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Abstract: Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary
gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential
regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice
inhibin-deficient females is not yet well understood. The objective of this study was to evaluate
the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage.
This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha−/−) female mice
with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes
in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the
two groups under study. In addition, related modules to external traits and key gene drivers were
determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The
results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared
in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with
a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of
selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction
and 3 genes related to genomic pathways. By using principal component analysis (PCA), the
14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three
principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for
investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy
for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in
inhibin and FSH hormone from the changes in the nutrition pattern.

Keywords: FSH; DEGs; granulosa cells; hCG; inhibin; Inha

1. Introduction

Gonadotropins are glycoprotein hormones produced in the pituitary by gonadotropic
cells the lightest copious ovarian cells and regulate ovarian follicle development [1,2]. These
peptide hormones are also known for regulating ovarian and testicular function and are
essential for normal growth, sexual development, and reproduction. Also, gonadotropins
include some essential hormones like inhibin, FSH, and luteinizing hormone (LH) [2,3].
For instance, inhibin is released from the ovarian granulosa cell. It is a heterodimeric
glycoprotein that consists of α-subunit linked with a β-hormone [4]. It is a member of
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the transforming growth factor-β superfamily that stimulate the release of FSH from the
pituitary cells. Moreover, inhibin plays an important role in the FSH feedback secretion
regulation during puberty in females [5]. In which, its secretion changes during female
puberty have disclose correlation with adulthood chronic diseases like diabetes type 2 and
heart disease which are generally considered among the common malnutrition diseases [6].
In addition, the inhibin hormone is essential as a diagnostic marker for ovarian cancer [7,8].
For instance, Rathore, et al. [9] mentioned that Inhibin deficiency in mice leads to the
growth of gonadal sex cord-stromal tumors. In such cases, the mice mostly died at the
age of 28 days due to testicular and ovarian tumors with cachexia-related signs [10–12]. A
genetic method assured that gonadotropins play a key modifier role for gonadal sex cord-
stromal tumor growth in inhibin-deficient mice. In that study, Nagaraja, et al. [13] reported
that inhibin genetically interacts with multiple factors that influence testicular and ovarian
growth and differentiation, including the pituitary gonadotropins [14]. Furthermore, they
found a complex interplay among inhibins, gonadotropins, and ovarian cancer. Thus, the
tracking of inhibin and FSH hormones could enhance the diagnostic performance of the
health-related disease, not just ovarian female disease.

Furthermore, it is known that granulosa cells (GCs) are somatic cells of the sex rope
that is mainly related to an embryonic female gamete identified to be an oocyte that exists
in the animals’ ovary [15]. GCs show various phenotypes in the follicle, reliant on their
position. Additionally, GCs gene expression analysis is very important to understand its
functional mechanism that is related to animal growth. Hence gene association networks
are very essential for expressing the relationship patterns between genes transversely
microarray data, where the weighted gene co-expression network analysis (WGCNA)
algorithm is a necessary tool to determine the relationship patterns among the genes
microarray data [16], for which, the WGCNA algorithm is frequently used to understand
the genes’ molecular processes and identification of interrelated genes and modules [17].
Therefore, it can show the co-expression structure and cluster the expression data into
modules of conserved function that allow one to detect patterns of gene connectivity that
can be aligned with behavioral and physiological phenotypes [18]. Meanwhile, PCA is a
multivariate statistical procedure that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components [19–21].

Therefore, this study aimed to investigate the variations in hCG-induced gene expres-
sion in WT and Inha−/− granulosa cells. It provided a novel reference for the pathway
mechanisms. Initially, differentially expressed genes (DEGs) in WT/Inha−/−with and
without human chorionic gonadotropin (hCG) stimulation samples were identified. Then
the overlapping genes as the characteristic genes in hCG stimulation and Inha−/− female
mice granulosa cells were selected and further investigated. For this process, the WGCNA
algorithm was used to identify the interrelated gene patterns. Besides, PCA was used to
examine the important regulated genes. The examined outcome recommended that Inhibin
α knockout and hCG stimulation can down-regulate JUP expression, and up-regulate
Psmc3ip expression. These genes could be used as a marker for the early prediction of
granulosa cell carcinomas.

