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Abstract: Drug discovery is a risky, costly and time-consuming process depending on
multidisciplinary methods to create safe and effective medicines. Although considerable progress
has been made by high-throughput screening methods in drug design, the cost of developing
contemporary approved drugs did not match that in the past decade. The major reason is the
late-stage clinical failures in Phases II and III because of the complicated interactions between
drug-specific, human body and environmental aspects affecting the safety and efficacy of a drug.
There is a growing hope that systems-level consideration may provide a new perspective to overcome
such current difficulties of drug discovery and development. The systems pharmacology method
emerged as a holistic approach and has attracted more and more attention recently. The applications
of systems pharmacology not only provide the pharmacodynamic evaluation and target identification
of drug molecules, but also give a systems-level of understanding the interaction mechanism between
drugs and complex disease. Therefore, the present review is an attempt to introduce how holistic
systems pharmacology that integrated in silico ADME/T (i.e., absorption, distribution, metabolism,
excretion and toxicity), target fishing and network pharmacology facilitates the discovery of small
molecular drugs at the system level.
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1. Introduction

Drug discovery is a long and extremely complicated process with a low success rate and vast
capital investment. Recent advances in chemistry have promoted the efficiency of chemical compound
synthesis, by which the chemical libraries can generate and store total amount and whole diversity
of data. Although the high-throughput screening of various molecules has processed considerable
development to identify major compounds with activity therapeutically against targets and pathways,
the number of successfully identified molecular drugs did not significantly increase over the years [1].
The evidence shows that the human body is a complicated and integrated system that is composed
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of various scales of biological organization, from molecular to organismal, which will make the full
rational drug design process and systems-level understanding of drug action extremely difficult.
Molecules that are hopeful in cell-based assays commonly do not work or present unfavorable
pharmacokinetic properties or cause adverse effect in vivo. Moreover, most new drugs frequently fail
in Phase II and Phase III clinical trials because of the complex relationships between drug-specific,
human body and environmental factors influencing drug response. Therefore, there is a pressing need
to develop an innovative and integrated system-level approach to systematically and comprehensively
parse the mechanism of drug action so as to deep understand the interplay between drugs and
complex disease.

In recent years, systems pharmacology has drawn an increasing focus as a multi-interdisciplinary
subject, including drug pharmacology, systems biology, physiology, mathematics and biochemistry.
Systems pharmacology is a global approach to translational medicine with the purpose of clarifying,
validating and using new pharmacological concepts to the development and application of small
molecule and biologics [2]. The significant potential of systems pharmacology is that it offers an
integrated system-level method to identify existing and new drugs interindividual drug variability,
and it facilitates prediction of effectiveness and security of compounds during all phases of drug
development. There is a growing appreciation that the well-recognized definition of a successful drug
is properly balancing potency, efficacy, safety and favorable pharmacokinetics. During the process
of drug discovery, one challenging issue is the the knowledge required to develop drugs is always
inadequate due to the complexity of drug–body interaction as well as the complexity of individual
response to drug perturbation. To avoid late-stage failures in the discovery of new chemicals to be used
as drugs, ADME/T (i.e., absorption, distribution, metabolism, excretion and toxicity) studies including
absorption, distribution, metabolism, excretion, and toxicity are involved in a much earlier stage of the
discovery process [3,4]. Moreover, drugs play imperative roles in the therapy of a disease and drug
exploration focuses more on the validation of potential targets which may exert great impact on disease
genes [5]. It is also extremely important to dissect the mechanism of drug action by considering targets
that exist in the context of biological networks. The analysis of the biological networks associated to
a given disease can identify potential drug–target interactions to achieve the desired outcome at the
system level.

Therefore, in this review, we provide a holistic systems pharmacology strategy that integrated
in silico ADME/T, target fishing and network pharmacology for the discovery of small molecular
drugs at the system level (Figure 1). This comprehensive approach not only focuses on addressing
disease mechanism, identification protein target and approaching drug discovery, but also aims at
highlighting the invaluable role that system-based methods have played, and continue to play, in the
drug discovery process and its future perspectives.
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2. In Silico ADME/T (Absorption, Distribution, Metabolism, Excretion and Toxicity) Assessment
for Drug Discovery

