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Mentha arvensis L., is an aromatic herb that belongs to the Lamiaceae family and is widely
used in medicinal applications, essential oil applications, and food flavoring. The extract of
M. arvensis has been reported to exert sedative-hypnotic, anti-inflammatory, anti-fungal,
and anti-bacterial effects. However, its effects on bone metabolism have not yet been
studied. Here, we investigated the effects of the water extract of M. arvensis (WEMA) on
osteoclast formation in vitro and bone loss in an ovariectomized mouse model. We found
that WEMA inhibited osteoclast differentiation by directly acting on osteoclast precursor
cells. WEMA inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced the
expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T cells c1
(NFATc1), crucial transcription factors for osteoclast differentiation, by suppressing
RANKL-induced activation of early signaling pathways such as those of mitogen-
activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). In addition, oral
administration of WEMA suppressed ovariectomy-induced trabecular bone loss in
mice. We additionally identified phytochemicals in WEMA that are known to have anti-
osteoclastogenic or anti-osteoporotic properties. Collectively, these results suggest that
WEMA is a promising herbal candidate that can be used to prevent or treat
postmenopausal osteoporosis.
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INTRODUCTION

Bone homeostasis is maintained by a balance between bone resorption and bone formation,
mediated by osteoclasts and osteoblasts, respectively. An imbalance in bone homeostasis can
occur due to abnormal bone resorption of osteoclasts or loss of osteoblast function. Bone
imbalance caused by excessive osteoclast-mediated bone resorption is closely associated with
most bone metabolic diseases such as osteoporosis, periodontitis, rheumatoid arthritis,
metastatic cancers, and multiple myeloma (Boyle et al., 2003; Tanaka et al., 2005).

Osteoporosis is one of the major health problems in aging communities. There are two
types of osteoporosis: type 1 is postmenopausal osteoporosis occurring in postmenopausal
women, and type 2 is senile osteoporosis occurring in both women and men over 70 years of
age (Boonen et al., 1996). In postmenopausal osteoporosis, loss of trabecular bone is
increased, whereas in senile osteoporosis, it increases both the loss of cortical and
trabecular bone.
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Currently, hormone replacement therapy (HRT) and
bisphosphonates are the representative treatments used for
postmenopausal osteoporosis. However, long-term HRT has
been found to increase the risk of breast cancer, cardiovascular
diseases, and biliary disease, and bisphosphonates cause
osteonecrosis of the jaw (Nelson et al., 2002; Diel et al., 2007).
Therefore, there is a growing interest in the use of natural medicinal
plants for therapy that are thought to have few side effects.

Osteoclasts are giant multinucleated cells derived from
hematopoietic precursor cells in the bone marrow. Osteoclast
precursor cells can differentiate into mature osteoclasts when
exposed to the macrophage colony-stimulating factor (M-CSF)
and receptor activator of NF-κB ligand (RANKL) (Boyle et al.,
2003). RANKL is an essential source of precursor cells that
differentiate into osteoclasts, and M-CSF provides the survival
of these cells. The binding of RANKL to its receptor promotes the
recruitment of tumor necrosis factor receptor-associated factor 6
and activates multiple downstream signaling pathways, including
those of nuclear factor-κB (NF-κB) and mitogen-activated
protein kinases (MAPKs) including c-Jun N-terminal protein
kinase (JNK), p38, and extracellular signal-regulated kinase (ERK).
This signaling induces the activation of transcription factors for
osteoclastogenesis, namely, c-Fos and nuclear factor of activated
T cells c1 (NFATc1), and results in the expression of osteoclast-
specific genes such as tartrate-resistant acid phosphatase (TRAP),
matrix metalloproteinase-9 (MMP-9), cathepsin K, integrin β3,
and calcitonin receptor (Boyle et al., 2003; Wittrant et al., 2003).
Inhibition of these molecules could be an effective treatment for
osteoporosis by interfering with osteoclast differentiation and bone
resorption of activated osteoclasts.

