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Strongyloidiasis stercoralis
coinfection is associated with
altered iron status biomarkers
in tuberculous lymphadenitis

Gokul Raj Kathamuthu1,2*†, Anuradha Rajamanickam1,
Rathinam Sridhar3, Dhanaraj Baskaran2 and Subash Babu1,4

1National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India,
2Indian Council of Medical Research-National Institute for Research in Tuberculosis (ICMR-NIRT),
Chennai, India, 3Government Stanley Medical Hospital, Chennai, India, 4Laboratory of Parasitic
Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health,
Bethesda, MD, United States
Soil-transmitted helminth [mainly Strongyloidiasis stercoralis (Ss)] and

tuberculous lymphadenitis (TBL) coinfection in humans is a significant public

health problem. We have previously shown that TBL+Ss+ coinfection

significantly alters diverse cytokine, matrix metalloproteinase, and tissue

inhibitors of metalloproteinase profiles. However, no data is available to

understand the influence of Ss coinfection in TBL disease with respect to

iron status biomarkers. Hence, we have studied the effect of Ss coinfection on

the circulating levels of iron status (ferritin, transferrin [TF], apotransferrin

[ApoT], hepcidin, hemopexin) biomarkers in TBL disease. Our results show

that TBL+Ss+ and/or TBL+Ss- individuals are associated with significantly

altered biochemical and hematological (red blood cell (RBC) counts,

hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean

corpuscular hemoglobin (MCH) were decreased, and platelets were increased)

parameters compared to TBL-Ss+ individuals. Our results also show that TBL

+Ss+ coinfection is associated with diminished circulating levels of ferritin,

ApoT, hepcidin, and hemopexin compared to TBL+Ss- individuals. TBL+Ss+

and TBL+Ss- groups are associated with altered iron status biomarkers

(decreased ferritin [TBL+Ss+ alone] and increased TF, ApoT, hepcidin and

hemopexin [TBL+Ss- alone]) compared to TBL-Ss+ group. The heat map

expression profile and principal component analysis (PCA) analysis of iron

status biomarkers were significantly altered in TBL+Ss+ compared to TBL

+Ss- and/or TBL-Ss+ individuals. A significant correlation (positive/negative)

was obtained among the biochemical and hematological parameters (white

blood cells (WBC)/ferritin, TF, and hepcidin, mean corpuscular hemoglobin

concentration (MCHC)/ferritin and hemopexin) with iron status biomarkers.

Finally, receiver operating characteristic (ROC) analysis revealed that

hemopexin was significantly associated with greater specificity and sensitivity
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in discriminating TBL+Ss+ and TBL+Ss- coinfected individuals. Thus, our data

conclude that Ss coinfection is associated with altered iron status biomarkers

indicating that coinfection might alter the host-Mtb interface and could

influence the disease pathogenesis.
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Introduction

Pulmonary tuberculosis (PTB) is caused by Mycobacterium

tuberculosis (Mtb) and remains one of the primary causes of (1.5

million) death reported worldwide (1). Extrapulmonary

tuberculosis (EPTB), especially tuberculous lymphadenitis

(TBL) is the most frequent manifestation with the cervical

region mostly affected (2). Globally, 2 billion people are

affected by helminth infections and both Mtb and helminth-

associated infections share a vast degree of geographical overlap

(3, 4). Worldwide, 27% of the people are infected with Mtb,

while 24% are infected with helminth infections (3, 4). One

among the helminth infections is Strongyloides stercoralis (Ss) a

soil-transmitted helminth that affects around 100 million

individuals (3). Thus, understanding the influence of helminth

coinfection with TB disease is crucial because the immunological

responses to helminths could influence the ability to controlMtb

disease and treatment outcomes (5). The interaction between

TBL and Ss is less studied in terms of immune-mediated

outcomes and only two such studies have been reported

previously (6, 7). The function of host-mediated immune

protection against TB disease requires innate and adaptive

immunity but diverse other components that might contribute

to the establishment and/or reactivation of TB disease are not

known (8, 9).

