowing and risk of diabetes mellitus in middle-
aged persons,” Journal of the American Medical Association, vol.
287, no. 19, pp. 2528–2533, 2002.

[3] R. Kawasaki, M. Z. Che Azemin, D. K. Kumar et al., “Fractal
dimension of the retinal vasculature and risk of stroke: a
nested case-control study,” Neurology, vol. 76, no. 20, pp.
1766–1767, 2011.

[4] X. Benavent, L. Martı́nez-Costa, G. Ayala, J. Domingo, and
P. Marco, “Semi-automated evaluation tool for retinal vascu-
lopathy,” Computer Methods and Programs in Biomedicine, vol.
95, no. 3, pp. 288–299, 2009.

[5] Y. Gao and Q. P. Wei, “Hypertension related ophthalmocace,”
International Journal of Ophthalmology, vol. 8, no. 7, pp. 1454–
1457, 2008.

[6] M. L. Baker, P. J. Hand, J. J. Wang, and T. Y. Wong, “Retinal
signs and stroke: revisiting the link between the eye and brain,”
Stroke, vol. 39, no. 4, pp. 1371–1379, 2008.

[7] J. J. Wang, P. Mitchell, H. Leung, E. Rochtchina, T. Y. Wong,
and R. Klein, “Hypertensive retinal vessel wall signs in a
general older population: the Blue Mountains Eye Study,”
Hypertension, vol. 42, no. 4, pp. 534–541, 2003.

[8] X. Xu, M. Niemeijer, Q. Song et al., “Vessel boundary
delineation on fundus images using graph-based approach,”
IEEE Transactions on Medical Imaging, vol. 30, no. 6, pp. 1184–
1191, 2011.

[9] O. Brinchmann-Hansen and H. Heier, “Theoretical relations
between light streak characteristics and optical properties of
retinal vessels,” Acta Ophthalmologica, vol. 64, no. 179, pp. 33–
37, 1986.

[10] P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek,
“Automated grading of venous beading,” Computers and
Biomedical Research, vol. 28, no. 4, pp. 291–304, 1995.

[11] L. Zhou, M. S. Rzeszotarski, L. J. Singerman, and J. M.
Chokreff, “Detection and quantification of retinopathy using
digital angiograms,” IEEE Transactions on Medical Imaging,
vol. 13, no. 4, pp. 619–626, 1994.

[12] J. Lowell, A. Hunter, D. Steel, A. Basu, R. Ryder, and R. L.
Kennedy, “Measurement of retinal vessel widths from fundus

images based on 2-D modeling,” IEEE Transactions on Medical
Imaging, vol. 23, no. 10, pp. 1196–1204, 2004.

[13] X. W. Gao, A. Bharath, A. Stanton, A. Hughes, N. Chap-
man, and S. Thom, “Quantification and characterisation of
arteries in retinal images,” Computer Methods and Programs in
Biomedicine, vol. 63, no. 2, pp. 133–146, 2000.

[14] N. Chapman, N. Witt, X. Gao et al., “Computer algorithms for
the automated measurement of retinal arteriolar diameters,”
British Journal of Ophthalmology, vol. 85, no. 1, pp. 74–79,
2001.

[15] B. Al-Diri, A. Hunter, and D. Steel, “An active contour
model for segmenting and measuring retinal vessels.,” IEEE
Transactions on Medical Imaging, vol. 28, no. 9, pp. 1488–1497,
2009.

[16] G. A. F. Seber, “Discriminant analysis,” in Multivariate Obser-
vations, pp. 279–346, John Wiley & Sons, New York, NY, USA,
1984.

[17] B. Al-Diri, A. Hunter, D. Steel, M. Habib, T. Hudaib, and S.
Berry, “REVIEW-a reference data set for retinal vessel profiles,”
in Proceedings of the 30th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBS
’08), pp. 2262–2265, August 2008.

[18] I. G. P. S. Wijaya, K. Uchimura, and G. Koutaki, “Human face
security system using alternative linear discriminant analysis
based classifier,” in Proceedings of the 17th Korea-Japan Joint
Workshop on Frontiers of Computer Vision (FCV ’11), pp. 1–6,
2011.

[19] B. Aliahmad, D. K. Kumar, S. Janghorban, M. Z. Azemin, H.
Hao, and R. Kawasaki, “Automatic retinal vessel profiling using
multi-step regression method,” in Proceedings of the Annual
International Conference of the IEEE on Engineering in Medicine
and Biology Society (EMBC ’11), pp. 2606–2609, August 2011.

[20] X. Zhao, W. Duan, T. Lin, and B. Li, “A method of retinal vessel
width measurement,” in Proceedings of the 2nd International
Conference on Computer and Automation Engineering (ICCAE
’10), pp. 443–446, February 2010.

[21] B. Aliahmad, D. K. Kumar, S. Janghorban, M. Z. C. Azemin, H.
Hao, and R. Kawasaki, “Retinal vessel diameter measurement
using multi-step regression method,” in Proceedings of the
Biosignals and Biorobotics Conference (BRC ’12) ISSNIP, pp. 1–
4, 2012.

[22] L. Gang, O. Chutatape, and S. M. Krishnan, “Detection
and measurement of retinal vessels in fundus images using
amplitude modified second-order Gaussian filter,” IEEE Trans-
actions on Biomedical Engineering, vol. 49, no. 2, pp. 168–172,
2002.

[23] H. Li, W. Hsu, M. L. Lee, and H. Wang, “A piecewise Gaussian
model for profiling and differentiating retinal vessels,” in
Proceedings of the International Conference on Image Processing
(ICIP ’03), vol. 1, pp. 1069–1072, September 2003.


	Introduction
	Unsupervised Linear DiscriminantAnalysis Diameter Measurement (ULDM)
	Initialization
	Training LDA
	Linear Discriminant Analysis (LDA)
	Diameter Measurement

	Materials
	Data Analysis
	Results
	Discussion
	References

