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Metaheuristics (MH) are Artificial Intelligence procedures that frequently rely on evolution.
MH approximate difficult problem solutions, but are computationally costly as they
explore large solution spaces. This work pursues to lay the foundations of general
mappings for implementing MH using Synthetic Biology constructs in cell colonies.
Two advantages of this approach are: harnessing large scale parallelism capability of
cell colonies and, using existing cell processes to implement basic dynamics defined
in computational versions. We propose a framework that maps MH elements to
synthetic circuits in growing cell colonies to replicate MH behavior in cell colonies. Cell-
cell communication mechanisms such as quorum sensing (QS), bacterial conjugation,
and environmental signals map to evolution operators in MH techniques to adapt to
growing colonies. As a proof-of-concept, we implemented the workflow associated to
the framework: automated MH simulation generators for the gro simulator and two
classes of algorithms (Simple Genetic Algorithms and Simulated Annealing) encoded as
synthetic circuits. Implementation tests show that synthetic counterparts mimicking MH
are automatically produced, but also that cell colony parallelism speeds up the execution
in terms of generations. Furthermore, we show an example of how our framework is
extended by implementing a different computational model: The Cellular Automaton.

Keywords: agent based model, synthetic biology, bioinspired algorithms, cell-cell communication,
metaheuristics, framework, gro

INTRODUCTION

Evolution is a trademark process involved in all living organisms. It is the process that drives
organism adaptation to better survive and thrive in their surrounding environment. This process
occurs at a genotypic level involving mainly genetic recombination and mutations of DNA material
which translates into potential changes at a phenotypic level of the organism. Appropriate and
useful organism phenotypical traits are selected and passed onto newly generated offspring,
who in turn recombine and mutate their genetic material. It is in following this cycle that
organisms evolve and develop new useful phenotypical traits, while other traits are lost (Darwin
and Costa, 2009; Freeman and Herron, 2015; Futuyma and Kirkpatrick, 2017; Losos, 2017). The
transformation of the individual organisms within populations can be seen as a trial-and-error
process in which each variation is tested for adaptation to the environment conditions. Genetic
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diversity produced by evolution is studied and used as inspiration
in computational methods such as Evolutionary Algorithms
(EAs) (Bäck, 1996; De Jong, 2016). These algorithms are generally
used for approximating solutions to optimization problems and
rely on a pool of potential solutions that evolve over time.

Since Evolution is a standard occurring process in all living
organisms, it is natural to relate EAs to them. Specifically,
microbiology experiments and Synthetic Biology constructs can
be used as a platform for carrying out the execution of said
algorithms, as cell colonies offer immense processing power
coming from each individual cell, and large counts of these
entities function simultaneously. Also, natural processes involved
in cell operation, such as recombination or mutation originally
inspire EAs. For instance, synthetic bacteria have been a source
of inspiration for the design of EAs illustrating its utility solving
simple instances of optimization problems such as function
optimization, 0/1 knapsack problem and Hamiltonian path
problem (Gargantilla Becerra et al., 2021). Therefore, using
these processes in the design and implementation in a cell
colony mimics their computational counterpart. Native cell
processes such as growth, mutation and intercell communication
are components that can be mapped to tasks pertaining to
computational EAs, greatly easing the translation. The described
relationship has already been addressed by Directed Evolution
(Arnold, 1998, 2018) and its variants (English et al., 2019; Wu
et al., 2019; Yang K. K. et al., 2019; Morrison et al., 2020).
However, the control level of Directed Evolution is not as specific
as the one reached in computational EAs, since they use a hand-
tailored definition of the fitness function for evaluating and
selecting solutions. Furthermore, many computational methods
can be translated to Synthetic Biology constructs that emulate
their operation, expanding the array of techniques that can be
applied on a same problem and improving automation over
Directed Evolution. Moreover, cell colonies of synthetic bacteria
have been successfully used to build the evaluation function of
an EA to evaluate the fitness of candidate solutions (Gargantilla
Becerra and Lahoz-Beltra, 2020). It is in this spirit that we study
Metaheuristic procedures (MH) (Glover and Kochenberger,
2006; Talbi, 2009; Sörensen, 2015), a larger class of procedures
that contain EAs. Inspiration upon which these techniques are
designed range from metallurgy processes (Kirkpatrick et al.,
1983; van Laarhoven and Aarts, 1987; Aarts and Korst, 1988)
through bird flock movement patterns (Kennedy and Eberhart,
1995; Shi, 2001; Poli et al., 2007), ant colony food foraging
(Dorigo and Di Caro, 1999; Dorigo et al., 2006), and of
course Darwinian evolution (Davis, 1991; Holland, 1992) (and
a variant inspired on a microorganism setting (Harvey, 2009)).

In this work, we propose a general mapping, relating Synthetic
Biology constructs to MH elements, such that any procedure
of that class can be modeled as a synthetic circuit. This is
due to MH sharing common elements and similarities that
can be generalized. This alternative paradigm for designing,
implementing and executing MH is developed in the context
of large-scale individual systems. The original population of
solutions that take part in the execution is replaced by a
set of individual entities, such as cells (in this work, bacteria
specifically). Therefore, large-scale parallelism is a consequence
of moving toward this new paradigm. Also, the use of MH within

a biological environment expands their scope by establishing a
wider array of possible implementations and problems to tackle
(such as Protein Design (Lippow and Tidor, 2007; Ollikainen
et al., 2009; Gainza et al., 2016), or integration with Directed
Evolution procedures). This association is logical, as these
techniques work on a set of different elements (solutions) and
apply changes to these elements to explore a large search space
and eventually reach a good solution in a reasonable amount of
time according to specific constraints.