One such molecule is iron and both host and mycobacterial

growth need iron which primarily acts as a cofactor and is also

essential for the successful activation of the immune system (10).

Too much free iron is also lethal to the cell and in turn acts as a

resource for invading microorganisms (11). In humans, Mtb

often establishes a complicated system of procuring,

metabolizing and storing necessary iron (deficit and surplus).

Although the host strives to hamper the iron accessibility to the

mycobacteria, still Mtb thrives in utilizing the iron molecules

such as lactoferrin, ferritin, and transferrin (Tf) (12). Therefore,

TB disease-associated iron metabolism is gaining bigger

attention. Diverse studies have revealed that iron status

biomarkers could assist in the clinical diagnosis of Mtb disease

(13–16) and most notably poor delivery of iron acts as the

hallmark of TB-related anemia (17, 18). Earlier studies have
02
reported the involvement of iron metabolism as risk factors for

the development of TB disease among household contacts in TB

disease with diabetes mellitus (DM) or HIV comorbidities and as

potential markers of TB treatment failure (19–23).

However, to our knowledge, no studies have shown the iron

status biomarker systemic levels in TBL disease upon Ss

coinfection. Thus, we have examined the plasma levels of

ferritin, transferrin [TF], hepcidin, hemopexin and

apotransferrin [ApoT] iron status biomarkers in TBL disease

with Ss coinfection (TBL+Ss+), TBL disease without Ss

coinfection and TBL negative with Ss coinfection groups. Our

results indicate that the iron status biomarker levels are

significantly altered among the TBL+Ss+ group compared to

TBL+Ss- and TBL-Ss+ group. Overall, we conclude that Ss

coinfection might be associated with altered iron status

biomarkers indicating that coinfection might alter the host-

Mtb interface and could influence the TBL disease pathogenesis.
Methods

Ethics

The ICMR-National Institute for Research in Tuberculosis

(NIRT), Institutional ethics committee (IEC 2010007) has

approved the protocol and written consent was taken from all

patients involved in the study.
Study subjects

Totally, 132 patients were enrolled in the present study.

Among them, 44 individuals were positive for both TBL disease

and Ss infection (hereafter indicated as TBL+Ss+, n=44), 44

individuals were positive for TBL disease and negative for Ss

infection (hereafter indicated as TBL+Ss-, n=44) and 44

individuals were negative for TBL disease and positive for Ss

infection (hereafter indicated as TBL-Ss+, n=44). The study

demographics and hematological data were shown in

Table 1. A convenience sample was recruited as part of a
frontiersin.org
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natural study protocol, as previously described (7). The

positivity of TBL disease was determined based on

histopathological or bacteriological examination (GeneXpert or

culture) from the dissected cervical lymph nodes using culture [0

(no colonies)/1+ (20-100 colonies)/2+(>100 colonies)] on

Lowenstein-Jensen solid media. We used recombinant NIE (31

kDa) antigen to detect the existence of IgG antibodies by ELISA

to diagnose the Ss infection positivity (24, 25). At baseline, all the

study participants were naïve to both anti-tuberculosis and

anthelmintic treatment. The study subjects were not affected

by human immune deficiency virus (HIV), disseminated

strongyloidiasis, or filarial infection.
Plasma collection and storage

The plasma was separated from the heparin-coated (BD

Vacutainer®) whole blood tubes after being centrifuged for 10

minutes at 1,460 Relative Centrifugal Force (RCF) or G-Force

and was precisely transferred to new sterile screw-cap tubes

(Sarstedt). They were further stored at -80°C for future

experimental use.
Plasma ELISA

Iron biomarkers such as ferritin (Orgentec Diagnostika),

apotransferrin (apoT), hepcidin (USCN Life Science Inc),

transferrin (TF), and hemopexin (genway) were measured by

ELISA. The lowermost detection limit of ferritin is 15 ng/mL;

transferrin, 9.375 ng/mL; apotransferrin, 0.156 ng/mL;

hemopexin, 6.25 ng/mL and hepcidin, 62.5 pg/mL.
Hematology

The hematological (lymphocytes, neutrophils, monocytes,

basophils and eosinophils) and biochemical (red blood
Frontiers in Immunology 03
cell (RBC), white blood cell (WBC), platelets, hemoglobin