2. Results
2.1. Hierarchical Clustering and Comparison Analysis of Selected DEGs in Different Groups

We extracted DEG expressions from two groups and drew hierarchical clustering
heatmaps, as shown in Figure 1. The experimental samples in each group were divided
into two separate parts, indicating that DEGs had obviously different expression patterns
in each group (gene expression matrix can be found in Table S1, Supplementary Materials).



Molecules 2022, 27, 5595 3 of 15

Figure 1. Hierarchical clustering heatmap of DEGs in group Inha−/− vs. WT (a) and Inha−/−
(hCG) vs. WT(hCG) (b).

2.2. GO and KEGG Pathway Enrichment Analysis for the ODEGs

Figure 2a shows the Venn diagram of DEGs in groups Inha−/− vs. WT and Inha−/−
(hCG) vs. WT(hCG). In which, 343 overlapped genes were found with a total of 25 (10 BP,
10 CC, 5 MF) significant related GO annotations for 343 overlapped genes that listed in
Table 1. Also, the hierarchical clustering heatmap of ODEGs showed a significant negative
correlation of the down-regulated Inha DEGs compared to the WT group (Figure 2b,c).
What’s more, among the 343 shared DEGs, 341 had a consistent expression direction and
high relevance, with a significant correlation coefficient of 0.9145 (p < 0.000001). The
shared 343 DEGs were differentially expressed in both Inha−/− vs. WT group and
Inha−/− (hCG) vs. WT(hCG) group (Table S1). Meanwhile, the GO BPs were signif-
icantly related to the cell cycle process (GO: 0022402), which had the most enrichment
significance (p-value < 0.0001). Also, 17 genes were involved, such as CDC6, KIFC1, MKI67,
DSN1, NUF2. Besides, according to KEGG enrichment analysis, ODEGs were significantly
enriched in eight pathways (RFC5, PRIM1, RPA2, RFC4, LIG1, POLD2, POLE, MCM2)
participating in the most significant related pathway: DNA replication (mmu03030). Using
the ggplot2 package in R, significant related GO and KEGG pathways annotations were
displayed in Figure 3.

Figure 2. (a) Venn diagram of DEGs in groups Inha−/− vs. WT and Inha−/− (hCG) vs. WT(hCG).
(b) Hierarchical clustering heatmap of overlapping DEGs. (c) Scatter-plot of correlation between
logFC of Inha−/− vs. WT and Inha−/− (hCG) vs. WT(hCG). The red triangle and green inverted
triangle refer to up and down-regulated DEGs in both Inha−/− vs. WT and Inha−/− (hCG) vs.
WT(hCG).
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Table 1. Enriched GOs and KEGG pathways for overlapped genes.

