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Abstract—We previously described a filament-based anti-
body recognition assay (FARA) that generates ELISA-like
sandwich structures immobilized on a filament. FARA
allows the coupling of antibodies to precise locations along
a filament, on-line fluorescence detection of captured path-
ogen, and feedback-directed filament motion. These proper-
ties suggest that this approach might be useful as an
automated means to rapidly classify unknown pathogens.
In this report, we describe validation of the novel decision
tree aspect of this technology using mammalian reovirus.
Based on available antibodies, we developed a decision tree
algorithm to detect virus with increasing specificity at each
level of the tree. Using three strains of reovirus and a
bacteriophage control, our system correctly classified the
reovirus strains at a concentration of 2� 1012 virions ml)1

and M13K07 phage at 3� 1011 virions ml)1. Classification of
reovirus strain type 3 Dearing (T3D) required three levels of
testing: general reovirus classification in level 1, serotype 3
classification in level 2, and final T3D strain classification in
level 3. Strain T3SA + also required three levels of testing
before a final classification was returned in level 3. Classi-
fication of strain type 1 Lang (T1L) required two levels of
testing. M13K07 phage detection required only one level of
testing for classification. These results indicate that auto-
mated pathogen classification using FARA is feasible.
Furthermore, the simplicity of the design could be exploited
for development of more complex sub-classification networks
with additional levels and branches.

Keywords—Virus detection, Virus classification, Fluores-

cence detection, Pathogen detection.

INTRODUCTION

Identification of specific pathogens is essential for
the selection of pathogen-specific treatments, mini-
mizing the spread of infection, and monitoring for
long-term complications. Currently, specific pathogen
identification is achieved through available RT-PCR
and antibody-based strategies. In the clinic, these tests
are usually applied consecutively to evaluate for the
presence of the most likely to least likely pathogen
based on patient findings. An automated classification
strategy that is less dependent on clinical knowledge
but achieves rapid accurate identification of a single
pathogen from among a group of possible pathogens is
currently unavailable.

Our previously described filament-based antibody
recognition assay (FARA) employs antibodies immo-
bilized at known locations along a filament to detect
specific pathogens.9,10 The filament is pulled through a
series of small reaction chambers, and pathogens, if
present, are captured by filament-bound antibodies.
Detection of pathogen binding is achieved by using a
fluorescently labeled second antibody specific for the
pathogen.

FARA was first reported using immobilized anti-
M13K07 antibody to detect M13K07 phage.10 This
virus and antibody pair provided a well-characterized
test system to demonstrate the feasibility of a filament-
based, pathogen-detection platform. However, in this
first generation approach, the filaments were removed
from the system for fluorescence scanning. Subsequent
improvements to FARA include an integrated fluo-
rescence detector and a feedback algorithm to control
filament position.9 The integrated detector enables
adaptive pathogen detection in which regions of
interest along the filament can be reincubated in the
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appropriate reaction chambers to increase filament
fluorescence when the initial signal is low.

In this report, we describe a small-scale test of the
use of a simple classification tree together with feed-
back-controlled FARA to identify four viruses. The
feedback feature of online FARA is used to guide the
selection of subsequent tests within the classification
tree. Unnecessary tests are not performed, and each
subsequent test becomes more specific for a single
pathogen. These results establish FARA as a robust
platform for classification of diverse pathogens.

MATERIALS AND METHODS

Cells and Viruses

Murine L929 (L) cells were cultured in suspension in
Joklik’s modified Eagle’s medium supplemented to
contain 5% fetal bovine serum, 2 mM L-glutamine,
100 U mL)1 penicillin, 100 lg mL)1 streptomycin,
and 0.25 g mL)1 amphotericin-B. Reovirus strains
T1L and T3D are laboratory stocks. T3SA + is a
monoreassortant virus isolated from L cells co-infected
with T1L and T3C44MA.1 T3SA + contains the S1
gene segment from the type 3 parental strain and all
other gene segments from T1L.1 Reovirus particles
were purified as previously described.1, 3, 6 L cells were
inoculated with second-passage L-cell lysate stocks of
twice plaque-purified reovirus at a multiplicity of
infection of 10 plaque-forming units per cell. Virus was
purified from infected cells by freon extraction and
CsCl-gradient centrifugation. Purified M13K07 virus
was obtained from the Vanderbilt Molecular Recog-
nition Core.