(Hb), hematocrit (HCT), mean corpuscular volume (MCV),

mean corpuscular hemoglobin (MCH), mean corpuscular

hemoglobin concentration (MCHC) and red blood

cell distribution width (RDW) data among the TBL+Ss+ and

TBL+Ss- individuals were measured using an AcT5 Diff

hematology analyzer (Beckman Coulter).
Statistical analysis

The iron status biomarkers were analyzed using GraphPad

Prism (version 9.0, GraphPad Software, Inc., San Diego, CA,

USA). We performed a non-parametric Kruskal-Walli’s test

(Geometric means [GM] and central tendency) to find the

statistical differences among study subjects. The significant

difference between the culture grades was evaluated using

the Mann-Whitney U test. Heatmap expression profile

and correlation analysis were performed between TBL+Ss+,

TBL+Ss-, and TBL-Ss+ groups using GraphPad Prism. JMP®

Statistical Software (version 13.0) was used to calculate

the principal component analysis (PCA) for TBL+Ss+ and

TBL+Ss- infected groups. ROC curves were also performed

between TBL+Ss+ and TBL+Ss- groups to measure the power

of each iron status biomarker. Linear trend analyses

(Kolmogorov-Smirnov (distance)) was used to measure the

significance between culture grades and iron biomarkers.
Results

Demographics

The study population data comprising demographics and

hematological parameters are described in Table 1. The study

groups were not significantly different in terms of age or gender.

However, we found that the culture grades were significantly

different between the two TBL-infected groups. In addition,
TABLE 1 Study demographics and hematological parameters of the individuals.

Parameters TBL+Ss+ TBL+Ss- TBL-Ss+ P-Value*

Patients enrolled (n) 44 44 44 –

Gender (Male/Female) 12/32 14/30 25/19 –

Age in years 23 (18-53) 25 (19-59) 40.2 (19-64) –

Culture grades (0/1+/2+) 7/30/7 15/28/1 – 0.028a

Lymphocytes (%) 1.96 (0.88-3.49) 1.97 (0.84-3.51) 2.75 (1.08-4.01) P<0.0001

Neutrophils (mL) 4313.2 (2251.6-7077) 3712 (2042.6-6418) 3907 (1658.8-8798.4) P=0.0472

Monocytes (%) 419.3 (102.9-889.2) 552.1 (213-1331.2) 524.9 (218.5-1482) P=0.0017

Eosinophils (%) 3.25 (0.6-8.7) 2.83 (0.8-13.2) 10.1 (2.6-29.2) P<0.0001

Basophils (%) 0.99 (0.3-6.7) 0.94 (0.2-2.6) 1.14 (0.1-6.6) NS
fro
aMann-Whitney U test and *Kruskal-Walli’s test was used to calculate the significance; NS, non-significant.
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lymphocytes, monocytes, neutrophils, and eosinophils were

found to be statistically significantly different among the three

(TBL+Ss+, TBL+Ss-, TBL-Ss+) groups of infected individuals.
TBL+Ss+ coinfection associated with
diminished hematological (except
platelets) parameters

We assessed the hematological ([A] WBC, RBC, platelets,

[B] Hb, HCT, MCV, [C] MCH, MCHC and RDW) parameters

between the study groups (Figures 1A–C). Figure 1 displays that

TBL+Ss+ and TBL+Ss- coinfection showed significantly reduced

RBC, Hb and HCT levels and increased platelet counts when

compared to TBL-Ss+ group. TBL+Ss- group was associated

with decreased MCV and MCH levels in comparison with

the TBL-Ss+ group alone. There was no difference in the

WBC, MCHC, and RDW levels between the study groups.