Category Term Count p-Value

Biology Process GO:0022402~cell cycle process 17 4.05 × 10−6

GO:0006259~DNA metabolic process 17 8.56 × 10−4

GO:0022403~cell cycle phase 16 1.79 × 10−4

GO:0000279~M phase 15 1.31 × 10−4

GO:0010033~response to organic substance 15 2.53 × 10−2

GO:0006260~DNA replication 13 4.14 × 10−6

GO:0051301~cell division 11 1.21 × 10−2

GO:0001568~blood vessel development 10 1.37 × 10−2

GO:0001944~vasculature development 10 1.58 × 10−2

GO:0001501~skeletal system development 10 3.33 × 10−2

Cellular Component GO:0005578~proteinaceous extracellular matrix 19 5.11 × 10−6

GO:0005615~extracellular space 19 4.03 × 10−3

GO:0044427~chromosomal part 15 1.49 × 10−3

GO:0005694~chromosome 15 7.06 × 10−3

GO:0044454~nuclear chromosome part 8 2.25 × 10−3

GO:0000228~nuclear chromosome 8 5.51 × 10−3

GO:0005657~replication fork 6 5.21 × 10−5

GO:0000793~condensed chromosome 6 4.05 × 10−2

GO:0042383~sarcolemma 5 9.21 × 10−3

GO:0030018~Z disc 4 4.69 × 10−2

Molecular Function GO:0019838~growth factor binding 6 4.09 × 10−3

GO:0008094~DNA-dependent ATPase activity 4 1.80 × 10−2

GO:0016875~ligase activity, forming
carbon-oxygen bonds 4 3.32 × 10−2

GO:0004812~aminoacyl-tRNA ligase activity 4 3.32 × 10−2

GO:0005520~insulin-like growth factor binding 3 4.08 × 10−2

KEGG Pathway mmu03030:DNA replication 8 1.35 × 10−6

mmu03430:Mismatch repair 5 4.27 × 10−4

mmu04512:ECM-receptor interaction 8 4.34 × 10−4

mmu03420:Nucleotide excision repair 6 6.87 × 10−4

mmu03440:Homologous recombination 4 9.92 × 10−3

mmu04510:Focal adhesion 9 1.73 × 10−3

mmu03410:Base excision repair 4 2.87 × 10−2

mmu00230:Purine metabolism 7 4.71 × 10−2

2.3. Physiological Phenotypes R Modules and Genes Identification Based on WGCNA

For clustering the ODEGs based on the physiological phenotypes, the expression
data were processed by square root transformation and used to infer co-expression gene
network modules with the WGCNA network construction and the module detection
method. Firstly, the distances among all the samples were studied to eliminate discrete
samples with no discrete samples to be removed (Figure 4a). In which, a high affinity
between Inha and Inha(hCG) was found by the clustering tree. Then a proper power-law
coefficient was selected using the soft-threshold method (Figure 4b). Through this model
the selected soft-threshold (X-axis) was 18 when the scale-free topology model fit was
signed at correlation coefficient (R2) = 0.8 (Y-axis). Then, a dynamic hierarchical tree cut
algorithm was used to detect the co-expression modules, and a total of six related modules
were found (Figure 4c). Moreover, the R2 between the physiological phenotypes and each
module had a very high correlation coefficient (over 0.8) with the physiological phenotypes
(Figure 4d and Table 2). Thus, 153 genes in the top three modules (blue, green, and brown)
in total were selected as representative ODEGs for further analysis based on their significant
physiological phenotypes.
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Figure 3. The histogram of the category of enriched GO terms and KEGG pathways for the overlapped
DEGs. The horizontal axis represents the number of blue, purple, green, and orange mean Biology
Process, Cellular Component, Molecular Function, and pathways, respectively; the red dot curve
means –log10 (p-value).

Table 2. Correlation between physiological phenotypes and each module genes.

Color Gene Count Correlation Coefficient (R2)

blue 65 0.9218561
green 28 0.9203381
brown 60 0.8912573

turquoise 81 0.8894315
yellow 51 0.889348

grey 58 0.8815949

2.4. Co-Expression Network Construction

The Co-expression Network had 153 DEGs in blue, green, and brown modules, as
well as an expression correlation coefficient from the WGCNA algorithm (expression
correlation matrix was shown in Table S2). Also, the selected gene pair was based on the
expression correlation coefficient >0.8 as shown in Figure 5. The co-expression network
included 122 nodes in total. These nodes had 35 down-regulated genes (14 blue, 17 brown,
and 4 green) and 87 up-regulated genes (30 blue, 36 brown, and 21 green genes) with
410 edges (129 negative coefficient connections and 281 positive coefficient connections)
(Tables 2 and S3).

Moreover, GO and KEGG pathway enrichment analysis showed that a total of 21 signif-
icantly related GO BPs and 3 KEGG pathways were found for the DEGs in the co-expression
network. DEGs in the co-expression network were significantly (p-value < 0.01) related to
the cell cycle BPs and participated in ECM-receptor interaction (mmu04512), Focal adhesion
(mmu04510), and DNA replication (mmu03030) pathways (Figure 6 and Table 3).
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Figure 4. (a) Sample clustering tree. The Black and red bars mean different types of samples.
(b) power-law coefficient parameter plot X-axis means soft-threshold, Y-axis means scale-free topology
model fit signed R-square. (c) Modules clustering tree, different colors in the bottom mean different
modules. (d) Module bar plot, X-axis means different modules, Y-axis means the significance of genes
in each color module based on their different physiological phenotypes.

Figure 5. Gene co-expression network based on 153 DEGs in blue, green, and brown modules.
Triangle and inverted triangle refer to up and down-regulated DEGs; blue, green, and brown nodes
mean genes from the corresponding colored module. Redline connections mean a positive correlation
coefficient, and green line connections mean a negative correlation coefficient.
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Figure 6. The scatterplot of the category of enriched GO terms and KEGG pathways for the DEGs in
the co-expression network. Node size means gene count, color means p-value.