Antibodies

Mouse monoclonal antibodies 4F2, 5C6, 8H6, and
9BG5 specific for reovirus proteins2,12,13 (Table 1) were
purified from mouse hybridoma supernatants using
Protein A column chromatography. Anti-M13K07
monoclonal antibody was purchased from Amersham
Biosciences (Piscataway, NJ).

Antibodies 4F2 and 8H6 were used for fluorescence
detection of virus (step 4, Table 2) and were labeled

with Alexa Fluor 555 or Alexa Fluor 647 (AF555 or
AF647, Molecular Probes, Eugene, OR), respectively,
according to the manufacturer’s instructions (Molec-
ular Probes). Labeled antibodies were purified using
PD-10 size-exclusion chromatography (Amersham
Biosciences). Antibody concentration and number of
fluores per labeled antibody were determined by using
absorbance measurements at 280 nm and the peak
absorbance wavelength of each label. Aliquots of both
labeled and unlabeled antibodies were stored at )20�C,
and working solutions were kept at 4�C. Final anti-
body concentration was adjusted immediately prior to
experiments.

Filament Preparation

Capture antibodies were passively adsorbed to the
filament surface in groups of three by placing the fil-
ament across the concave teeth of a PhastGel sample
applicator (Amersham Biosciences) (Fig. 1). Three
capture-antibody regions, corresponding to the three
levels of testing, were prepared along each filament
using three applicator combs glued end to end. Anti-
body solution pipetted onto the filament without the
comb spread unimpeded along the filament. Surface
tension within the teeth of the comb overcame this
tendency and produced a small, distinct circumferen-
tial band of immobilized antibody. Antibody was
spotted in a volume of 0.75 lL and allowed to pas-
sively adsorb to the filament for 45 min in a humidified
box. Following incubation at 25�C, filaments were
rinsed in phosphate buffered saline with 0.1% Tween
20 (PBS-T) and threaded through the reaction cham-
bers for virus detection experiments. Preliminary
experiments were performed to determine the optimal
concentration of each capture antibody.

Red fingernail polish (Poisonberry, Noxel Cor-
porartion, Hunt Valley, MO) was used as a visible and
fluorescent fiducial marker to identify the leading and
trailing edges of capture-antibody regions during
experiments and during laser scanning. The polish was
applied by pipette between the teeth of the comb
flanking the antibody region. A simple bar code system
was used to identify each of the three capture-antibody
regions. The first and second regions were preceded by
a single fiducial marker, and the third region was
preceded by two fiducial markers.

Micro-reaction Chambers

Glass microreaction chambers were fashioned from
0.25 inch stock tubing into 75 mm lengths. The ends
were flared outward to facilitate movement of the fil-
ament through the chambers. Interior diameters of the
chambers were 1 or 2 mm depending on the required

Table 1. Antibody specificity.

Antibody Protein specificity

Reovirus strain

T1L T3D T3SA+

5C6 T1 r1 + ) )
9BG5 T3 r1 ) + +

8H6 T1 and T3 l1 + + +

4F2 T3D r3 ) + )
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reaction volume (Table 2). Chambers were carefully
positioned in a straight line on the top of a horizontal
aluminum stage using machined aluminum mounts.9

Fine adjustment of chamber position was achieved by
using oblong mounting holes on each mount. PBS-T
was used in all wash chambers and for virus and
labeled antibody solutions. Reovirus was used at a
concentration of 2� 1012 virions mL)1, and phage
M13K07 was used at a concentration of 3� 1011 viri-
ons mL)1. Detecting antibodies were present in the
detecting-antibody chamber at a concentration of
approximately 40 lg mL)1 for each antibody in the
three antibody mixture. Solutions were added to
appropriate chambers at the initiation of experiments
and used for all three levels of testing (Table 2). If
testing proceeded to level three, fluid loss from the
chambers was monitored and replenished if necessary.