Mentha arvensis L., an aromatic herb belonging to the
Lamiaceae family, is extensively cultivated in India, Japan, Nepal,
Bangladesh, and Srilanka for its use in medicinal applications,
essential oil applications, and food flavoring (Thawkar, 2016).
Previous studies have shown that M. arvensis contains various
phytochemicals mainly including monoterpenes (e.g., menthol,
menthone, and isomenthone), phenolic acids (e.g., caffeic acid
and rosmarinic acid), and flavonoids (e.g., luteolin, linarin, and
hesperidin) (Akram et al., 2011). M. arvensis has traditionally been
used to treat bacillary dysentery, flatulence, dyspepsia, gastritis, and
enteritis. Recently, M. arvensis has been reported to have various
beneficial biological properties including sedative-hypnotic, anti-
inflammatory, anti-fungal, and anti-bacterial activities (Akram
et al., 2011). However, the pharmacological properties of the
water extract of M. arvensis (WEMA) on osteoporosis have not
been studied. In this study, we investigated the bone protective effects
of WEMA on RANKL-induced osteoclastogenesis and ovariectomy
(OVX)-induced postmenopausal osteoporosis.

MATERIALS AND METHODS

Materials
Cell Counting Kit-8 (CCK-8) was obtained from Dojindo
Molecular Technologies Inc. (Rockville, MD, United States).
Alpha-modified minimal essential medium (α-MEM) was
purchased from Hyclone (Logan, UT, United States). Fetal

bovine serum (FBS) and calf serum were obtained from
Thermo Fisher Scientific (Waltham, MA, United States).
1α,25-dihydroxyvitamin D3 (VitD3) was purchased from
Sigma-Aldrich (St. Louis, MO, United States). Recombinant
human M-CSF was obtained from Dr. Yongwon Choi
(University of Pennsylvania School of Medicine, Philadelphia,
PA, United States). Recombinant soluble GST-tagged human
RANKL was prepared as previously described (Ha et al., 2013).
Antibodies against phospho-IκBα (Ser32), IκBα, phospho-JNK1/2
(Thr183/Tyr185), JNK, phospho-ERK1/2 (thr202/Tyr204), ERK,
phospho-p38 (Thr180/Tyr182), p38, and β-actin were purchased
from Cell Signaling Technology (Danvers, MA, United States).
Antibody against aryl hydrocarbon receptor (AhR) was purchased
from Enzo Life Sciences, Inc. (Farmingdale, NY, United States).
Antibodies against c-Fos and NFATc1 were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, United States). WEMA was
purchased from the National Development Institute of Korean
Medicine (Gyeongsan, Korea). In brief, leaves of M. arvensis were
extracted with distilled water at reflux for 3 h and dried using a
vacuum freeze dryer after filtration. The WEMA powder was re-
suspended in distilled water, centrifuged at 10,000 × g for 5 min,
and stored at −20°C until required for experiment.

Bone Marrow-Derived Macrophages
(BMMs) Isolation
Bone marrow cells were isolated from 7-week-old male C57BL/6 J
mice. The femur and tibia were aseptically extracted, and the
marrow cavity was flushed out with α-MEM from one end of the
bone using a sterile needle. Single cells obtained from the bone
marrow suspension using a cell strainer (70 µm), and red blood
cells were lysed for 5 min using Ammonium-Chloride-Potassium
(ACK) lysing buffer. The cells were washed twice and incubated
with α-MEM in the presence of M-CSF (20 ng/ml) for 24 h. Non-
adherent cells were harvested, washed, resuspended in α-MEM in
the presence of M-CSF (60 ng/ml), and cultured in non-coated
plates for 5 days. Non-adherent cells were removed by washing
with PBS and then BMMs were incubated for 10 min with an
Enzyme Free Cell Dissociation Solution (EDM Millipore Corp.,
Burlington, MA, United States), and harvested using a cell lifter.

Cell Culture
The murine osteocyte-like cell line, MLO-Y4 cells at 40 passages
(Kerafast, Boston, MA, United States) were cultured in growth
medium consisting of α-MEM supplemented with 2.5% FBS, 2.5%
calf serum, and 1% penicillin/streptomycin on type I collagen-coated
plates.MLO-Y4 cells were derived from the long bone of a transgenic
mouse expressing a T-antigen transgene under the control of the
osteocalcin promoter (Bonewald, 1999), and utilized phenotypic
criteria of high osteocalcin expression and morphology consistent
with osteocytes. BMMswere cultured in α-MEM supplementedwith
10% FBS, 1% penicillin/streptomycin, and M-CSF (60 ng/ml).

Cell Viability
The BMMs (2 × 104 cells/well) were seeded in 96-well plates and
after 12 h, the mediumwas replaced with α-MEMwith or without
WAMA (11.1, 33.3, 100, and 200 μg/ml). After 24 h, cell viability
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was assessed by a CCK-8 assay, and absorbance was measured at
450 nm using a conventional microplate reader (Molecular
Devices, San Jose, CA, United States).