Table 3. Enriched GOs and KEGG pathways for co-expression network genes.

Parameter Term Count p-Value

Biology Process GO:0007049~cell cycle 9 0.012955
GO:0007155~cell adhesion 8 0.02503

GO:0022610~biological adhesion 8 0.025243
GO:0051301~cell division 7 0.003211

GO:0000279~M phase 7 0.003325
GO:0022403~cell cycle phase 7 0.00678

GO:0022402~cell cycle process 7 0.015593
GO:0006259~DNA metabolic process 7 0.021132

GO:0006260~DNA replication 6 0.001106
GO:0010817~regulation of hormone levels 5 0.004264

GO:0009952~anterior/posterior pattern formation 5 0.007972
GO:0000280~nuclear division 5 0.016588

GO:0007067~mitosis 5 0.016588
GO:0000087~M phase of mitotic cell cycle 5 0.017769

GO:0048285~organelle fission 5 0.018688
GO:0003002~regionalization 5 0.024455

GO:0000278~mitotic cell cycle 5 0.03702
GO:0042445~hormone metabolic process 4 0.011174
GO:0030155~regulation of cell adhesion 4 0.012565

GO:0001763~morphogenesis of a branching
structure 4 0.026619

GO:0035051~cardiac cell differentiation 3 0.012461

KEGG pathway mmu04512:ECM-receptor interaction 4 0.010701
mmu04510:Focal adhesion 4 0.009668

mmu03030:DNA replication 3 0.015987

2.5. miRNA-DEGs-TF Regulatory Network Construction

MicroRNAs (miRNAs) assume a pivotal role in controlling inborn and versatile im-
munity in humans and animals [22,23]. A total number of eight miRNAs and seven
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TFs that have the potential to regulate ODEGs in the co-expression network are listed
in Tables 4 and 5, respectively. Integration regulatory relationships were identified and
constructed as a miRNA-DEGs-TF regulatory network between miRNA and DEGs, TFs
and DEGs (Figure 7). In that network, 29 nodes (8 miRNAs, 7 TFs, and 14 DEGs), 7 down
(1 blue, 6 brown) and 7 up-regulated (3 blue, 2 brown, and 2 green genes) and 56 edges
(20 miRNA-DEGs regulation and 36 TFs-DEGs) have been confirmed (Table S4).

Table 4. Related miRNAs list.

miRNA ID p-Value FDR

mmu_TGCCTTA,MIR-124A DB_ID:590 9.65 × 10−3 0.0014
mmu_GTGACTT,MIR-224 DB_ID:524 0.0002 0.0014

mmu_CTCTGGA,MIR-520A DB_ID:484 0.0036 0.0126
mmu_ACCAAAG,MIR-9 DB_ID:588 0.0029 0.0126

mmu_ACTGAAA,MIR-30A DB_ID:464 0.0065 0.0182
mmu_CTGAGCC,MIR-24 DB_ID:539 0.0107 0.0194

mmu_AACTGGA,MIR-145 DB_ID:614 0.0101 0.0194
mmu_AAGCACT,MIR-520F DB_ID:615 0.0111 0.0194

Table 5. Related TFs list.

TF ID p-Value FDR

PAX4 DB_ID:1830 8.59 × 10−6 2.58 × 10−5

MAZ DB_ID:1815 7.72 × 10−6 2.58 × 10−5

MYC DB_ID:1819 4.99 × 10−6 2.58 × 10−5

NFAT DB_ID:1822 1.40 × 10−5 3.15 × 10−5

FOXO4 DB_ID:1801 3.72 × 10−5 6.70 × 10−5

SP1 DB_ID:1837 2.00 × 10−4 3.00 × 10−4

LEF1 DB_ID:1813 4.00 × 10−4 4.00 × 10−4

Figure 7. miRNA-DEG-TF regulatory network of DEGs in the co-expression network. Triangle and
inverted triangles refer to up and down-regulated DEGs; blue, green, and brown nodes mean genes
from the corresponding colored module. Yellow square and diamond mean miRNAs and TFs.