The development of combinatorial chemistry and high throughput medicinal chemistry programs
give us more opportunities to synthesize a large amount of compounds at much shorter term than
conventional medicinal chemistry. However, it has been reported that 95% of drug candidate molecules
fail in the development stages, and 50% of such failures are caused by unsatisfactory ADME/T
properties [6]. ADME/T properties have been considered to be a major reason for the failure of
candidate molecules in the late drug discovery stage, and this has led to increasing interest in
identifying such problems earlier in the drug discovery process. To avoid such failure, a set of
in vitro ADME/T screens have been implemented in many pharmaceutical companies with the aim of
identifying and removing compounds with poor ADME/T profiles as early as possible in the process
of drug discovery. Although advances in vitro ADME/T techniques have decreased the probability of
the failure at the drug development stage, it is still time-consuming and resource intensive. Thus, it is
necessary to develop in silico methods that are faster, simpler and more cost-effective for evaluating
the ADME/T properties of a one single molecule in advance. The in silico prediction of ADME/T
characteristics is an attractive alternative to experimental measurements because it provides an
easy accessible high throughput method to improve the ability of screening and testing by only
focusing on the promising compounds so as to reduce time and expense of the drug discovery process.
The exhaustive list of ADME/T models is described below.

2.1. Absorption

Absorption is the transfer of a drug from its site of administration device directly into the
bloodstream and is not required when a drug is administered intravenously. Drug absorption is a
complex process that is dependent upon the route of administration, the formulation and chemical
properties of the drug, and physiologic factors that can impact the site of absorption. Oral medication is
the most ideal route of drug administration, hence, there is great interest in the prediction of intestinal
absorption and intestinal permeability.

In silico models of drug absorption can be categorized into two categories, i.e., physicochemical
and physiological. Some simple filter approaches used to the evaluation of some physicochemical
properties have been proposed, including aqueous solubility (logS), logarithm of octanol-water
partition coefficient (logP), logarithm of octanol-water distribution coefficient (logD), acid dissociation
constant (pKa), etc. that have been widely used and easily identified bioavailable drugs [7,8]. However,
the evaluation of the intestinal drug permeability cannot be accurate solely based on physicochemical
elements because of the presence of multiple drug transport pathways. For the screening of many
molecules, the physiological models are needed. Human Intestinal Absorption (HIA) as key procedure
of oral absorption is one of the most influential ADME/T properties that evaluate the success/failure
of a drug candidate during development process. Many computational classification and correlation
models have been developed to predict the HIA based on a large amount of data that are produced
rapidly by in vivo and in vitro experimental assays [9,10]. In addition, among ADME/T properties,
good oral bioavailability is often one of the most desirable attributes of a new drug, which refers to
the rate and extent of absorption. For instance, based on 805 structurally diverse drug and drug-like
molecules, a robust in silico model was developed to predict human oral bioavailability based on
self-organizing maps [11].

2.2. Distribution

Distribution is defined as drug diffusion or drug transfer from intravascular space to body tissues.
Once the entrance of a drug molecule to the systemic circulation takes place, the drug is distributed
by the blood flow to different organ systems and tissues all over the body. The distribution of a
drug molecule throughout the body is a pivotal determinant to understand because it is usually
a prerequisite for the movement of a drug molecule from the blood into other tissues before it
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can drive its pharmacodynamics or toxic effect. Thus, the prediction of drug distribution in drug
development would benefit the pharmacodynamic and toxicodynamic effects assessment in certain
tissues before any experiments in animals or man. Currently, several methods are available to predict
drug distribution, which involved prediction of plasma protein binding (PPB) or blood–brain barrier
permeation (BBB) [12,13]. PPB is an important parameter to the distribution modeling, because it may
lead to less bioavailability and inadequate drug–drug interactions [14]. A representative in silico model
to predict PPB is the web application of Zsila et al. [15] based on SVM-aided docking approach, which
showed a good predictive power.

A series of specialized barriers have been identified and characterized in different parts of the
body that protect the vital organs and systems of the organism against hazardous chemicals that
can enter the body intentionally or unintentionally. The BBB is one of the most important barriers
specialized to protect the central nervous system (CNS) and is located at the brain capillary endothelial
lining. The BBB plays a crucial role in isolating the brain from the bloodstream, and the vital limitation
for CNS drug discovery is the challenge in designing molecules able to cross it. The distribution of
potential drug molecules cross from the blood into the brain depends on the ability of molecules to
penetrate the BBB. A good example that exhibits the great practicability of a predictive computational
model is the BBB permeability model, which can help to facilitate early screen of molecules with
low BBB penetration profile in advance, therefore will have a profound effect on drug discovery and
development. Some in silico models have been developed to measure the potential for novel molecules
to permeate the BBB based on the assumption that molecules are transported across the BBB by passive
diffusion. By far, the ratio of drug brain concentration/drug blood concentration (LogBB, BB represents
brain-blood) is the most used parameter for predicating BBB penetration and the higher ratio shows
higher concentration in the brain [16]. Recently, Carpenter et al. [13] developed a simple BBB mimic
based on MD and binding free energy approaches for logBB prediction.