Osteoclast Differentiation
For osteoclast differentiation assay in BMM-osteocyte co-culture,
MLO-Y4 (1 × 103 cells/well) cells were cultured in a 96-well plate
in α-MEM supplemented with 10% FBS and 1% penicillin/
streptomycin. The next day, BMMs (4 × 104 cells/well) were
added to the culture of MLO-Y4, and the co-cultures were
cultured with or without WEMA for 5 days in the presence of
VitD3 (10 nM) or VitD3 (10 nM) plus RANKL (50 ng/ml). For
osteoclast differentiation in BMMs, BMMs (1 × 104 cells/well)
were cultured with or without WEMA for 4 days in the presence
of M-CSF (60 ng/ml) and RANKL (50 ng/ml) in a 96-well plate.

TRAP Activity and Staining
To measure TRAP activity, cells were washed with PBS, fixed using
10% neutral buffered formalin, permeabilized using 0.1% Triton X-
100 for, and then incubated using TRAP activity solution (50mM
sodium tartrate, 0.12M sodium acetate, and p-nitrophenyl
phosphate, pH 5.2) for 15 min at 37°C. The reaction was stopped
using 0.1N NaOH and the absorbance was measured at 405 nm
using a microplate reader. After measuring the TRAP activity, cells
were washed with distilled water and stained using TRAP staining
solution (50 mM sodium tartrate, 0.12M sodium acetate, naphthol
AS-MX phosphate, and fast red violet LB salt, pH 5.2). Color
development was stopped by washing with distilled water. TRAP-
positive multinucleated cells (MNCs) containing three or more
nuclei were counted as osteoclasts.

Western Blot Analysis
Whole cell proteins were extracted from BMMs using lysis buffer
(iNtRON Biotechnology, Sungnam, Korea). Protein concentrations
were determined using a standard curve based on the BSA standard
reagent that was included in the BCA Protein Assay Kit
(ThermoFisher Scientific, MA, United States). The proteins were
separated on a 10% SDS-PAGE gel and transferred to a
polyvinylidene fluoride membrane. The membranes were
blocked with 5% skim milk, incubated with primary antibodies
(1:1,000 dilution) against AhR, c-Fos, NFATc1, p-ERK, ERK,
p-JNK, JNK, p-p38, p38, p-IκBα, IκBα, or β-actin overnight at
4°C, and then washed 6 times for 5 min each with Tris-buffered
saline with 0.1% Tween 20 (TBST) at room temperature. The
membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies (1:5,000 dilution) for 1 h at
room temperature and washed six times with TBST. Specific
bands were detected using SuperSignal® West Pico
Chemiluminescent Substrate and visualized using the ChemiDoc
Imaging System (Bio-Rad, Hercules, CA, United States).

Quantitative Real-Time Polymerase Chain
Reaction (qPCR)
Total RNA was extracted using the RNA-spinTM Total RNA
Extraction Kit (iNtRON Biotechnology, Sungnam, Korea)
according to the manufacturer’s instructions. Total RNA (1 μg)

was used for cDNA synthesis using a High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific, Waltham,
MA, United States). qPCR was performed on an ABI 7500 Real-
Time PCR Instrument (Applied Biosystems) after mixing the cDNA
(25 ng), TaqMan Universal Master Mix II (Applied Biosystems,
Foster City, CA, United States) and TaqMan probe for NFATc1
(Mm00479445_m1), c-Fos (Mm00487425_m1), B lymphocyte-
induced maturation protein 1 (Blimp1, Mm00476128_m1),
interferon regulatory factor-8 (IRF-8, Mm00492567_m1), v-maf
avian musculoaponeurotic fibrosarcoma oncogene homolog B
(MafB, Mm00627481_s1), MMP-9 (Mm00442991_m1), integrin
β3 (Mm00443980_m1), cathepsin K (Mm00484036_m1), and
18S (Mm99999915_g1). Fold changes in target gene expression
were calculated using the ΔΔCt method.