MH have been long studied and possess a defined structure
(Sörensen et al., 2018). One approach toward implementing
AI using Synthetic Biology is shown in this article in the
form of a framework that automates the mapping of MH
elements to synthetic constructs. A proof-of-concept of this
framework is implemented to show that automation of the
process and generation of readily executable simulation files
for the cell colony simulator gro (Jang et al., 2012; Gutiérrez
et al., 2017) is feasible. It also seeks to demonstrate that
by using the implementation framework, the intricacies and
design of the algorithm that will be simulated need not be
fully understood, since a generator automates the production
of skeleton simulation files only based on specific input
parameters such as conjugation rates, mutation rates, and
environmental signal diffusion and degradation rates. Finally,
execution speed approach is compared (in terms of generations)
between simulations automatically generated by our framework
implementation and standard (computational) versions of their
counterparts. With this, we show that our approach enables the
advantage of the intrinsic parallelism in cell colonies to explore
the search space faster.

MATERIALS AND METHODS

gro Simulator
gro (Jang et al., 2012; Gutiérrez et al., 2017) is a 2D Agent
based Model (AbM) bacterial colony simulator, where the
behavior of each cell is simulated individually. Bacteria grow
and divide according to general parameters which are set and
can be modified during simulation execution. gro was originally
conceived as a rule-based functional language to program
bacteria, but was then extended to also accept protein-based
specifications to simulate the colony behavior. The simulator
has a GUI which is used to visually assess the outcome of
the simulation. It is especially helpful for observing spatial and
temporal patterns.

After its extension, gro is capable of reaching 105 simulated
bacteria in under 10 min. Other features added were nutrient
consumption, a protein-based specification language, a gene
expression module to handle those dynamics automatically, and
cell-cell communication in the form of a new signal module
and bacterial conjugation. These improvements offer a testbed
for prototyping and debugging gene circuits at an initial stage,
and correcting any fundamental flaws the circuits may have.
Also, the spatial and visual component of the simulator are key
for identifying and determining how cell-cell communication
influences the execution of the simulated gene circuits.
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MH Framework, Repositories and
Hardware
To test our framework, we first generated gro file skeletons using
Simulated Annealing (SA) and Simple Genetic Algorithm (SGA)
automated generators for the specification files. These skeleton
files were instances of the Boolean Satisfiability problem (SAT).
Then, our team ran them on the gro simulator to assess their
performance and demonstrate that optimal solutions could be
reached using the proposed algorithms. Finally, we ran similar
tests on the Cellular Automaton (CA) model, which we obtained
by reusing elements generated for an SGA gro specification
instance, and extended it into a CA instance.

We used a new version of gro developed by AI-UDP for the
simulations. This new version can be found at https://github.
com/AI-UDP/GRO63. All simulations (gro, C, and C++)
were run in MacOS Catalina version 10.15.2 and in Windows
10. The interpreter to generate the gro simulation files was
written in C++ and can be found at https://github.com/AI-
UDP/MHInterpreter. Machines used for simulations were two
MacBook Pro core i5 2.7 GHz and 2.5 GHz with 8GB RAM and a
Pentium G4560 3.5 GHz with 16GB RAM.

RESULTS

One key aspect for using MH is to be able to represent all elements
necessary for the execution of the procedure. Mainly, this
involves the solution pool used in the execution, a fitness function

to evaluate different solutions, and operations that carry out the
exploration of new solutions. The application and design of these
elements in a context of Synthetic Biology is not straightforward,
as often they are dependent on the problem to solve. However,
in this work, we propose a general mapping scheme to relate
each of the elements which participate in an MH to a functional
synthetic construct and make the association easier. The whole
set of constructs is then organized and distributed over a pool
of individuals (in this case, bacteria) to represent, and reproduce
dynamics associated to the procedures. These constructs are
designed from a general standpoint and seek to translate
each of the involved components using transcriptional logic
gates, intercellular communication mechanisms, and external
elements such as environmental signals. It should be emphasized
that the mapping presented here is a proposal and could be
complemented and extended with other kinds of mechanisms,
such as CRISPR (Cong et al., 2013; Xu and Qi, 2019) systems,
external conditions such as temperature, nutrient consumption,
or specific spatial conditions. Also, it should be stressed that our
proposal heavily relies on intercellular communication, since it
offers a higher computation power and also distributes it among
the colony cells. The main intercell communication processes
used were bacterial conjugation (Smillie et al., 2010; Goñi-
Moreno et al., 2013; Cabezón et al., 2015) and Quorum Sensing
(QS) (Nealson et al., 1970; Miller and Bassler, 2001; Waters and
Bassler, 2005; Papenfort and Bassler, 2016).

The framework is composed by three parts (a depiction of the
components and their relationship can be found in Figure 1):

FIGURE 1 | Framework components. Intercellular communication processes were chosen as the tools to implement evolution operators in MH for cell colonies.
Depending on what MH is implemented, each process could play a different role. MH logic and representation are encoded using transcriptional regulation. However,
other possibilities such as the use of RNA or CRISPR mediated regulation remain open to be explored as new forms of logic and representation for MH. The selected
tools are then mapped to the logic of the specific MH, generating a model. Once the model and mapping have occurred, a gro simulation file is outputted and run
to collect data on the behavior of the algorithm.
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(1) A set of parameters that configure the execution of the
instance of a MH. This set of parameters is always the
same for the selected technique, despite having specific
values to solve different problems. At this stage, the
input parameters for the procedure are abstracted and
generalized for multiple instances of the selected MH (see
Table 1).

(2) A mapping/translation language to relate specific elements
of the MH technique to genetic circuits. This is the
fundamental idea and value of the presented work, as it
provides the blueprints for automating the design of MH
in Synthetic Biology (see Figures 2, 3A). How specific
elements are ported to a genetic circuit will be presented
further in this section.

(3) An interpreter that automates the translation of the
specification of the algorithm into a skeleton of a gro
source code, so the MH can readily be simulated and tested.
The output design generation of this interpreter is based on
(2) and its configuration on (1).

Circuit design is done sequentially over the framework on the
basis of fundamental part integration and the idea that all of the
components of the MH procedure are expressed in terms of these
parts. Such parts merge into a more complex circuit that evaluates

TABLE 1 | Fundamental parameters for modeling MH in cell colonies.