2.6. PCA for Genes in Regulatory Network

To further refine the important genes, the PCA algorithm defined 14 genes in the
regulatory network. The cumulative proportion of fitted top 3 principal components ac-
counts for 94.64% of the total variance, which means that they can effectively describe the
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vast majority of input gene variables [20]. In general, the cumulative contribution rate
of more than 80% is considered to have caught most of the input variable information.
Figure 8 showed the differences in the top 3PCs between the two groups where significant
differences (p < 0.01) were observed among the four different groups. Also, the gene contri-
butions to the PCs were listed in Table 6, where there were 10 genes whose contribution
rate (absolute value) was over 0.9.

Figure 8. Three-dimensional distribution of samples based on PC1, PC2, and PC3. Black solid points
and hollow points mean Inha−/− with and without hCG samples, and solid and hollow triangles
mean WT with and without hCG samples.

Table 6. Gene contributions to PC1-3.

Gene Contribution to PC1-3

Fndc5 0.97
Sertad4 0.97
Atp1b3 0.96
Fam57a 0.95
P4htm 0.89

Hoxd10 0.85
Psmc3ip 0.85
Rab11a −0.85
Ypel5 −0.9
Emx2 −0.91
Jup −0.92

Gpc4 −0.93
Slc25a33 −0.94
Smarca1 −0.94

3. Discussion

It is shown that Inhibin-α plays an important role in follicular development, oocyte
development, cell differentiation, and finally reproduction. The Inhibin-α knockout/down
female mouse can develop ovarian cancer and the LH and FSH may play a crucial role
in GCs tumor development [24,25]. This study aimed to examine hCG-induced gene
expression changes in different types of granulosa cells (WT and Inha−/− types). Also,
it provided an important reference for the pathway mechanisms by showing that DEGs
were different in WT/Inha−/− before and after hCG stimulation. The ODEGs were used
as characteristic genes in hCG stimulation and Inhibin α knockout (Inha−/−) female
mice granulosa cells. This observation is in agreement with FarmanUllah, Liang, Khan,
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Salim, Rehman, Khan, Talpur, Schreurs, Gouda, Khan and Shujun [22] who mentioned that
ODEGs can effectively work as biomarkers for immune-related tumors. In which, 341 DEGs
had high relevance, with a significant correlation coefficient (p < 0.000001) in both Inha−/−
vs. WT group and Inha−/− (hCG) vs. WT(hCG) group which means that they could be
used as characteristic genes in hCG stimulation and Inhibin α knockout (Inha−/−) female
mice granulosa cells. Therefore, this study demonstrated for the first time that hCG induces
the granulosa cells to excrete Inha through stimulating Fndc5, Sertad4, JUP, and Psmc3ip
genes. In which, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR)
on selected gene expression changes were observed in the gene array analysis verified the
most important ODEGs of the knockout mice. Vasilache, et al. [26] mentioned that qRT-PCR
microarray combined with modeling is an effective technique to detect the knockout mice’s
important DEGs.

According to the analysis of KEGG pathway annotations, ODEGs were significantly
enriched in eight biological pathways: DNA replication, Focal adhesion, and purine
metabolism pathways which significantly enriched the GO term. In the biological process
category, the genes were mainly enriched in GO terms associated with extracellular matrix
and axon [27], for which, the R2 between the physiological phenotypes and each KEGG
module for DEGs had a very high correlation coefficient (>0.8). Chen, et al. [28] mentioned
that a positive regulator of the steroidogenesis pathway of FSH is essential for the granulosa
cell proliferation, death, and differentiation in almost all cell types. The WGCNA algorithm
was used to detect related modules and genes, significantly related to eight miRNAs;
whereas, the seven TFs and regulatory networks were utilized to get regulated DEGs [29].
Finally, PCA differentiated the four groups under study to determine the importance
of 14 regulated genes. Also, the top 3PCs between the two groups were significantly
different (p < 0.01) among the four groups under study. Among them, the JUP gene was
significantly related to cell adhesion (GO: 0007155), DNA metabolic process (GO:0006259),
and biological adhesion (GO: 0022610), while Psmc3ip participated in the cell cycle (GO:
0022402) and M phase (GO: 0000279), and they all belonged to the brown module of the
physiological phenotypes of WGCNA results, so they had close expression relationship.
Chen, et al. [30] reported that the JUP form is a member of the catenin family that can
affect various processes such as proliferation, migration, and differentiation by mediating
cellular adhesion. Thus, the mutation in its gene is associated with several gene-related
diseases. [30]. In addition, Psmc3ip (also known as GT198) is used as a unique tumor marker
suppressor gene for the mutant cells in ovarian cancer. Psmc3ip protein has been shown as
a steroid hormone receptor regulator and also as a crucial factor in DNA repair [31]. Thus,
studying such genes could facilitate the complex mission of dealing with ovarian cancer.