In Vivo Study
All animal experiments were approved by the Institutional Animal
Care and Use Committee (IACUC) at Knotus (Guri, Korea)
(approval number: 19-KE-216). Female C57BL/6 J mice (6 weeks
old) were housed under standard laboratory conditions of humidity
(55% ± 5%), temperature (22°C ± 2°C), and illumination circle (12 h
light/dark cycle). The mice were bilaterally ovariectomized or sham
operated through dorsal incisions under Zoletil and Rumpun
anesthesia. One week after surgery, healthy mice that recovered
from OVX surgery were selected and randomly assigned into four
groups (n � 6): sham group, OVX group, OVX + WEMA
100mg/kg/day treatment group (WEMA-L), and OVX + WEMA
300mg/kg/day treatment group (WEMA-H). The mice were
provided a commercial normal-fat diet (Research Diet, New
Brunswick, NJ, United States) and water ad libitum, and WEMA
was administered once daily by oral gavage for 5 weeks.

Trabecular Bone Analysis
The distal femurs of mice were fixed by 10% neutral buffered
formalin for 2 days and then scanned using a µ-computed
tomography (µ-CT) imaging system (Bruker, Kontich, Belgium).
After scanning the femur, reconstruction and analysis of the original
images were performed using SkyScan NRecon and CTAn software,
respectively. Trabecular morphometric parameters including bone
mineral density (BMD), bone volume per tissue volume (BV/TV),
trabecular thickness (Tb.Th), trabecular number (Tb.N), and
trabecular separation (Tb.Sp) were calculated.

Ultrahigh-Performance Liquid
Chromatography–Tandem Mass
Spectrometry (UHPLC–MS/MS)
A Dionex UltiMate 3,000 system equipped with a Thermo
Q-Exactive mass spectrometer was used to analyze the WEMA
constituents. Chromatographic separation was achieved using an
Acquity BEH C18 column (100 × 2.1mm, 1.7 µm). A gradient
elution of the mobile phase using 0.1% formic acid in water (A)
and acetonitrile (B) was set as follows: 0–1 min, 3% B; 1–2 min,
3–15% B; 2–13 min, 15–50% B; 13–20 min, 50–100% B;
20–23 min, 100% B; and 23.5–27.5 min, 3% B. The Q-Exactive
mass spectrometer was equipped with a heated electrospray
ionization source and operated in the positive and negative
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ion switching modes, according to a previous study (Hwang et al.,
2019). Data acquisition and analysis were performed using
Xcalibur v.3.0 and Tracefinder v.3.2 software. Neochlorogenic
acid was obtained from ChemFace (Wuhan, China). Danshensu,
chlorogenic acid, rutin, isoquercitrin, ferulic acid, hesperidin,
rosmarinic acid, and linarin were obtained from Targetmol
(Wellesley Hills, MA, United States). The identification of
phytochemicals from WEMA was performed by comparing
the retention time and mass spectral pattern with reference
standards or according to a previous report (Hanafy et al., 2017).

Statistical Analysis
Data are expressed as mean ± standard deviation (SD) in in vitro
experiments and mean ± standard error of the mean (SEM) in

animal experiments. Statistical significance was determined by
one-way analysis of variance (ANOVA) with Dunnett’s post hoc
test or two-way ANOVA with Bonferroni’s post hoc test. Results
were considered statistically significant when p values were less
than 0.05.

RESULTS AND DISCUSSION

WEMA Inhibits Osteoclast Differentiation
In remodeling bone, osteocytes are the major cells supporting
osteoclast differentiation by providing RANKL (Xiong et al.,
2015). MLO-Y4, an osteocyte-like cells, can support osteoclast
differentiation in co-culture with osteoclast precursor cells (Zhao