Algorithm
parameter

Description Algorithms Biological
interpretation

Number of
proteins

Integer that specifies
the number of proteins
of interest for each
solution

SA, SGA Number of plasmids
expressing proteins of
interest

Protein
presence

Contribution of each
protein to the fitness
function (if it should be
present or absent)

SA, SGA Expected expression
state of a protein
(ON/OFF)

Initial cell
count

Size of initial solution
pool

SA, SGA Initial cell colony count

Final cell
count

Size of final solution
pool (stop criterion)

SA, SGA Final cell colony count

Mutation rate Determines mutation
frequency

SGA Promoter mutation
frequency

Crossover
rate

Determines
recombination rate

SGA Conjugation rate

Temperature
decrease rate

Establishes size and
cooling rate of the
temperature zone

SA Diffusion and
degradation rates of an
environment signal

Solution
perturbation

Defines how the
solution is altered for
exploration

SA Conjugation rate

Moore
neighborhood
size

Establishes size of the
neighborhood of a cell

CA Diffusion and
degradation rates of an
intercellular signal

Different parameters may be represented by the same biological equivalent
depending on the specific algorithm to be modeled (conjugation rate, or signals
for instance). All parameters marked for each MH need to be set for the execution
of said simulation. This is crucial, because they control all aspects of the MH and
require specification in terms of their mapped biological equivalent.

the inputs, and outputs a function of these inputs. The circuits
implement different elements of an MH, such as fitness function,
solution representation, or evolution operators.

Synthetic Circuit Designs for MH
Simulation
Heuristics are embedded in MH through a fitness function that
evaluates and guides the search for best solutions within a search
space. As a base assumption in this context, we link the individual
solution to the information inside a single cell. The presence or
absence of a set of proteins of interest acts as the specific solution
instance. This representation is inspired on the computational
representation of a solution (a vector of values, which is in turn
inspired on a chromosome). Therefore, depending on which
proteins are present or absent, each cell represents an individual
and independent solution.

Both evaluation and evolution dynamics are implemented
by taking advantage of individual cell capabilities. Bacterial
conjugation is used as the main backbone for evolution
operations both in SA (Kirkpatrick et al., 1983; van
Laarhoven and Aarts, 1987; Aarts and Korst, 1988) (as a
solution mutation) and in SGA (Davis, 1991; Holland, 1992)
(as recombination/crossover operation). Since solutions are
represented as a set of proteins within a cell, perturbations of the
set occur upon the arrival of a plasmid containing new proteins of
interest into the cell. Fitness evaluation is organized in a synthetic
circuit that senses the presence or absence of the proteins and
performs a certain action (GFP expression in our gro examples)
when fitness is optimal. This design decision can also be replaced
by other operations such as growth rate increase/decrease or
plasmid conjugation rate modification, for instance.

A summary of the proposed mappings for both SA and SGA is
depicted in Figure 3.

Framework Design and Implementation
To illustrate the capabilities and flexibility of the framework, we
first present the phases involved in the parameterization, design
and construction of the model along with the whole execution
process associated with our implementation of the framework.

Parameter Collection for Model Generation
The first phase relies on user-defined parameters to guide
the shaping and automated generation of the model skeleton.
Specifically, two of the three techniques mentioned above (SGA
and SA) are examples that can be promptly executed in cell
colony simulators using our framework implementation. The
third model, the CA, is shown as an example of how it
would be possible to extend the functionalities and models
proposed by our framework through relating to the underlying
mappings and models.

The fitness function and constraints associated to each of the
MH (SGA and SA) are encoded through references to proteins
and their interactions: since in gro, proteins are the unit for
directing cell behavior, in our framework, they will mainly act as
the base variables. At first, the number of proteins used in the
system is entered as a parameter, but also if each protein should
be present, absent, or if it does not matter for describing a good
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FIGURE 2 | Depiction of how the SAT problem relates to the elements in cells. (A) Clauses are identified in a propositional formula, and each of them is encoded as
a single protein within a plasmid. (B) The plasmids in the cell are used to evaluate the fitness of a solution (set of plasmids seeking to satisfy the formula with their
truth values). The plasmids may be present or absent. According to whether the values in the plasmid contribute to the correct satisfaction of the whole formula, if it
fully complies, the cell expresses GFP, else it does not glow.

solution to the problem. Concretely, the evaluation is embodied
in the fitness function. Also, the initial and final number of
cells in the colony for the simulation are specified as additional
parameters (as a control mechanism for the simulation itself).
It should also be noted that other proteins are used in the
construction of the logic processes driving the algorithmic steps
of each MH. Algorithm-related circuit construction process is
automatically done in the next step.

These are all general parameters that are useful for specifying
both SGA and SA. However, some specific parameters must
also be collected in the case of each algorithm. For SGA, both
mutation and crossover ratios must be provided. Mutation is
implemented as an arbitrary change in the state of a protein
within a cell, while crossover is simulated as a bacterial
conjugation event. In the case of SA, the basic additional
parameter is the temperature decrease ratio. In terms of gro
simulations, this ratio is translated to the diffusion factor of an
environmental signal (such as aTc), since the temperature can be
associated to the signal concentration.

For implementing CA, they key parameter is setting intercell
signaling using appropriate diffusion and degradation ratios.
Such parameter configures the distance from the signaling cell
to its furthest neighbor. The goal of this configuration process is
to emulate the Moore neighborhood in 2D. Within these settings,
rules are encoded based on the concentration of signal sensed by
cells. An example is shown in Figure 4, and a summary of the

parameters involved in the framework (and for CA modeling) is
compiled in Table 1.

Translation Into the Base Model for Simulation
Once the basic parameters and elements for the MH have
been chosen and put in place, a model is constructed.
This model summarizes the operation rules according to the
specific mapping of the different elements present in the
chosen technique to simulation instructions and constructs.
The models are predefined and are an extensible (although
specific) representation of the algorithms. Under our framework,
it is possible to capture the essence and approximate the
dynamics of MH through genetic designs. Therefore, as it is
possible to model a MH based on genetic circuits, it can
also be simulated.