Thus, TBL+Ss+ and/or TBL+Ss- coinfection is associated with

altered hematological parameters.
Frontiers in Immunology 04
Systemic iron status biomarkers were
altered in TBL+Ss+ coinfection

We have examined iron status (ferritin, transferrin,

apotransferrin (apoT), hepcidin, and hemopexin) biomarker

systemic levels in TBL+Ss+, TBL+Ss-, and TBL-Ss+ groups

(Figure 2). The ferritin (GM of 23.58 ng/ml in TBL+Ss+

versus 57.26 ng/ml in TBL+Ss-, and 101.8 ng/ml in TBL-Ss+)

systemic levels were significantly decreased in TBL+Ss+ than

TBL+Ss- and TBL-Ss+ groups. However, transferrin (GM of

30688319 ng/ml in TBL+Ss+ and 34663199 ng/ml in TBL+Ss-

versus 512836 ng/ml in TBL-Ss+), apoT (GM of 1988954 ng/ml

in TBL+Ss+ and 12971073 ng/ml in TBL+Ss- versus 740983 ng/ml

in TBL-Ss+) and hepcidin (GM of 67837 pg/ml in TBL+Ss+ and

123426 pg/ml in TBL+Ss- versus 49234 pg/ml in TBL-Ss+) systemic

levels were increased significantly in TBL+Ss+ and TBL+Ss- group

in comparison with TBL-Ss+ group. Finally, the apoT (GM of

1988954 ng/ml in TBL+Ss+ versus 12971073 ng/ml in TBL+Ss-),

hepcidin (GM of 67837 pg/ml in TBL+Ss+ versus 123426 pg/ml in

TBL+Ss-) and hemopexin (GM of 196312 ng/ml in TBL+Ss+ versus
B

C

A

FIGURE 1

Altered hematological parameters of the population. We have analyzed different hematological (A) WBC, RBC, platelets (B) Hb, HCT, MCV (C)
MCH, MCHC, RDW) parameters in TBL+Ss+ (n=44), TBL+Ss- (n=44) and TBL-Ss+ (n=44) groups using the AcT5 Diff hematology analyzer
(Beckman Coulter). We used Kruskal-Walli’s test with Dunn’s multiple comparisons to measure the statistical P values. The significance of p
values was represented as '*' p<0.05, '**' p<0.01, '***' p<0.001, '****' p<0.0001.
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882775 ng/ml in TBL+Ss-) systemic levels were significantly

decreased in TBL+Ss+ than TBL+Ss- group (Figure 2). Hence,

iron status biomarkers are significantly altered in TBL+Ss+

coinfection when compared to the other groups.
Heatmap, PCA, and correlation analysis

We studied the heatmap expression of iron status biomarkers

after normalizing their plasma levels among different study groups

(Figure 3). TBL+Ss+ individuals had significantly decreased ferritin

expression compared to TBL+Ss- and TBL-Ss+. Hepcidin and

hemopexin expression was significantly increased in TBL+Ss+

compared to TBL+Ss- and/or TBL-Ss+. TBL+Ss- group was

associated with significantly decreased TF and ApoT expression

compared to TBL+Ss+ and TBL-Ss+ (Figure 3A). We also generated

the PCA models and assessed the influence of iron status (ferritin,

apotransferrin, hepcidin, and hemopexin) biomarkers between TBL

+Ss+ and TBL+Ss-. We show iron status biomarkers form distinct

clustering among PCA [component 1 (38.2%) and component 2

(26.5%)] analysis between TBL+Ss+ and TBL+Ss- individuals

(Figure 3B). Finally, we performed the correlation analysis of iron

biomarkers with different hematological (WBC, RBC, platelets, Hb,

HCT, MCV, MCH, MCHC, RDW) parameters of TBL+Ss+, TBL
Frontiers in Immunology 05
+Ss-, and TBL-Ss+ (Figure 3C). We show that WBC versus ferritin,