Filament Control

Movement of the filament and, therefore, the anti-
body bands through the chambers, was achieved by
using a rotary stage to wind or unwind the filament
around a spindle. A small weight was attached to the
opposite end of the filament to maintain a constant
tension. Filament positioning to within several microns
was achieved by using a rotary stage encoder from
Yaskawa Instruments (Waukegan, IL) and a custom
control algorithm written as a LabView Virtual
Instrument (VI) (National Instruments, Austin, TX).
Parameters including filament speed and residence
times within chambers were controlled by using the
LabView software interface.

Between chambers, the speed of the filament was
1 cm sec)1. Within each chamber, the capture-anti-
body region undergoing processing was oscillated
2.5 cm back and forth at a speed of 1 cm sec)1 to
increase interactions between immobilized molecular
structures attached to the filament and the molecular
species in solution. Within the detector, filament speed
was 4 cm sec)1.

Lasers and PMTs

Filament fluorescence was measured by passing the
filament between two diode lasers. The two laser
excitation sources were attached to either side of a
detection chamber (Fig. 2). Laser 1 (638 nm, 25 mW
diode laser; Coherent, Santa Clara, CA) was used to
excite the antibody tag AF647. Laser 2 (532 nm,
20 mW diode-pumped, solid state laser; B&W Tek,
Inc., Newark, DE) was used to excite the antibody tag
AF555. The effective power of laser 1 was reduced to
approximately 5 mW by using a polarizer and an
excitation slit. Laser 2 was not attenuated. Two
Hamamatsu R928 photomultiplier tubes (PMT) were
attached to the top and bottom of the sample chamber
and powered by 850 and 800 V signals for the AF647
and AF555 channels, respectively. Current from the
PMT was converted to voltage by using transimped-
ance amplifiers that amplified the signal by a factor of
106 for AF647 and 105 for AF555. Voltage was sam-
pled at a rate of 800 samples sec)1 by using a digital
acquisition board from National Instruments (Daq-
PAD 6020E). Fluorescence signal was acquired as a
function of filament position by using LabView.

Table 2. The five reaction chambers in FARA processing

Chamber Description Solution Incubation time
Chamber ID /

Volume (mm / ll)

1 Block/Wash Filament PBS-Ta 15 min 2/235

2 Virus Incubation Unknown Virus 40 min 1/60

3 Wash PBS-T 1 min 2/235

4 Detecting Antibody Incubation Fluorescently Labeled Detecting Antibody 5 min 1/60

5 Wash PBS-T 1 min 2/235

aTween-20 (0.1%) was added to PBS as a blocking agent.

FIGURE 1. Schematic of a device for adsorption of capture antibodies to the filament. The filament is placed within the concave
teeth of a PhastGel applicator to localize the spotted antibody to a small circumferential band around the filament.
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Following fluorescence scanning for most experiments,
filament regions were cut and scanned again in a
microarray flatbed scanner (GenePix 4000B, Axon
Instruments, Union City, CA).

Filters

Filter sets were placed in the light path between the
sample chamber and the photomultipliers (Fig. 2).
Long-pass filters with cutoffs at 685 nm (Chroma,
Rockingham, VT) and 665 nm (Melles Griot,
Rochester, NY) were combined to reduce reflected
laser light from the AF647 laser. For the AF555
channel, two long-pass filters (570 nm cutoff, Melles
Griot) were combined with a bandpass filter centered
at 565 nm (30 nm bandwidth, Chroma) to reduce
reflected light.

Classification Algorithm

The LabView program coordinated all filament
movement, filament scanning, and feedback control.
Elements of the feedback control are described by the
nodes of the decision tree used to classify the viruses
shown in Fig. 3. The fluorescent fiducial markers on
either side of the capture-antibody region produced
characteristically sharp emission peaks. Since the
physical location of the immobilized antibody posi-
tions between the markers was known, experimental
conclusions were based on the distance of the first
detected peak from the initial fluorescent marker.

The filament-control program was designed to find
each peak, calculate its location along the filament, and
make a decision about additional tests. Spatially
localized fluorescence from the filament was measured
as a 0–14 V signal from the transimpedance amplifier.