The core representation of these circuits lies in protein
expression that each define the elements of the solution for all
MH. Therefore, a candidate solution is linked to a set of proteins
being expressed jointly within the cell (shown in Figure 3A).
Intercell communication methods such as QS, or bacterial
conjugation serve the purpose of providing a backbone for
implementing operations on the existing solutions and obtaining
new solutions. Specifically, under our representation, a set of
plasmids hold the solution elements and their mobility aids in
the dissemination of these elements within the colony. Since
intercell communication is programmable, specific behavior
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FIGURE 3 | General logic mapping for SA and SGA. (A) General gene network mapping for the MH framework. A three-tier design is proposed: the first tier are
conjugative plasmids (x and y) holding input proteins that are used by the fitness function to assess the quality of the solution. A second tier is a transition one in
which the input signals are transduced into standard proteins (araC and trpR) for their evaluation. At this stage, the set of proteins which should be absent express
araC to induce cI in the next tier. This is due to the fact that if any of those proteins is present, it activates cI, making the solution sub-optimal. Conversely, the set of
proteins that should be present inhibit the expression of trpR, forcing the presence of all of them. If all of them are present, the following inhibition chain fails to
repress GFP, evaluating correctly for those plasmids. Finally, tier three is the evaluation circuit in which the input signals are checked against their respective set (if
they need to be present, absent, or it is indifferent if they are present). This part of the circuit acts works as two inverters feeding an OR gate (Pλ): the first one
(stemming from the x protein branch) evaluates for plasmids that should not be present and activates cI to block expression of GFP. The branch corresponding to
the y protein evaluates for plasmids that should be present by using lacI to inhibit the expression of cI, allowing for GFP expression if all the required plasmids of that
branch are present. If either condition fails, GFP will not be expressed, meaning it is not an optimal solution. However, if said evaluation is successful, it triggers GFP
expression. That action may be replaced by any other such as increased conjugation rate or lower division times. (B) The mutation operation for SGA acts on the
expression of a specific protein in the design, changing the solution to evaluate. The mutation rate parameter for SGA maps directly to the mutation rate configured
in the simulation. This operation accounts for global search in terms of the solution exploration. (C) Crossover is a recombination operation that we mapped to
bacterial conjugation. Part of a foreign solution is integrated to the current one. In our mapping, we individualized a single protein to be held by a unique plasmid,
therefore mobilizing a single protein between solutions for recombination. Conjugation rate is the parameter that accounts for the SGA crossover rate parameter.
(D) SA is largely based on a temperature decrease function: we use environmental signals (such as aTc or IPTG) as its representation. The temperature is associated
to the signal concentration at a given location. The decrease is achieved by the shoving mechanical effects of the cell colony: the center of the colony experiences a
greater temperature that the outer sections.

FIGURE 4 | Approximation of Moore neighborhood using cells. CA execution is strongly dependent on the concept of neighborhood. 2D CA typically work on a
Moore neighborhood. To reproduce this idea in the context of cell colonies, autoinducer sensing is used. The size of the neighborhood is dependent directly on the
reach of the autoinducers. In terms of our simulation model, this is represented through diffusion and degradation values of the intercellular signal.
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regarding these operations can represent different operations for
each MH.

Automated Generation of gro Skeleton Simulation
File
Finally, with the model in place and informed by the input
parameters, a simulation file generator constructs a gro
simulation skeleton file. The mapping to the gro file takes
place using the abstractions present in the simulator such
as proteins, plasmids, environmental signals, etc. Our team
implemented generators for two MH techniques: SA and SGA.
These generators were written in C++ and require input of
values for the respective parameters shown in Table 1. The
generated skeleton gro simulation files can be directly run by
the gro simulator, or can be modified by the final user for
more specific operation. Figure 5 depicts the integration of
the framework design and its implementation in the form of
the interpreter.

Simulation Implementation Examples
To test the framework implementation, we generated gro
simulations of SGA and SA, ran the simulations, and compared
their results to the ones of standard versions of the algorithms
coded in C/C++. All of the simulations implement a MH for
solving an adapted version of the boolean satisfiability problem
(SAT) (Cook, 1971; Levin, 1973). For context, the SAT problem
seeks to evaluate whether a set of truth values (true or false)
assigned to propositional variables, organized in disjunctive
clauses and connected through logical conjunctions, can satisfy
the resulting propositional logic formula (the truth value for the
whole formula is true).

In the adapted version, each boolean clause is represented by
a protein under the control of a promoter as a single gene in an
operon. In turn, each operon resides in a different conjugative
plasmid. Hence, each clause produces a truth value that will be
used to calculate the final truth value for the whole formula.
Also, clauses will be arbitrarily combined within single cells, since
plasmids move within the colony. In sum, each plasmid carries a
boolean clause with its associated truth value.

The form of each complete solution is therefore a set of
proteins within a cell, where each of them can be either present or
absent. The presence of every plasmid in a cell is encoded using
a bit string: if the ith plasmid is present in the individual then the
ith bit is a 1, for the complementary case the ith bit is a 0. The
choice of conjugative plasmids to hold each of the proteins was
made to better relate to a neighborhood space among solutions
and to promote mobility of the clauses to induce combinatorial
variability of the potential solutions. It should be stressed that
the mentioned neighborhood is not a physical neighborhood,
but a logical one for the solution set. Since a set of proteins is
represented as a bit string, binary neighbors of said string can
be reached through conjugation. It should be noted that, unlike
the original definition of the algorithm, we did not implement
plasmid loss (a possible way of finding a different solution), but
only relied on plasmid mobility and aggregation. Within this
binary scheme, plasmid loss would account for degradation of
a protein (along with the already existing mutations). However,
the intrinsic limitation of the simulator is that it works with a
binary definition of proteins. These settings configure solutions
to evaluate within each individual cell: a set of plasmids (bearing
single proteins) present in the cell (a depiction of the setup is
shown in Figure 2A).