TF (positve correlation) and ApoT, hepcidin (negative correlation)

was signifcanly correlated; whereas, MCHC versus ferritin (positive

correlation), and hemopexin (negative correlation) were significantly

correlated among the study population. Thus, iron status biomarkers

were significantly expressed, discriminated against, and correlated

among different study groups.
ROC analysis of iron status biomarkers

We calculated the effect of iron status biomarkers in

discriminating/differentiating TBL+Ss+ from TBL+Ss- and

TBL-Ss+. Thus, we have used ferrit in, transferrin,

apotransferrin, hepcidin, and hemopexin plasma levels to

calculate the ROC analysis between the three groups. As

shown in Figure 4, hemopexin (sensitivity-84.09, specificity-

86.36, AUC- 0.9189, P< 0.0001) showed higher significant

discriminatory power in distinguishing TBL+Ss+ in

comparison with TBL+Ss-. However, the other iron status

biomarkers (ferritin [sensitivity-65.91, specificity-65.91, AUC-

0.7040, P= 0.0010], transferrin [sensitivity-52.27, specificity-

52.27, AUC- 0.5222, P= 0.7197], apotransferrin [sensitivity-

70.45, specificity-61.36, AUC- 0.6947, P= 0.0017], hepcidin
FIGURE 2

Iron status biomarker plasma levels in TBL+ (Ss+, Ss-) and TBL-Ss+ groups. We have measured the iron status (ferritin, transferrin [TF],
apotransferrin [ApoT], hepcidin, hemopexin) biomarker systemic levels in TBL+ (Ss+, n=44), (Ss-, n=44) and TBL-Ss+ (n=44) groups by ELISA.
We showed the figures using scatter plots with an individual circle denoting a single participant. We used Kruskal-Wallis Dunn’s multiple
comparisons test to measure the statistical P values. The significance of p values was represented as '*' p<0.05, '**' p<0.01, '****' p<0.0001.
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[sensitivity-68.18, specificity-65.91, AUC- 0.7045, P= 0.0010])

did not display significant discriminatory power to discriminate

TBL+Ss+ from TBL+Ss- individuals (Figure 4). Thus,

hemopexin reveals the discriminatory potential to aid as a

biomarker to differentiate TBL+Ss+ from TBL+Ss- individuals.
Linear trend analysis of iron
status biomarkers

To understand the clinical association of iron status

biomarkers with TBL and Ss coinfection, we performed the

regression analysis with culture (0+, 1+, 2+) grades for TBL+Ss+

and TBL+Ss- groups and compared them with plasma levels of

iron status biomarkers. Our results describe that iron status

biomarkers were significantly associated with culture grades.

However, ferritin and apotransferrin levels were significantly

increased and transferrin, hepcidin and hemopexin levels were

decreased as the disease severity elevates (Figure 5). Thus, iron

status biomarkers are significantly associated with

disease severity.
Frontiers in Immunology 06
Discussion

Iron is necessary for all organisms to regulate diverse

biological process and Mtb inhabit the phagosome that has

restricted contact with iron (26, 27). Iron is required for the

host interaction as well as for Mtb metabolism which is either

depleted intracellularly from the cytoplasm (28) or through the

synthesis of iron-chelating particles called siderophores and

macromolecules (13, 29–33). The relative risk factor of iron

biomarkers in disease progression and pathogenesis of TB and

TB-HIV-coinfection has been reported earlier (19, 23).