FIGURE 1 | WEMA inhibits osteoclast differentiation. (A) MLO-Y4 cells and BMMs were co-cultured with or without WEMA (11.1, 33.3, 100, and 200 μg/ml) for
5 days in the presence of VitD3 (10 nM) or VitD3 (10 nM) plus RANKL (50 ng/ml). Representative images of TRAP staining (left panel; scale bar, 200 µm) and the number
of TRAP-positive MNCs containing three or more nuclei (right panel). (B) BMMs were cultured with or without WEMA for 4 days in the presence of RANKL (50 ng/ml).
Representative images of TRAP staining (upper panel; scale bar, 200 µm), TRAP activity (lower left panel), and the number of TRAP-positive MNCs (lower right
panel) containing three or more nuclei. (C) BMMs were incubated with or without WEMA (11.1, 33.3, 100, and 200 μg/ml) for 24 h. Cell viability was evaluated by Cell
Counting Kit-8 assay. Values are the mean ± SD of one representative experiment out of three with similar results, performed in triplicates. **p < 0.01 versus control.
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et al., 2002). To investigate the effect of WEMA on
osteoclastogenesis, we first examined whether WEMA affects
osteoclast formation in co-culture of MLO-Y4 with osteoclast
precursor cells, BMMs. Treatment of the co-culture with VitD3
for 5 days promoted osteoclast differentiation, which was
suppressed by WEMA in a dose-dependent manner
(Figure 1A). The addition of exogenous RANKL to the co-
culture did not recover the inhibitory effect of WEMA,
suggesting the possibility of direct action of WEMA on
osteoclast precursors. To investigate whether WEMA directly
inhibits osteoclastogenesis in osteoclast precursors, osteoclast
differentiation was induced by directly adding exogenous
RANKL to osteoclast precursor BMMs. Consistent with the
results of the co-culture system, WEMA inhibited RANKL-
induced osteoclast differentiation of BMMs in a dose-
dependent manner (Figure 1B). WEMA did not reduce cell
viability of BMMs, indicating that the inhibitory effect of
WEMA was not due to cytotoxicity (Figure 1C).

WEMA Inhibits RANKL-Induced NFATc1
Expression
To understand the molecular mechanism underlying the anti-
osteoclastogenic effect of WEMA, we investigated its effects on
key transcription factors required for osteoclastogenesis. RANKL
activates NF-κB and MAPKs in osteoclast precursors, and these
early signaling pathways lead to the induction of c-Fos and

NFATc1. During osteoclastogenesis, the expression of NFATc1
increases and it functions as a master transcription factor for
osteoclastogenesis (Takayanagi et al., 2002). WEMA treatment
suppressed RANKL-induced expression of NFATc1 mRNA and
protein (Figures 2A,B). Activated NFATc1 is known to regulate
osteoclast specific genes such as cathepsin K, MMP-9, and
integrin β3 which are important for osteoclast differentiation
and bone resorption (Boyle et al., 2003). The WEMA inhibited
RANKL-induced mRNA expression of cathepsin K, MMP-9, and
integrin β3 (Figure 2B). Recently, it was reported that anti-
osteoclastogenic transcription factors, such as IRF-8 and MafB,
block the transcriptional activity of NFATc1. These factors are
negatively regulated by Blimp-1 (Park et al., 2017). WEMA
restored reduced IRF-8 and MafB expression accompanied by
enhanced Blimp1 expression during RANKL-induced
osteoclastogenesis, indicating that WEMA treatment altered
Blimp1 signaling to suppress transcription of NFATc1 and its
target genes. c-Fos is also upregulated during osteoclastogenesis
and plays a key role in the transcriptional induction of NFATc1
(Matsuo et al., 2004). WEMA inhibited RANKL-induced c-Fos
protein expression but not mRNA expression. Recently, AhR, a
ligand-activated transcription factor, was shown to mediate
RANKL-induced MAPK and NF-κB activation and c-Fos
induction (Izawa et al., 2016). WEMA did not affect RANKL-
induced AhR induction (Figure 2A). Next, we examined whether
WEMA affects RANKL-induced activation of early signaling
pathways, including those of MAPKs and NF-κB. It has been

FIGURE 2 |WEMA inhibits RANK-induced signaling required for NFATc1 induction. (A,B) BMMs were pre-treated with or without WEMA (200 μg/ml) for 3 h in the
presence of M-CSF (60 μg/ml). Then, the cells were stimulated with RANKL (50 ng/ml) for 0, 1, 2, or 3 days. (A) The protein expression of AhR, c-Fos, and NFATc1 was
analyzed by western blot. (B) The mRNA expression of c-Fos, NFATc1, Blimp1, IRF-8, MafB, cathepsin K, MMP-9, and integrin β3 was analyzed by qPCR. (C) BMMs
were pre-treated with or without WEMA (200 μg/ml) for 3 h in the presence of M-CSF (60 μg/ml). Then the cells were stimulated with RANKL (50 ng/ml) for 0, 5, 15,
or 30 min. The indicated proteins were analyzed by western blot. Values are themean ± SD of one representative experiment out of three with similar results, performed in
triplicates. *p < 0.05, **p < 0.01 versus control.
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FIGURE 3 | WEMA slowed OVX-induced bone loss in mice. The mice were orally administered vehicle or WEMA for 5 weeks. (A) µ-CT images, BMD, and bone
morphometric parameters of femoral trabecular bone. (B) Body weight gain and uterine weight. OVX, ovariectomy group; WEMA-L, OVX + WEMA 100 mg/kg/day
treatment group; WEMA-H, OVX + WEMA 300 mg/kg/day treatment group; BMD, bone mineral density; BV/TV, bone volume per tissue volume; Tb.N, trabecular
number; Tb.Th, trabecular thickness. Tb. Sp, trabecular separation; *p < 0.05, **p < 0.01 versus the OVX group.