FIGURE 5 | Interpreter organization and workflow. The interpreter uses mappings from cell processes to specific MH evolution operators to automatically generate a
gro simulation skeleton file. Input parameters such as conjugation rate, mutation rate, cell population values, among others, are used for the generation of the
skeleton file according to gro syntax.
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Each solution is then evaluated by a fitness function. This
function is encoded in an operon that checks for a subset of
necessary proteins that should be present, a subset of detrimental
proteins that should be absent, and a subset of proteins that
have no effect on the fitness of the solution. The operons that
implement this function are also encoded in a single plasmid.
Cells that comply with the requirements of the fitness function
are classified as optimal solutions. In the C/C++ versions of
the simulation, an optimal solution is stored upon detection and
later reported. In the gro simulations, optimal solutions are
marked by expressing GFP, while all other bacteria are uncolored.
This is done merely for simulation purposes, but GFP can be
replaced with different processes such as cell death, growth rate
configuration or intercell signaling, depending on the purpose of
the evaluation (please see Figure 2B).

Performance of all executions was compared in terms of
number of generations (iterations, in the case of the native
algorithms) until finding the first instance of an optimal solution.
Other performance measures are difficult to associate given
differences in operation implementations and parametrization.
This choice was made because a direct time comparison is not
readily associated between both types of implementations, but
also, because many possible interpretations of these associations
are possible. Therefore, to be able to most equally compare the
performance, we selected an element which is present in both
types of implementations and common to most MH algorithms:
generations/iterations. Thus, gro simulation size limits were
set at 10,000 bacteria which is about 6 generations (taking into
account a division time of 20 min, and 200 initial cells in the
colony). This was a sufficiently number of generations, as most
solutions were found within 4 generations of the start of the
simulation (see Tables 2–7).

Finally, and as an extension to the proposed framework, we
implemented a simulation in gro relying mainly on QS, and
one in C. The goal was to map the idea of Moore neighborhood
to a cell colony context (see Figure 4). To preserve a static
neighborhood, we eliminated growth from the colony simulation.
The implemented CA simulation was an adaptation of Conway’s
Game of Life (Berlekamp et al., 1982). The synthetic circuit we
propose to implement this logic is based on the idea of band

TABLE 2 | Fitness function variation for SGA.

Fitness
function

First appearance of optimal
solution (generation n◦) – gro

First appearance of optimal
solution (generation n◦) – C++

11111 2.949 14.750

11000 3.072 4.862

1100 2.926 4.333

10xxx 0.628 1.000

Data for the average number of generations before the first optimal solution appears
in both versions of the simulation. The fitness function is expressed as a bit string
in which a 1 in the ith position means that the ith plasmid must be present,
while a 0 requires the plasmid to be absent. An x represents indifference for
whether the plasmid is present or absent. Fitness 10xxx is found practically upon
algorithm execution start. This is due to the solution 10000 being part of the
initial solution pool, and matching the fitness function 10xxx. In the case of the
gro implementation, its detection is not immediate, because it has to express the
protein signaling the plasmid presence.

TABLE 3 | Mutation rate variation for SGA.

Mutation
rate

First appearance of optimal
solution (generation n◦) – gro

First appearance of optimal
solution (generation n◦) – C++

0% 4.212 17.000

1% 2.688 6.571

5% 1.540 4.833

10% 0.818 3.300

Average number of generations it takes to find the first optimal solution with
different values of mutation rate. This rate configures how often a mutation occurs
per generation/iteration. In SGA, mutations represent global search operations.
Therefore, a higher mutation rate speeds up finding optimal solutions, but can affect
local search sequence.

TABLE 4 | Crossover rate variation for SGA.

Crossover
rate

First appearance of optimal
solution (generation n◦) – gro

First appearance of optimal
solution (generation n◦) – C++

2.5% 2.957 12.600

5% 2.621 9.600

7.5% 2.401 5.966

10% 2.129 4.966

Average number of generations it takes to find the first optimal solution by varying
the crossover rate in both SGA implementations. The number of generations
required to find the optimal solution tends to decrease as the crossover rate
increases. Unlike mutation, the crossover operation implements local search
in the region of the search space in which the original solutions involved in
recombination are located.

TABLE 5 | Initial population size variation for SGA.

Population
size

First appearance of optimal
solution (generation n◦) – gro

First appearance of optimal
solution (generation n◦) – C++

200 2.631 10.500

400 1.772 10.166

10000 0.130 9.100

Data for the average number of generations before finding an optimal solution by
varying the size of the initial population of solutions. These data show that if the initial
population is larger, then less generations are needed to find an optimal individual.

detection (Basu et al., 2005; Rodríguez Regueira et al., 2019):
overcrowding and under-crowding are conditions that induce
grid cell death, while a mid-level crowding amount induces grid
cell life. The proposed equivalence between the original Game of
Life model and the gro simulation is that a grid cell should be
mapped to a single cell in a colony.

The color code for the gro simulations was to use RFP for live
cells and uncolored cells for “dead” ones. Cell state is determined
based on the concentration of AHL at the cell location: high and
low concentrations induce the cell to the “death” state, while a
mid-level concentration makes the cell glow red. There are also
some GFP cells, which have the task of starting the system, since
there is no initial amount of AHL in the environment. These
cells are placed randomly in the colony and are controlled by an
environmental signal (aTc) as a start switch, and later continue
their operation as normal cells.

A summary of the circuits implemented for all gro
simulations is depicted in Figure 6.
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TABLE 6 | Fitness function variation for SA.

Fitness
function

First appearance of optimal
solution (generation n◦) – gro

First appearance of optimal
solution (generation n◦) – C

11111 5.129 12.600

11000 1.805 11.333

1100 3.508 11.166

10xxx 0.036 13.333

Average number of generations for each configuration to find the first instance of an
optimal solution. Data show stable values for the required number of generations to
find the optimal solution using the C version of the algorithm. This can be explained
by the fact that the initial solution is random, and the value change of a 0 to a
1 depends on the temperature value. However, the gro version of the algorithm
tends to behave similar to what was observed in SGA. This is, when more plasmids
are required to be present in a fitness function, finding an optimal solution takes
longer. Spatial location also is a factor that has a random effect over the stability:
this increased randomness is two-fold since it involves specific cell location and
temperature value.