However, no previous study has shown iron status biomarker

levels in tuberculous lymphadenitis (TBL) disease with S.

stercoralis (Ss) coinfection. Hence, our study provides a

detailed investigation of iron status biomarkers in TBL+Ss+

coinfection. To our knowledge, for the first time, we are

showing the temporal association of iron status (ferritin,

transferrin [TF], apotransferrin [apoT], hepcidin, hemopexin)

biomarkers in TBL-Ss+ coinfection using a human cohort. We

show TBL+Ss+ individuals associated with altered iron status

biomarkers than TBL+Ss- and TBL-Ss+ individuals.
B

C

A

FIGURE 3

Heatmap, principal component analysis (PCA) and correlation analysis of iron status biomarkers. (A) Heatmap analysis of iron status (ferritin, TF,
ApoT, hepcidin, hemopexin) biomarkers was performed between TBL+Ss+ (n=44), TBL+Ss- (n=44) and TBL-Ss+ (n=44) individuals. (B) PCA
analysis of iron status (ferritin, transferrin [TF], apotransferrin [ApoT], hepcidin, hemopexin) biomarkers was carried out between TBL+Ss+ (n=44,
blue circle) and TBL+Ss- (n=44, red circle) to examine the cluster pattern between component 1 versus component 2. (C) Correlation ability of
iron status (ferritin, transferrin [TF], apotransferrin [ApoT], hepcidin, hemopexin) biomarkers and hematological (WBC, RBC, platelets, Hb, HCT,
MCV, MCH, MCHC, RDW) parameters between TBL+Ss+ (n=44), TBL+Ss- (n=44) and TBL-Ss+ (n=44) individuals.
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Ferritin acts on iron homeostasis upon binding and

sequestering the iron intracellularly and increased levels are

naturally linked with both severe and persistent inflammatory

milieu (34). Ferritin behaves as an acute phase response marker

and increased ferritin levels are correlated to a higher risk of

death in TB and TB-DM comorbidities (22, 35–37). In contrast,

our results suggest that ferritin levels were lower and found to be

statistically different in TBL+Ss+ and TBL+Ss- when compared

to TBL-Ss+ individuals. Reduced levels of iron are linked with

weakened immune function (38, 39) and greater susceptibility or

development of TB disease. Deficit levels of iron might

compromise cell-mediated immune responses through

diminished stimulation of lymphocytes and macrophage

bactericidal action (39). Iron deficiency could possibly alter the

Th1/Th2 cytokine equilibrium and stimulate strong Th2

immunity which is known to be correlated with clinical TB

disease (40, 41). Also, insufficient alimentary Fe, imperfect

absorption to hookworm or other subordinate infections, and

greater blood loss could decrease the storage of body iron (42).

Transferrin is another essential iron transport and iron-

binding glycoprotein with the ability to regulate and release free

iron levels into the tissues and erythroblasts (43). An increased

level of transferrin-iron saturation in serum is associated with

greater death and morbidity in TB disease. It is perhaps because
Frontiers in Immunology 07
extracellular mycobacteria that exist in a transferrin-affluent

milieu exploit this pathway for instant iron access (13, 22).

Transferrin and lactoferrin aid in the growth of bothMtb andM.

avium which are known to acquire host proteins to the

phagosome (32, 33, 44). Similarly, apoT acts as an endogenous

immune modulator and has a biological function in the passage

and delivery of iron among the different body parts (45). It has

been previously elucidated that long-term ex-vivo treatment

with apoT primes to down-regulation of the detrimental Th1

and Th17 autoimmune responses (46, 47). Our results

demonstrate that both transferrin and apoT were higher in the

TBL+ (Ss+ and Ss-) groups when compared with TBL-Ss+

group. In comparison with our study, previous data on PTB

coinfection with diabetes mellitus or HIV disease is associated

with reduced transferrin levels (21, 48). The reason for this

observation is yet to be explored; however, increased levels might

associate with enhanced inflammatory responses associated with

TBL disease with or without coinfection. Also, the presence or

absence of Ss coinfection did not alter the transferrin levels. One

potential reason might be because Mtb but not Ss utilizes the

host-cell transferrin iron acquisition pathway to scavenge

iron [13].