Additionally, the result suggested that Inhibin α knockout and hCG stimulation can
down-regulate the expression of JUP and up-regulate Psmc3ip. In which, the co-expression
Network had 153 DEGs expression correlation coefficient from WGCNA algorithm with
R2 > 0.8 with 35 down-regulated genes and 87 up-regulated genes. Moreover, JUP forms
distinct complexes with cadherins and desmosomal cadherins through an amino acid motif
called the armadillo repeat, which can affect the diverse processes and modulate the func-
tion of extracellular ligands [32,33]. It also showed that JUP and Psmc3ip genes had close
relationships in both expression patterns and functions in the Inha−/− hCG stimulation
female mice granulosa cells. Similarly, the activity of the Psmc3ip gene is revealed to have a
crucial role in ovarian dysgenesis and male fertility in mammalians [34,35]. Thus, the data
analysis detected DEGs and relevant biological functions after the knockdown of the Inha
and associated gene expression for further research guidance in mammalian reproduction.

4. Materials and Methods
4.1. Experimental Animals

A number of 100 specific-pathogen-free (SPF) mice were grouped (25 mice WT, 25 mice
Inha−/−, 25 mice WT (hCG), and 25 mice Inha−/−(hCG)) according to Hofland, et al. [36].
In which, 21 to 23-day-old WT and Inha−/− female mice were injected with 5 IU hCG for



Molecules 2022, 27, 5595 11 of 15

6 h to stimulate hCG groups and granulosa cells with and without hCG stimulation which
were collected from 2 genotypes (WT and Inha−/−) according to National Institutes of
Health (NIH) Guidelines for the Care and use of Laboratory Animals, USA (Approval ID:
SCXK Hubei 20080005).

4.2. Data and Experimental Design

A schematic diagram of the overall research procedure for data analysis is shown in
Figure 9. Dataset and description.

Figure 9. Schematic illustration of the analysis strategy.

The target gene expression profiles were downloaded from NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/ accessed on 1 February 2011) through
accession number GSE20466 (Platform: GPL1261 [Mouse430_2] Affymetrix Mouse Genome
430 2.0 Array), which contained 12 samples in total [37,38].

4.3. Data Reprocessing and Differentially Expressed Genes (DEGs) Screening

The main objective of this part was to initially normalize the datasets’ differences and
functions. The data before and normalization were shown in Figure 10, and the detailed
normalized gene expression data can be found in Table S5. Only those genes meeting
FDR < 0.05 and |log2 FC (fold change)| > 1 were chosen as DEGs from each group. In
Inha−/− vs. WT and Inha−/− with hCG vs. WT groups only 1074 and 931 DEGs were
identified based on the cut-off criteria and showed in volcano plots for WT (Figure 11A),
and Inha−/− (Figure 11B) respectively. The list of DEGs could be found in Table S6
(Supplementary Materials).

Raw CEL files and annotation files were downloaded, and the gene expression data
of all samples were preprocessed via background correction, quantile normalization, and
probe summarization using the Robust Multi-array Average (RMA) algorithm (http://
www.bioconductor.org/packages/release/bioc/html/affy.html, accessed on 1 February
2022) in R 3.4.1 (R Studio, USA). Linear Models of Microarray Data package (LIMMA,
version 3.32.5) from the link http://www.bioconductor.org/packages/release/bioc/html/
limma.html (accessed on 1 February 2022) was used to identify DEGs [39].

http://www.ncbi.nlm.nih.gov/geo/
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/affy.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
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Figure 11. Volcano plot of DEGs in group Inha−/− vs. WT (A) and Inha−/− (hCG) vs. WT (hCG) (B).
The red triangle and green inverted triangle refer to up and down-regulated DEGs; the Red horizontal
dot line means FDR = 0.05 cutoff line, and two red vertical dot lines mean logFC = 1 and logFC = −1
cutoff line.