TABLE 7 | Temperature decrease rate variation for SA.

Degradation
rate/alpha

First appearance of
optimal solution

(generation n◦) – gro

First appearance of
optimal solution

(generation n◦) – C++

0.25 2.013 1.400

0.5 1.219 6.333

0.75 3.110 6.533

0.9 2.025 8.066

Average number of generations required to find the first instance of an optimal
solution. The results show a large variability in the gro version of the algorithm.
A possible explanation is that achieving an optimal solution depends mostly on
the spatial location of the multiple solutions. Therefore, due to randomness in this
location and the influence of the temperature decrease occurring outward of the
colony, no clear tendency can be accurately found in these cases. However, in
the C++ version of the algorithm, an increase in alpha entails an increase in the
generations for finding the first optimal solution. This is due to a single solution
being explored, and therefore, evolution being slowed down as the temperature
decrease rate is greater.

SGA Simulation Examples
The crossover operation in these simulations is mapped to
bacterial conjugation between cells. Conjugation rate is therefore
associated to the crossover rate parameter of the original SGA.
Mutation operation was modeled as promoter mutation leading
to incorrect functioning of the circuit, and arbitrary change
in protein expression. Selection is random, since arbitrary
recombination occurs, and bacterial conjugation is a simulated as
a stochastic process. A notable difference among both versions is
that the C++ version uses a solution pool of fixed size, however,
the solution pool in the gro version grows.

Tests were performed both on the C++ and gro versions
by varying the fitness function to evaluate, the mutation rate,
crossover rate, and population size. A baseline configuration
for all simulations was: the 1,100 bit string for fitness function,
1% crossover rate, 1% mutation rate and 200 initial solutions.
Using this baseline configuration, respective parameters were
varied to get the results for the execution of SGA. The initial
populations for all simulations were composed by 50% of empty
solutions (holding no plasmids initially) and 50% holding a single
plasmid, distributed equally. gro simulations were stopped when

a population of 10,000 cells was simulated. All simulations were
executed 30 times.

SA Simulation Examples
The C version of the SA algorithm uses the following parameters:
fitness function, number of plasmids, initial temperature, the
minimum temperature that marks the end of the execution of
the program, and alpha (a value that denotes the decrease rate
in temperature). For this instance of the model, the temperature
decrease is encoded as a linear function with the alpha value
being strictly lower than one. It should be noted that this
version of SA works with a single solution. In contrast, the
gro version of SA uses several solutions (each one is an
individual bacterium). Therefore, an additional parameter is
required: initial population size. The temperature value, in the
gro version of the simulations, was related to an aTc global
signal. This value is linked to the concentration of aTc at a given
location. The temperature decrease rate (alpha) is translated to
a degradation rate of the environmental signal and simulated
mechanically, as cells are pushed outward and experience a lower
aTc concentration (equivalent to a lower temperature).

A baseline configuration for all simulations was also set for
SA: a value of 0.25 for alpha and a fitness function of 1,100.
For the gro version, an additional default value of 200 was
set for the initial population. As in SGA, initial populations
for all simulations were made up of 50% of empty solutions
(holding no plasmids initially) and 50% holding a single plasmid,
distributed equally for the gro version. All simulations were
executed 30 times.

CA Simulation Example
For this model, the only results that our team compared were
the spatial patterns that the automaton exhibits. This comparison
was made between the patterns generated by the C version
and the gro version and is shown in Figure 7. QS was the
enabling mechanism for calculating neighborhood rules in the
gro version. A circuit based on band detection was designed to
define thresholds for implementing Conway’s Game of Life.

DISCUSSION

We presented a new framework that proposes a mapping to
associate MH to genetic circuits to be encoded in a growing
cell colony. The idea behind this proposal is to bring the
inspiration from evolution, used for EA (and more broadly
MH), back to its origins – an evolving and growing cell
colony – for assessing its viability as an implementation testbed.
To the best of our knowledge, this is the first definition
proposal for general MH using synthetic circuits with intercell
communication as implementation backbone. The aim is to
generalize how MH are defined in terms of their parameters,
establish base circuits which can be extended to generically
model key players in MH procedures such as fitness functions,
pool of solutions, or operations. We think the presented work
is a two-fold contribution as first, it eliminates the need for
fully understanding all intricate mechanisms of the MH despite
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FIGURE 6 | Circuit implementation and simulation. (A) SGA circuit implementation and simulation. The set of plasmids required to be absent for the fitness function
to be optimal are organized in an OR gate manner. If any protein of this set is present, it triggers the cI repressor which in turn represses the fitness reporting (GFP for
this example). The plasmids required to be present are processed through an AND gate design: if any of these proteins are missing, the trpR repressor causes the
final cI repressor to act on the GFP reporting. Proteins not included in this design are omitted from the fitness evaluation, which is equivalent to a “don’t care”
classification in terms of fitness values. All plasmids encoding proteins for evaluation are conjugative. Please see Figure 3A caption for details on how the input
plasmids, transduction circuits, and fitness evaluation circuit were designed. (B) The SA implementation follows a very similar design to the one made for SGA,
however, it incorporates a temperature sensing module, in which aTc concentration regulates conjugation frequency, having higher conjugation rates when aTc
concentration is higher, and gradually lower ones as aTc concentration diminishes. This occurs by negatively regulating the fundamental bacterial conjugation rel
protein, with the tetR repressor, and cancelling the repression in high aTc concentration zones. (C) A Game of Life (CA) design is implemented in two parts. It should
be noted that a CA does not use a fitness function, therefore does not include this part in the implementation. One of the modules initiates the system, since no AHL
signals are present in the beginning (and represent the neighborhood signaling for a “live cell”). The system starts by subjecting the cells to an aTc zone to kickstart
the production of AHL (by canceling the tetR repressor). Also, these starting cells are identified by a GFP marker. Once the system is started, the first module ceases
its operation and the other module, an adaptation of a band detector (Basu et al., 2005), evaluates the Game of Life in a mid-range concentration of AHL (for
assessing live cells maintaining their state or dead cells coming to life). This second module is the one that keeps the CA running afterward.