Voltage data from the scan were used as input data by
a peak-detection function in LabView. The LabView
peak detector fit a quadratic polynomial to sequential
sets of points depending on a width parameter entered
by the user. Data were then compared to a threshold
parameter, also entered by the user, to identify peaks.
A binary decision to stop or continue testing was based
on the location and number of peaks found. Peak-
detection threshold parameters were defined as 0.3 V
(approximately three times background) with a width
of 30 data points, which corresponded to a width
slightly larger than the physical width of the comb
tooth.

A common set of parameters was used in all experi-
ments based on previous work with M13K07.10 A
filament region containing three capture antibodies and
two fiducial markers was incubated within each cham-
ber for the times shown in Table 2. Each of the capture-
antibody regions contained a PBS negative control in
the first position. In level one the second position
was a mixture of 9BG5 and 5C6 (0.25 mg mL)1,
0.2 mg mL)1). The third position was anti-M13K07
(0.5 mg mL)1). In levels two and three, the negative
control position was followed by 9BG5 (mg mL)1) in
the second position and 5C6 (0.2 mg mL)1) in the third
position.

The logic encoded in the decision tree shown in
Fig. 3 was followed. In level 1, if fluorescence was
detected from the anti-M13K07 position of the first
region of the filament, a classification of M13K07 virus
was made, and no further testing was conducted. If
fluorescence was detected in the 9BG5/5C6 region, a
classification of reovirus was made and the filament
was advanced to the appropriate region for level 2
testing, where a more specific test for reovirus was
performed. In level 2 testing, fluorescence from the 5C6
region indicated a serotype 1 reovirus, which in this
scheme corresponded to reovirus T1L. A classification
of T1L represented an endpoint in the decision tree,
and testing was discontinued. Fluorescence from the
9BG5 region indicated the presence of a serotype 3
reovirus, and the program advanced the filament for
further subtyping in level 3. Level 3 testing used AF555
conjugated 4F2 antibody as the detecting antibody and
a second detection channel with a green excitation
laser. If fluorescence was found in the 9BG5 region
using this channel, a classification of reovirus T3D was
made and testing along that branch ended. If no flu-
orescence was detected from the second channel for
that region, the program ended with a classification of
reovirus T3SA+ .

If no peaks were found between the fiducial mark-
ers, a message was generated indicating that no virus
was found. Similarly, if a peak was detected in the
negative control region of the filament, a warning

FIGURE 2. Schematic of lasers and photomultipliers (PMT)
to detect online fluorescence of the filament. The filament is
moved (arrow) through a rectangular sample chamber with a
laser excitation source attached to either side. Photomultiplier
tubes are attached to the top and bottom of the chamber.
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message was generated. Although theoretically possi-
ble, this situation did not arise during testing.

RESULTS

FARA utilizes a polyester filament with circumfer-
ential bands of immobilized antibody that is passed
through a series of five glass micro-reaction chambers
that are similar to the five major steps of an ELISA
(Table 2). In the first reaction chamber of the FARA
approach employed in this study, capture antibody
coupled to the filament was rehydrated. In this chamber
the filament also was blocked to prevent non-specific
binding of virus. In the second chamber, the immobilized
capture antibody was incubated with virus solution. In
this chamber, if virus in solution bound to antibody
coupled to the filament, then the virus became coupled
to the filament via this interaction. In the third chamber,
non-specifically bound virus was removed by washing
before incubation with a fluorescently labeled detecting
antibody in the fourth chamber. A final wash in the fifth
chamber removed non-specifically bound detecting
antibody. The capture antibody region was then passed
through an integrated fluorescence detector.

In these experiments, the test virus was classified
with greater specificity at each level of a decision tree
(Fig. 3). Representative fluorescence signals in volts
obtained during testing for phage M13K07 and
reoviruses T1L, T3D, and T3SA+ are shown in Fig. 4.

Labels for the PBS control position and the antibodies
in each capture antibody position are shown adjacent
to the filament. The specificity of each test antibody for
its corresponding virus was high, with little or no
cross-reactivity. No signal was detected in the PBS
negative-control position.

Detection of M13K07 was achieved by level 1 test-
ing. Strong fluorescence was observed in the anti-
M13K07 position but not in the 9BG5/5C6 or PBS
positions (Fig. 4a). This finding indicated capture of
the phage M13K07 by the anti-M13K07 capture
antibody. For detection of M13K07, AF647 conju-
gated anti-M13K07 was used. Because a classification
of M13K07 was made, the other two capture regions of
the filament were not evaluated.