Numerous studies have shown the role of hepcidin in host

iron status among TB diseases (19, 49, 50). We reveal that
FIGURE 4

ROC analysis of iron status biomarkers. ROC analysis of iron status (ferritin, TF, ApoT, hepcidin, hemopexin) biomarkers in TBL+ (Ss+, n=44 and
Ss-, n=44) groups was performed to evaluate the sensitivity, specificity, and area under the curve.
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increased hepcidin could possibly associate with anemia because

iron availability for erythropoiesis is reduced. Hepcidin regulates

the iron supply of the host and has impact on the result of

infection, which depends upon the niche of the microorganism

(51, 52). Synthesis and expression of hepcidin were increased

during inflammation or surplus iron storage (53). It possesses

antimicrobial function and emerges to have a significant role in

innate immunity against TB disease (51, 54). In contrast to

ferritin, hepcidin plasma levels were increased and found to be

statistically significant in TBL+Ss+ and TBL+Ss- groups

compared to the TBL-Ss+ group. Higher systemic levels of

hepcidin might be associated with anemia of inflammation

and could possibly reflect the detrimental effects of iron

supplementation often noticed during infections (49). Previous

studies on mouse models have revealed that hepcidin-stimulated

iron capture could be favorable for intracellular microbes which

include Mtb (55, 56).

Finally, we also studied the plasma levels of hemopexin in

TBL+Ss+, TBL+Ss- and TBL-Ss+ groups. We reveal that reduced

hemopexin levels were associated with TBL+Ss+ and TBL-Ss+

groups than TBL+Ss- coinfected group. Hemopexin potentially

induces anti-inflammatory responses and suppresses the pro-

inflammatory role in binding to free hemoglobin. It is also vital
Frontiers in Immunology 08
in the retrieval of heme-iron by binding to hemoglobin and

modifying the receptor expression for heme-oxygenase, ferritin,

and transferrin markers (57, 58). Thus, upon coinfection

TBL individuals might not efficiently activate the necessary

inflammatory responses. We also studied the heatmap analysis

of iron biomarkers between the three groups of study

individuals and showed they were differentially expressed

among TBL+ (Ss+, Ss-) and TBL-Ss+ groups. PCA analysis of

iron (ferritin, hepcidin, apoT and hemopexin) biomarkers

significantly discriminated in TBL (Ss+, Ss-) groups. Iron

status biomarkers were also significantly correlated with some

of the hematological parameters. ROC analysis revealed that

hemopexin was associated with higher sensitivity and specificity

in discriminating between the study (TBL+Ss+ and TBL+Ss-)

groups. In addition, iron status biomarkers were significantly

associated with culture grades. In a clinical context, deficiency in

the iron biomarkers along with coinfection might reduce anti-

TB treatment efficacy or delay culture conversion and elevate

mortality. We did not include healthy controls in our analysis

due to the following reasons. Our main hypothesis was to

understand how the coinfected individuals have different iron

marker levels than a single infection or disease. Also, iron

biomarkers were strongly connected with disease pathogenesis,
FIGURE 5

Linear (trend) regression analysis of iron status biomarkers. The association between plasma levels of iron status biomarkers was correlated with
lymph node culture grades (TBL+ (Ss+, n=44 and Ss-, n=44) individuals) using linear trend analysis (one-way ANOVA). The results were shown
as scatter plots with each circle denoting a single individual. The significance of p values was represented as '*' p<0.05, '**' p<0.01, '***' p<0.001,
'****' p<0.0001.
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and this infers that anemia might be a consequence of the disease

state but not with a healthy state. Overall, strongyloidiasis

coinfection plays a distinct function and might alter the host

iron and/or bacterial iron accessibility as well as could perhaps

augment the jeopardy of progression and pathogenesis in TBL

disease. Thus, a better understanding of the helminth coinfection

to discover pathways and crucial interventions associated with

TBL disease is urgently needed.
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