FIGURE 7 | Comparison of spatial patterns achieved by Conway’s Game of Life implementations in gro and in C. In the gro implementation, red cells represent live
ones, and uncolored cells represent dead ones. The magenta regions are locations at which there is a high concentration of AHL. In the C implementation, cyan cells
are live ones and black cells are dead ones.

providing a solution for immediate use, and second, automates
its design thanks to the mapping that translates all of the
elements into gene circuits (that are outputted in the form of
a gro specification file, but also set a starting point in the
design of gene circuit implementation related to the MH in
the wet-lab). Another advantage is a consequence of the chosen

paradigm: large scale parallelism is attained by implementing
MH in bacterial colonies. An interesting feature of our work
is that it represents a natural way of building MH algorithms.
In other words, both the final product, i.e., MH, and the
approach, i.e., the principles of Synthetic Biology, are both
inspired from biology. However, one constraint to which our
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work is subjected at this stage is that the current version of the
gro simulator works with digital proteins. We are aware that
this is a large limitation and that the power of the proposed
framework would increase greatly by extending its definition
to work with analog values of protein expression instead of
digital values. In fact, analog values for would open an avenue
for better quality and more complex evaluation schemes of
solutions. Another limitation of the chosen platform is that
processes involving detailed dynamics of the protein such as
binding affinity, substrate specificity or protein stability are
exclusively handled with a generic “mutation” operation localized
at the promoter (see subsection “Parameter Collection for Model
Generation”) which globally accounts for the variability in the
protein operation.

Table 2 (SGA) and Table 6 (SA) in the Results section
show that finding an optimal solution takes longer when a
more restrictive function is sought. In the context of these
simulations, the term restrictive means that more plasmids must
be present simultaneously in the solution. Typically, conventional
SGA and SA algorithms running in a computer use a relatively
“low” number of solutions. Hence, using cell colonies, orders of
magnitude more solutions can be evaluated simultaneously. This
offers a larger search space exploration capability and improves
speed to convergence toward good solutions (Vrajitoru, 2000;
Rylander, 2002) (see Table 5). For instance, under our definition
of the framework, in SGA the solution pool in a bacterial colony is
constantly growing, whereas the conventional definition of SGA
uses a constant sized population. This growth further improves
exploration capacity since each solution evolves independently.
In SA the benefits of growth are two-fold: parallel exploration
of the search space, but also parallel use of the temperature
values and simultaneous decrease for all solutions due to the
environmental signal representing the temperature value. The
comparison for population in SA was not shown, since a single
solution is used in the conventional version of the algorithm.

Intrinsic processes involved in the cell and necessary for
implementing our versions of MH, such as growth, gene circuit
operation, or intercell communication need not be artificially
imposed on growing cell colonies. However, it is their integration
into the model, and the level of control which must be studied
and adapted to be a suitable element within the mapping. One
example involving such features may be mutations that occur
in the DNA sequence: although this is a process that can be
directly linked to mutations in the definition of SGA, for instance,
it is also practically impossible to guarantee a mutation rate
(as a parameter for SGA). It is in this spirit that we tested
conditions that varied the parameter values involved in the
mapping. Specifically, different biological values controlling the
evolution operations of the algorithms were tested: mutation
rates (Table 3), bacterial conjugation rates (Table 4), and
degradation rate of an environmental signal (Table 7). The values
we used for the parameters of these executions were based
on realistic ones (del Campo et al., 2012; Fernandez-Lopez et al.,
2014) adapted for gro simulation. Evolution of the solutions
is accelerated as the frequency of the biological/evolution
operations is increased leading to a faster convergence to an
optimal solution. Mutation and crossover operations display this

tendency in Tables 3, 4, and indirectly in Table 7 (since the
temperature controls mutation – encoded in our SA simulations
by using bacterial conjugation). In this last case, another
intervening factor in our approach is evidenced: spatial location.
The gro version of SA does not show a clear tendency in
its results (although it is still faster) due to randomness of
initial solution placements (related to intercell communication
processes and also to the intensity of the environmental signal
detected). Conventional MH lack a spatial component, while
the underlying nature of cell colonies forces this component
upon any synthetic procedure using intercell communication.
This can be seen as an advantage, since multiple interactions
occur simultaneously upon a single solution. However, it
also presents a disadvantage with respect to conventional
solutions in that it constrains communication to nearby
cells only.

From here, a couple of possible options arise as alternatives
in implementing the framework. First, a redefinition of MH
within a different paradigm immersed in a biological context.
Adaptation of MH to a context in which some parameters and/or
elements are not fixed, controllable or can be mapped. Second,
a direct and artificial mapping of the MH, forcing relationships
and mappings to maintain a strict link to their original definition.
Since our testbed was a simulation platform, we took a hybrid
approach, leaving some of the processes, such as colony growth,
to be controlled by the simulator and to be interpreted within
the MH execution. This flexibility can be noted, for example,
by contrasting our implementation with the definition of the
original version of SA (Kirkpatrick et al., 1983; van Laarhoven
and Aarts, 1987; Aarts and Korst, 1988), where there is no
mention or implementation of “growth”. Our implementation
also uses growth to simulate the evolution of the temperature
function: due to mechanical shoving of the cells outward of
the colony, it simulates temperature decrease (aTc concentration
was chosen to represent the temperature measure). On the
other hand, a strict link was maintained to the evolution of the
solution itself and encoded in the cells as a boolean function
based on plasmid and/or protein presence. This could have been
modeled in a different manner and only have relied on intrinsic
mutation. In sum, we propose a framework and one possible
mapping for relating MH to synthetic circuits, however, other
possible mappings are also valid. In spite of the proposed model
being extensible, a lack of well-characterized synthetic parts may
pose a problem in terms of orthogonal intercell communication
(Garcillán-Barcia and de la Cruz, 2008; Grant et al., 2016; Scott
and Hasty, 2016; Kylilis et al., 2018) and variety of elements to
construct large synthetic circuits. Recent research has reported
on possible ways for addressing this problem (Yang J. et al.,
2019). Future in vivo implementations can be assisted by software
to help select the proper parts for the design (Huynh and
Tagkopoulos, 2014; Nielsen et al., 2016). The use of systems
(Purnick and Weiss, 2009) (that need not be multicellular) or
networks (Amos, 2014) offer a direction for tackling the lack of
synthetic parts, since a large combinatorial array of circuits with
varied functionalities and operation stem from their engineering
and combination. Of course, multicellular distributed circuits
with intercell communication should also be taken into account,
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as complex computation and conditions can be described (Amos,
2014; Kamm et al., 2018).