Detection of the reovirus strains employed in this
study required analysis beyond level 1. Level 1 testing
indicated the presence of a reovirus for all three strains
with a peak in the second position corresponding to
virus capture by the 9BG5/5C6 antibody mixture. In
level 2 testing, strain T1L was detected in the 5C6
antibody position but not in the 9BG5 or PBS posi-
tions (Fig. 4b). In this case, the capture and detecting
antibodies differed. Because a reovirus T1L classifica-
tion was made, the third capture region of the filament
was not evaluated.

For reovirus T3D, level 1 testing indicated the
presence of a reovirus with a peak in the second po-
sition corresponding to virus capture by 9BG5/5C6
(data not shown). Level 2 testing showed a distinct

FIGURE 3. Decision-tree algorithm to classify virus strains. The filament control program enters the decision tree from the top at
level 1 and, based on the type of virus found at each level, follows different branches of the decision tree. When reovirus is
detected at level one, the filament is moved forward to the next antibody region for level 2 testing. If a serotype 3 reovirus strain is
detected (T3D or T3SA+ ) at level 2, testing continues to level 3 to distinguish between these strains.
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peak in the 9BG5 antibody position (Fig. 4c, red
curve). In this case, 8H6 antibody labeled with AF647
was the detecting antibody indicating a type 3 reovirus.
Level 3 testing showed a distinct peak in the 9BG5
antibody position (Fig. 4c, green curve). In this case,
4F2 antibody labeled with AF555 was the detecting
antibody. Neither curve showed cross reactivity of
reovirus T3D with the immobilized 5C6 region or the
negative-control PBS region.

For reovirus T3SA+ , level 1 testing indicated the
presence of a reovirus with a peak in the second po-
sition corresponding to virus capture by 9BG5/5C6
(data not shown). Level 2 testing yielded a distinct
peak in the 9BG5 antibody position (Fig. 4d, red

curve), like the result obtained with T3D. However,
level 3 testing with 4F2 did not yield a positive signal in
the 9BG5 antibody position, indicating that the cap-
tured virus was not T3D. No detectable cross reactivity
was found in the 5C6 antibody region or the negative-
control PBS region. Thus, the virus was classified as
T3SA+.

DISCUSSION

In this study, we demonstrated the feasibility of a
FARA pathogen-classification approach using a well-
characterized virus system. Three reovirus strains and
one phage were successfully classified by performing
sequential antibody-binding assays directed by the
decision tree. The structure of the decision tree was
based on published characteristics of each virus strain
and the known specificity of each antibody. Because
the capture antibodies were arrayed at known loca-
tions along the filament, and the fluorescence of the
detection antibodies was measured as a function of
filament location, an increase in filament fluorescence
at a particular location indicated antibody interaction
with the virus. For each virus strain tested, the
expected fluorescence peaks were observed, and the
correct classification was made. Moreover, successful
transit of all decision tree branches was demonstrated.

The biochemical components of FARA are similar
to those used in standard ELISAs. Both assays create a
dual-antibody sandwich that results in similar detec-
tion limits for M13K07 for FARA and ELISA.10 One
of the virus-specific antibodies acts as the capture
antibody, and the second acts as the detecting anti-
body. The main difference in the biochemistry of the
two assays is that, in the current implementation of
FARA, enzyme amplification is not utilized. Like
ELISA, FARA utilizes antibodies adsorbed to the
surface of a substrate to capture virus from solution.
The capacity of bound antibody to retain its antigen-
binding activity is essential to the success of both
assays. Each of the immobilized test antibodies in our
system retained functionality and bound its corre-
sponding virus (Fig. 4). The absence of peaks in the
negative-control positions and in positions occupied by
antibodies not specific to the test virus demonstrates
minimal cross reactivity in the FARA platform
employed in this study.