TABLE 1 | Phytochemicals of WEMA by UHPLC-MS/MS.

No Rt

(Min)
Calculated

(m/z)
Estimated

(m/z)
Adducts Error

(ppm)
Elemental

composition
MS/MS

fragments
(m/z)

Identifications

1 4.22 197.046 197.045 [M-H]- −4.43 C9H10O5 197, 179, 135 Danshensua

2 4.69 353.088 353.088 [M-H]- −0.46 C16H18O9 191, 179, 135 Neochlorogenic
acida

3 5.21 353.088 353.088 [M-H]- −0.46 C16H18O9 191, 179, 173 Chlorogenic acida

4 6.51 609.146 609.147 [M-H]- 0.61 C27H30O16 301, 300 Rutina

5 6.78 463.088 463.088 [M-H]- 0.25 C21H20O12 463, 300, 301 Isoquercitrina

6 7.07 193.051 193.050 [M-H]- −3.80 C10H10O4 178, 149, 134 Ferulic acida

7 7.58 717.146 717.147 [M-H]- 1.63 C36H30O16 339, 321, 295 Salvianolic acid E
8 7.9 609.183 609.183 [M-H]- 0.11 C28H34O15 301 Hesperidina

9 7.99 359.077 359.077 [M-H]- −0.51 C18H16O8 197, 179, 161 Rosmarinic acida

10 8.22 717.146 717.146 [M-H]- 1.71 C36H30O16 339, 331 Salvianolic acid B
11 9.51 637.177 637.178 [M + HCO2]

- 0.22 C28H32O14 283 Linarina

aCompared with the retention time (Rt) and mass spectral data of reference standards.
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reported that p38 is essential in the initial stages of
osteoclastogenesis as it promotes the expression of cathepsin K
(Matsumoto et al., 2004). JNK is important for osteoclastogenesis,
and ERK plays an important role in osteoclast survival (Miyazaki
et al., 2000; David et al., 2002). The NF-κB signaling pathway
plays a crucial role in the immune and inflammatory response

and is a main downstream signaling pathway involved in
RANKL-induced osteoclastogenesis (Boyce et al., 2015; Liu
et al., 2017). NF-κB exists as an inactive complex with the NF-
κB inhibitor IκBα, which prevents nuclear translocation of NF-
κB containing the p50 and p65 subunits. However, upon
RANKL stimulation, IKK stimulates the phosphorylation

FIGURE 4 | UHPLC–MS/MS analysis of WEMA. (A) Base peak chromatogram of WEMA. (B) Extracted ion chromatograms of identified phytochemicals.
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and degradation of IκBα and liberates NF-κB, leading to its
nuclear translocation (Boyce et al., 2015). WEMA inhibited
RANKL-induced JNK and p38 MAPKs phosphorylation, but not
ERK MAPK, and it also diminished RANKL-induced NF-κB
activation, as determined by phosphorylation and degradation
of IκBα (Figure 2C). These results suggest that the anti-
osteoclastogenic effect of WEMA is, at least in part, attributable
to its inhibition of NFATc1 induction by suppressing RANKL-
induced early signaling and/or decreasing c-Fos protein levels.