Concerning CA, QS is a key player in our implementation,
driving the simulation of the model, as it relies heavily on the
signal diffusion and degradation parameters. We have shown that
it is possible to simulate a CA using (simulated) cell colonies
(see Figures 6, 7). The patterns achieved by the gro simulation
mimic the ones from the C simulation in their shape. Dimension
discrepancies can be attributed to the difference in the calculation
of the Moore neighborhood for both versions, as the gro version
uses an AHL signal to find and sense its neighborhood, while the
C version of the neighborhood is calculated directly on a grid
and does not present variability. This difference makes it very
difficult to faithfully reproduce an original Moore neighborhood
using QS, since it is not guaranteed that the neighborhood
includes a specific number of neighbors or that diffusion can be
parametrized, in vitro or in vivo, to an extent that an immediate
neighborhood can be detected with a very low concentration
of AHL. Depending on the values related to emission and
sensing, it can cause the neighborhood to extend past immediate
contiguous cell neighbors, turning a cell group into what should
be a single grid cell. Therefore, it has not been possible for
our gro simulations to achieve perfect fine-grained equivalence
between a bacterium and a grid cell, explaining why the patterns
exhibit differences.

In consequence, the framework proposed in this work can
be directed toward solving problems involving a large number
of variables and in which many solutions need to be evaluated.
This is based on the fact that cell colonies have very large
counts and large-scale parallelism in the solution evaluations
is possible. Our results suggest an intrinsic advantage of cell
colony approach over conventional approaches in the reduced
number of generations it takes to reach an optimal solution. We
think that the number of solutions that is evaluated in parallel
within this context is not something that can be achieved by a
traditional computer.

In terms of applicability, protein engineering (Poluri and
Gulati, 2016) is an example of a problem to which this research
could be applied in that the properties or functionalities of
the protein are encoded as a fitness function, establishing
the selection mechanism for desired proteins to be evolved.
In fact, the choice of the SAT problem for our tests was
due to relation in solving subproblems of Protein Design
(Lippow and Tidor, 2007; Ollikainen et al., 2009; Gainza et al.,
2016). At the same time, SAT has long been researched as a
problem to solve through SGA (De Jong and Spears, 1989)
and SA (Spears, 1993). Being the first known NP-complete
problem, it is an important one in Computer Science and
has been extensively researched. We also believe that each
MH implemented for cell colonies following the proposed
approach, and pursuing an optimization goal, represents an
intracellular specialized form of Directed Evolution. It establishes
further definition and control from an algorithmic standpoint,
because the general algorithmic logic and evolution steps
are explicitly specified. Furthermore, this form of continuous
evolution is constantly being evaluated in MH by means
of a fitness function. The variability for expressing and

implementing this function within the context of our framework
offers improved flexibility, expressiveness and specificity in the
expected solutions, acting as a complement to the original
definition of Directed Evolution. By including rules defined
by a MH, evolution can be controlled further and more
precisely, implying a multi-level Directed Evolution technique,
and maintaining compatibility with recent research involving
improvements in the technique (Wu et al., 2019; Yang K. K.
et al., 2019). Also, it is our opinion that the process is further
made autonomous, since an additional intracellular selection
machinery can be programmed and expressed in terms of
synthetic circuits.

Future Work
Integration with automated techniques for evaluating fitness
functions (Gargantilla Becerra and Lahoz-Beltra, 2020) is an
immediate expansion to the workflow which can lead to further
automation in the definition of the algorithms to generate.
Current research is also being invested into relating different AI
algorithms such as Neural Networks, Reinforced Learning (Q-
Learning) and other MH, such as Ant Colony Optimization, to
our framework. Also, a related direction would be to further
study the proposed framework by broadening the tools used
to implement the underlying synthetic circuits. An idea in this
direction would be to include bacteriophage infection as an
intercell communication method (Ortiz and Endy, 2012) in the
framework definition. The current renewed interest in AI, and
its need for powerful computational resources, offers a huge
opportunity for directing the potential of Synthetic Biology
toward satisfying those needs and providing an alternative
paradigm (and more natural, since inspiration for most MH
actually comes from biology) for solving difficult problems.
The goal of this ongoing and future research is to reach the
definition of a global AI framework (Grozinger et al., 2019).
A multi-level Directed Evolution testbed is something that
also should be investigated as it is a large potential of the
framework. Characterizing the power of CA in cell colonies
and specifying the limits of the expressivity for these models
becomes an important matter, as there are cases of CA that
are Turing-complete models (Smith, 1971; Berlekamp et al.,
1982). Another long-standing debt of our research group is
the linkage of the gro simulator to accept SBOL (Madsen
et al., 2019; Mısırlı et al., 2019; Baig et al., 2020; Crowther
et al., 2020) specifications as input. In the context of the
work presented in this paper, the association of SBOL to
Agent/Individual based Model (AbM/IbM) simulators such
as gro can go further and entail an AI toolkit within
SBOL for immediate implementation of such algorithms
in cell colonies.
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