We chose reovirus as a test system to show clinical
relevance and to avoid potential safety concerns in the
laboratory. Reovirus has been used as a model to study
mechanisms of viral pathogenesis in mice.14 Although
it is a human pathogen, it is rarely associated with
human disease.11 Many reovirus field-isolate strains
have been characterized,4,7,8 and a broad array of
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antibodies are available that recognize reovirus with
varying specificity.12

We found that not every antibody tested was suit-
able for use as an immobilized capture antibody.
Neither antibody 8H6 nor 4F2 bound virus when
immobilized on the filament, even after virus incuba-
tion time was increased to greater than 100 min (data
not shown). It is possible that these antibodies undergo
conformational changes when passively adsorbed to a
solid substrate, rendering them inactive. Alternatively,
these antibodies may be incapable of antigen binding
when immobilized as a consequence of steric hin-
drance. Antibodies 8H6 and 4F2 recognize the l1 and
r3 proteins, respectively,12 which form the bulk of the
viral outer capsid.5 It is possible that extension of the
viral attachment protein r1 may shield the l1 and r3
proteins from binding to the 8H6 and 4F2 antibodies
on the filament surface. This conclusion also is con-
sistent with our observation that 9BG5 and 5C6 were
both excellent capture antibodies, since they recognize
the r1 protein, which extends farthest from the viral
capsid. The failure of the 8H6 and 4F2 antibodies to
function as effective capture antibodies complicated
our virus detection scheme. Although 8H6 is not
serotype-specific and should bind all reovirus strains,
we could not use this antibody as the immobilized
capture antibody for level 1 testing. Antibodies 5C6
and 9BG5 are specific for serotype 1 and serotype 3
reovirus strains, respectively;12 therefore, we immobi-
lized a mixture of these antibodies for detection of all
reovirus isolates in level 1. Although 4F2 recognizes
most type 3 strains, T3SA+ is a reassortant virus that
contains a r3-encoding gene segment from T1L.1 As a
result, 4F2 does not recognize T3SA+ and is specific
only for T3D in our scheme. Since 4F2 could not be
used as a capture antibody in level 3, we incorporated a
fluorescently labeled 4F2 antibody as a detecting
antibody in solution.

Although the nature of the biochemical interactions
is similar in FARA and ELISA, the capture antibody
employed in a standard ELISA is static, and solutions
are changed in the well-plate in a fixed sequence. In
FARA, the capture antibody is attached to a mobile
substrate, and solutions are changed by positioning the
filament in different solution chambers. As we have
shown previously, this gives FARA a sensitivity limit
similar to ELISA on the order of 107 virus particles.10

A major advantage of FARA is that it is dynamic and
allows modification of processing in response to
results.9 Virus incubation time with the capture anti-
body can be reduced to as low as one minute
depending on the virus concentration and antibody
affinity, reducing the overall assay duration. On the
other hand, the incubation time can be increased in
order to increase sensitivity.9 Moreover, because the

filament is mobile, the capture antibody is brought to
the virus solution, thus enabling use of capture anti-
bodies with different specificities to interrogate a single
aliquot of virus solution.

Attachment of the capture antibody to a mobile
filament in FARA makes accurate positioning of the
filament and correct identification of the capture
antibody regions essential for virus strain classifica-
tion. These parameters are particularly important in
multilevel testing of the type used in our study. A
simple bar code system based on fluorescent fiducial
markers was used to identify the leading edge of each
of the capture antibody regions and position the fila-
ment in the reaction chambers. The pattern of the
fluorescent marks also was used to identify the level of
testing. Since our simple test system involved three
levels, and testing always began in level 1, only sear-
ches for patterns containing one or two fluorescent
marks corresponding to levels two and three were
required. However, this simple approach allows for the
incorporation of more complex bar codes using addi-
tional spots or patterns of spots.

This study demonstrates the feasibility of an auto-
mated system for diagnosing specific virus strains.
Although the scheme we report is a relatively simple
implementation of this system,more complex designs are
possible. For example, each antibody capture region
could contain additional antibodies. In addition, there is
essentially no limit to the overall length of the filament,
which would allow the incorporation of many additional
testing regions. The sensitivity of FARA could also be
increased by the use of quantum-dot labeled detection
antibodies as well as a more sensitive fluorescence
detection system. The most important requirement is the
availability of a wide range of antibodies to the specific
pathogens of interest. Such a strategy may have appli-
cations for detecting specific pathogens from complex
mixtures. This approach would have both clinical and
environmental applications.
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