2.3. Metabolism

Among the ADME/T properties, metabolism is probably the most challenging one to evaluate
and predict, considering the complication of related multiple enzyme systems. Metabolism is
an important process in determining the formation of metabolites of a drug in the body, which
has implications for its safety and efficacy. Particularly, metabolism can play a key role in a
number of issues, such as poor bioavailability because of enhanced clearance; toxic effects produced
by drug accumulation; and drug–drug interactions, including enzyme inhibition, induction, and
mechanism-based inactivation [17,18]. Orally absorbed drug is transported through portal circulation
to the liver, which contains the necessary enzymes for metabolism of drugs and other xenobiotics. The
drug metabolism is very complicated because it involves several metabolizing enzymes which can
be classified into phases I and II. The cytochrome P450s (CYPs) as Phase I enzymes are contributed
to ~90% of the metabolism of drug molecules, whereas metabolism and several other enzymes,
such as UDP-glucuronosyltransferases, sulfotransferases and methyltransferases at the Phase II
metabolism [19].

Recently, a variety of in silico modeling techniques have been used for the prediction of
metabolic products based on the approaches including expert systems, quantitative structure-activity
relationships (QSARs), molecular interaction fields (MIFs), and protein-ligand docking [18]. Primarily,
expert systems are built and maintained through codifying the metabolic reaction rules from the
literature, books, and patents, which have been widely employed for the prediction of drug metabolism,
mainly contain some commercially available like METEOR (is an expert method to anticipate the
possible metabolic fate of compound based on its chemical structure) [20], MetabolExpert (is an
expert system for predicting metabolism of substances) [21] and META (is a knowledge-based expert
system stimulating the biotransformation of xenobiotics) [22]. All knowledge-based categories of
biotransformation reactions in both phase I and phase II are involved in these systems, meanwhile
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include a series of rules reasoned by variety levels, executing the knowledge of experts systems in the
process of drug metabolism.

In general, most of the studies have been developed to predict phase I metabolism reactions
involving CYPs. The three dimensional structure of CYPs from X-ray crystallography has facilitated
the molecules docked into CYPs active site to figure out the available binding modes and metabolic
sites. Moreover, as one of the most attractive methods in evaluating histone based metabolism, the
structure-based approach has been successfully applied on a number of macromolecules related to the
ADME/T processes [23].

2.4. Excretion

Drug excretion is the process whereby a drug molecule is eliminated by liver, kidney and other
organs from the body. Commonly, the excretion of drug molecules occurs through two main routes:
via urinary excretion in the kidneys, and via biliary excretion in the liver. The excretion pathways
directly influence the amount of available drug molecules to interact with the biological target, as well
as the half-life time and the administered dose.

Although passive excretion can theoretically be predicted based on a great many physicochemical
and physiological properties, such as the blood flow, protein binding and lipophilicity [24]., those that
are restricted to a significant extent by these properties may have different limits, such as glomerular
filtration and molecular weight. Renal excretion is a composite of a number of different processes
including glomerular filtration, active secretion and reabsorption each of which driven by different
properties. The complexity of renal excretion has hindered the development of in silico modeling or
prediction of excretion to date. Recently, based on 349 drug molecules, Paine et al. [25] applied Partial
Least Squares and Random Forest to predict the human renal clearance and the Random Forest model
showed superiority in all statistical parameters (fitness, robustness and predictability). In addition,
Hsiao et al. [26] predict clearance of 244 drug molecules by comparing the Random Forest with other
methodologies (Orthogonal Partial Least Squares and Multiple Linear Regression). The result showed
that Random Forest model also exhibited better results than the other two methods.

2.5. Toxicity

Arguably, drug toxicity is the most challenging drug property that remains one of the most
significant reasons for many drugs failing to reach the market and for many drugs not approved to the
market and withdrawal from the market during the late-stage drug development. The drug toxicity is
a complex biological process because it can occur at organelle, cellular and systemic levels and can
result from receptor/enzyme or DNA interaction, induction or inhibition of hepatic metabolism, as
well as the combination of several causes, all of which cannot be satisfactorily modeled experimentally.
A critical priority in drug development is the early period identification of pestilent toxicity in case of
wasting time and resources in late stage.