WEMA Attenuates OVX-Induced Bone Loss
in Mice
Having established that WEMA inhibits osteoclast
differentiation, we next examined the effect of WEMA on
osteoclast-mediated bone loss in OVX mice. OVX is the most
common animal model used to evaluate the mechanisms of
postmenopausal osteoporosis and therapeutic strategies for
treating this disease. Estrogen deficiency by OVX induces
osteoclast differentiation at a rate higher than that of bone
formation, which accelerates the turnover rate of bone
remodeling, resulting in a decrease in bone mass and
deterioration in bone architecture (Komori, 2015). OVX in
mice is known to significantly affect trabecular bone but not
cortical bone (Komori, 2015). To investigate the effect of WEMA
on OVX-induced bone loss, WEMA was orally administered for
5 weeks, starting 1 week after OVX. A new high resolution digital
imaging technique µ-CT was used to evaluate trabecular bone
quantity and quality by measuring BMD and microstructural
parameters including BV/TV, Tb.N, Tb.Th, and Tb.Sp in the
distal femurs. Compared with the sham group, OVX mice
exhibited a marked trabecular bone loss with a decrease in
BMD, BV/TV, Tb.N, and Tb.Th and an increase in Tb. Sp,
which was remarkably attenuated by WEMA administration
(Figure 3A). As expected, estrogen deficiency by OVX resulted
in increased body weight gain and uterine atrophy, and WEMA
inhibited OVX-induced increase in body weight gain, but not
uterine atrophy (Figure 3B). However, we cannot completely
exclude the possible involvement of an estrogen-like activity in
exerting the anti-osteoporotic and anti-obesity effects of WEMA,
given that phytoestrogens can modulate estrogen receptors (ERs)
in a tissue-dependent fashion, due to their differential binding
affinities to two ER isoforms, ERα and ERβ (Anandhi
Senthilkumar et al., 2018). Taken together, our findings indicate
that WEMA can attenuate OVX-induced bone loss and weight
gain without exerting an estrogenic effect in the uterus, suggesting
that WEMAmight be an excellent candidate for the prevention or
treatment of postmenopausal osteoporosis and obesity.

Phytochemical Profiles of WEMA
To gain insight into the potential underlying mechanisms and
biological properties of WEMA, we investigated the
phytochemical profiles of WEMA. Previous reports have
shown that water extracts of Mentha species including M.
arvensis mainly comprise phenolic acids and flavonoids (Koşar
et al., 2004; Fecka and Turek, 2007). In the present study, the
UHPLC–MS/MS analysis of WEMA identified eight phenolics

(danshensu, neochlorogenic acid, chlorogenic acid, rutin, ferulic
acid, salvianolic acid E, rosmarinic acid, and salvianolic acid B)
and three flavonoids (isoquercitrin, hesperidin, and linarin)
(Table 1). Most phytochemicals were determined by
comparing with the retention times and mass fragmentations,
and salvianolic acid B and E were tentatively identified according
to a previous report (Hanafy et al., 2017). The typical UV base
peak chromatograms and the extracted ion chromatograms for
each WEMA analyte are shown in Figure 4. These
phytochemicals, except neochlorogenic acid and salvianolic
acid E, have been reported to show bone protective properties
in vitro and/or in vivo. Chlorogenic acid, ferulic acid, and
linarin have been shown to inhibit osteoclast differentiation
in vitro by interfering with RANKL-induced NF-κB activation
and NFATc1 induction (Kwak et al., 2013; Omori et al., 2015;
Doss et al., 2018; Wang et al., 2018). Danshensu, rutin,
isoquercitrin, ferulic acid, hesperidin, rosmarinic acid, and
salvianolic acid B were shown to attenuate OVX or RANKL-
induced bone loss in vivo (Horcajada-Molteni et al., 2000;
Chiba et al., 2003; Sassa et al., 2003; Lee et al., 2015; Qu et al.,
2016; Liu and Shen, 2018; Fayed et al., 2019). In addition,
danshensu, rutin, isoquercitrin, ferulic acid, hesperidin,
rosmarinic acid, salvianolic acid B, and linarin were
observed to promote osteoblast differentiation (Huan-qiong
and Liao, 2008; Trzeciakiewicz et al., 2010; Li et al., 2016; Du
et al., 2017; Zhang et al., 2017; Li et al., 2019; Jeong et al., 2021;
Liu et al., 2021). Thus, these findings suggest that the beneficial
effects of these phytochemicals may account for the anti-
osteoclastogenic and anti-osteoporotic effects of WEMA.

CONCLUSION

This study is the first to show the beneficial effects of WEMA on
bone health. WEMA inhibited osteoclast differentiation by
suppressing RANK signaling to NFATc1 induction in
osteoclast precursor cells. In a postmenopausal mouse
model, WEMA exhibited beneficial effects on bone loss and
weight gain without promoting uterine hypertrophy. In
addition, we detected phytochemicals in WEMA that have
anti-osteoclastogenic or anti-osteoporotic properties.
Collectively, these results suggest that WEMA is a
promising herbal candidate that can be used to prevent or
treat postmenopausal osteoporosis.
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