4.4. Hierarchical Clustering and Comparison Analysis of Selected DEGs in Different Groups

The expression of selected DEGs in Inha−/− vs. WT and Inha−/− (hCG) vs. WT
(hCG), Inha−/− vs. Inha−/− (hCG), and WT vs. WT (hCG) were used to generate a
hierarchical clustering image by heatmap (version 1.0.8) package in R 3.4.1 (RStudio; http://
www.cran.r-project.org/web/packages/pheatmap/, accessed on 1 February 2022) [40,41].
Then, the identified DEGs were compared in the two groups and the ODEGs were selected
by using VennDiagram package R 3.4.1 (http://www.cran.r-project.org/web/packages/
VennDiagram/, accessed on 1 February 2022). After that, Pearson Correlation Coefficient
(PCC) was used for further studying the ODEGs correlations following Huang da, et al. [42].

4.5. Enrichment Analysis for the Overlapping DEGs

To explore the functions of ODEGs and their pathways, the DAVID version 6.8
(Database for Annotation, Visualization and Integrated Discovery; http://www.david.
ncifcrf.gov/, accessed on 1 February 2022) database was used to perform GO (Go Ontology)
and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analyses for

http://www.cran.r-project.org/web/packages/pheatmap/
http://www.cran.r-project.org/web/packages/pheatmap/
http://www.cran.r-project.org/web/packages/VennDiagram/
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http://www.david.ncifcrf.gov/
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ODEGs. The p-value < 0.05 and gene count ≥ 2 were set as the cut-off criteria. Furthermore,
the category of enriched GO, KEGG terms, and the gene number were displayed as scat-
terplots by the ggplot2 package in R3.4.1 (http://www.cran.r-project.org/web/packages/
ggplot2/, accessed on 1 February 2022).

4.6. Physiological Phenotypes-Related Modules and Genes Identification Based on WGCNA

Weighted Gene Co-expression Network Analysis (WGCNA) algorithm was used
to investigate the co-expression modules and genes which were related to phenotypes
through the WGCNA package (version 1.61) (http://www.cran.r-project.org/web/packages/
WGCNA/index.html, accessed on 1 February 2022).

4.7. Co-Expression Network Construction

Based on the results of the WGCNA algorithm, only gene pairs with expression
correlation coefficient > 0.8 were used to construct a gene co-expression network which
was then built by Cytoscape3.2.0 (http://www.cytoscape.org/, accessed on 1 February
2022). Also, GO and KEGG pathway enrichment analysis for the genes in the co-expression
network was made.

4.8. miRNA-DEGs-TF Target Regulatory Network Analysis

WEB-based Gene Set Analysis Toolkit (WebGestalt; http://www.webgestalt.org/
option.php, accessed on 1 February 2022) was used to search Transcription Factors (TFs)
and miRNAs that regulated the DEGs in co-expression networks. Besides, p-value < 0.05
was set as the significance cut-off criteria. As a result of TFs and miRNAs were inte-
grated and then identified in the miRNA-DEGs-TF regulatory network. The regulatory
network consisting of DEGs, miRNAs, and TFs was then constructed and visualized by
Cytoscape3.2.0 (http://www.cytoscape.org/, accessed on 1 February 2022).

4.9. Principal Component Analysis (PCA) for Genes in the Regulatory Network

In order to refine genes and get the most specific ones, we further narrowed the
gene range by using the PCA algorithm in the psych package (version 1.7.5) in R3.1.4
(http://www.cran.r-project.org/web/packages/psych/, accessed on 1 February 2022).
Then scatterplot3d package (version 0.3-40) (http://www.cran.r-project.org/web/packages/
scatterplot3d/, accessed on 1 February 2022) was used to display the effect of PCA based
on the top 3 components: PC1, PC2, and PC3.

5. Conclusions

In this study, 1074 and 931 DEGs aggregates were identified in inha and wild-type.
Through bioinformatics investigation 8 miRNAs, 7 TFs and 14 DEGs and 7 up-regulated
genes with 20 miRNA-DEGs regulation and 36 TFs-DEGs were confirmed. This study
provides potential key information for using ODEGs as biomarkers for granulosa cell
cancer regulation. Also, further integration of the DEGs and the TF related to the immune
response can facilitate the development of the target drugs for controlling the transcription
pathways of the inhibin-deficient females.
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