The development of toxicity testing’s alternative approaches attracts more interest due to their
relatively simplified implementation and flexibility, providing considerable benefits such as high
throughput, low expenditure and relatively less time of analysis [4]. Need for the improvement of
in silico virtual models and for a more detailed knowledge of the effects of various chemicals on
physiological mechanisms. This strategy could then be applied for toxicological assessments during
earlier stage of the drug discovery process and for evaluation of more candidate drug molecules [27].
Recently, some integrated methods providing all-sided prediction in the early stage and coupled with
decision-making have emerged and enhanced the production ratio of subsequent drug development
steps. The existing software packages including DEREK (an in slico expert system for the qualitative
evaluation of likely toxic action of compounds according to their described chemical structure), Hazard
Expert (is an essential software for quick toxicity estimation of organic compounds), OncoLogic
(is an ideal program to predict chemicals that may cause cancer), TOPKAT (Toxicity Prediction by
Komputer Assisted Technology), MCASE (a multiple computer automated structure evaluation) and



Int. J. Mol. Sci. 2016, 17, 246 6 of 16

PASS (Prediction of Activity Spectra for Substances) are commercially accessible for the prediction
of potential toxicity [28–30]. For instance, as the first earliest toxicity prediction software, DEREK
uses a classic knowledge-based expert system from human experts and the scientific literature [31].
And MCASE relies primarily on a machine-learning method to recognize molecular fragments with
a high possibility of being connected with observed activity [32]. Moreover, some in silico models
for the predicting of preclinical drug toxicity studies have been developed. Based on 288 drugs or
drug-like compounds, Zhang et al. [33] successfully constructed a classification model to predict
mitochondrial toxicity by using Support Vector Machines. Myshkin et al. [34] constructed several
classification models to predict the organ toxicity of compounds using Decision Trees method and
showed good performance. Several properties including general hepatotoxicity and nephrotoxicity,
as well as specific liver and kidney necrosis, liver and kidney relative weight increase, liver lipid
accumulation and nephron injury were evaluated by these models. Despite in silico toxicity prediction
or simulations are ponderable for drug discovery and development, more effort should be paid on the
improvement of their prediction accuracy and mechanism interpretability.

3. Target Fishing

Drug discovery for complex diseases focuses more on recognition of the drug targets that can
be utilized to produce the therapeutic effect while not allowing unwanted side-effects aroused by
off targets. A major property required of an ideal drug target is that the biological rationale of its
use must be obvious. An ideal drug target modulated by a small molecule could be defined as a
macromolecule (most often a protein) whose manipulation could result in removing the causes or
relieving the symptoms caused by the underlying pathophysiology. During the past, drug design
conception was restricted by the so-called “one drug-one target” approach because of the complexity
of biological systems. [35]. This concept states that most selective drug molecules exert their activities
by acting on individual targets particularly related to a disease, famous for the analogous saying as
one “key” (or ligand) modifying each “lock” (or protein) [36]. However, in recent years, this paradigm
neglects the cellular and physiological circumstances of the drugs’ mechanism of action existing
which fails to develop better drugs with satisfactory therapeutic effects expected to treat various
diseases [37–39]. Increasing evidence that many drugs exert their therapeutic activities by modulating
multiple targets is accelerating the development of research fields in objection to the data reductionism
approach [40]. It has become obviously suggested that the existence of a better paradigm, the central
idea of which is rooted in the multiple drug-multiple target principle [41]. In spite of being advanced
for target identification, the wet lab experiments are still insufficient in terms of expenditure and
effort (various activity assays for each protein, difficulties in protein isolation, etc.). Considering the
tremendous growth of bioactivity databases, the use of computational methods to predict drug targets
of small molecules has become increasingly important in recent years. Presently, the most widely used
computational methods for drug target identification can be approximately classified into three groups:
ligand-based virtual screening, structured-based virtual screening and phenotype-based (Table 1) [42].

Table 1. The methods of drug–target interactions prediction.

Method Description Advantages Disadvantages

Ligand-based Based on the similarity
of known ligands

Applicable when the
structure of the receptor
site is unknown

Not applicable when no
ligands for a given
protein exist

Structure-based
Based on binding of
ligands to active sites of
the target protein

Rich information on
various target proteins

Not applicable to
proteins whose 3D
structures are unknown

Phenotype-based
Based on the desired
biological phenotypic
information

Applicable to the
genome-scale
computation

Possibly ignore valuable
computation from other
types of data sources
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3.1. Ligand-Based Methods for Protein Target Prediction

Ligand-based methods are extrapolated from known bioactivity compounds utilized as input
information and aim to predict the effect of new compounds based on the properties of compounds
known to bind to the desired targets. The hypothesis underlying ligand-based virtual screening
assumes that chemical structures similarity between drugs tends to present similar targeting
activities, though various compounds similar in structures may interact with targeted protein in
various ways [43]. Ligand-based virtual screening can be performed using different simple filters,
such as one-dimensional (1D) filters (e.g., molecular weight), two-dimensional (2D) filters (e.g.,
substructure matching), or three-dimensional (3D) filters (e.g., 3D similarity or pharmacophore filters).
A widely-recognized example is the QSAR method (Quantitative Structure Activity Relationship),
which uses two-dimensional (2D) topological fingerprints encoding atom types and their bond
connectivity. Molecular fingerprints of small molecules can consequently be used as feature vectors to
train statistical regression or classification models to predict their binding activity towards specific
target proteins [42,44].

Nidhi et al. [45] applied Multiple-Category Bayesian model to distinguish chemical compounds
based on their targets. A striking development in related proteins on the basis of the distribution
of characteristics in each bioactivity set of molecules is the development of the similarity ensemble
approach (SEA), which utilizes a BLAST-derived algorithm to exploit minimal spanning trees in
the consideration of chemical similarity [46]. SEA estimates target similarity by normalizing the
sum of similarity scores between two groups of ligands recognized to bind to their targets and
several SEA predictions have been experimentally certified [46,47]. Calculating the similarity of
over 3000 FDA-approved drugs coupled with hundreds of targets based on large scale, 23 new
interactions between drugs and targets have been uncovered. Based on in vitro experiments, five of
them were confirmed to be potent with affinities less than 100 nM [48]. In addition, the potential
off-target effect of some commonly used drugs targeting protein farnesyltransferase (PFTase) was
also investigated by SEA method [49]. Although the small molecules topological representation was
succeeded, ligand-based approaches are generally not applicable in cases if no ligands for a specific
protein exist, since in these cases no training on ligand-based information is feasible. To be used most
effectively, ligand-based methods require enough known ligands for targeting proteins of interest,
which may be hardly accessible in practice [41].

3.2. Structure-Based Methods for Protein Target Prediction

Structure-based methods generally elucidate approaches that develop protein structural
information associated with scoring functions to predict the protein-ligand binding mode, thus
providing valuable insights for better drug selectivity enhancement. The central goal of this approach
is to assess a molecule’s ability to bind with a specific protein and to exert a desired biologic effect
depends on its ability to favorably interact with a specific binding site on that protein. When the 3D
structure of the biological target is available, structure-based methods are reliable for providing a
molecular framework representative of the essential physiochemical features required for biological
activity of the inhibitory compound.

Several recent studies have combined targets sequence features with fingerprints of ligands to
train models based on statistical machine learning for target prediction [50,51]. The most extensively
used form of structure-based target prediction methods is protein-ligand docking, which predicts
preferred interacting site when drug candidates target potential specific proteins [52]. Structure-based
methods involve molecular docking of each ligand into the binding site of the target followed by
applying a scoring function to assess the likelihood that the ligand will bound to the protein with
high affinity [53,54]. Recently, a study of currently available methods for in silico reverse screening
used for target prediction was performed by Kellenberger et al. [55] with the purpose of examining
how the algorithms were performed for determining the level of protein targets perform. Moreover,
several ranking approaches based on the comparison of GOLD fitness score and topological molecular
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interaction fingerprint (IFP) were appraised in that study, since it was found scoring functions still
the main weakness of virtual screening approaches. The result showed that problems associated
with accuracy and false positives were shown to be addressed. Obviously, these methods are rely
on available 3D protein structures which are of limited utility on a genome-wide scale [56]. Despite
structure-based methods have made great advances and breakthroughs in target prediction, much
more efforts are still required to overcome the limitations for attracting a wider acceptance.

3.3. Phenotype-Based Methods for Protein Target Prediction

Phenotype-based methods are a prominent part of the drug development process used for
identifying drug candidate compounds with a desired phenotype [57]. However, the molecular
mechanisms of the hit compounds remain unknown when it is used alone. Thus considerable effort is
required to identify the target proteins associated with the phenotype. For the past few years, a number
of methods from wide fields have been explored to identify targets from phenotypic information.
In particular, computational approaches have become more powerful to identify multiple proteins and
relevant pathways that may not have been previously linked to a given biological output based on
phenotype changes [58].

The interactions between drugs and their targets are linked through their phenotypic
information [59], although the relevance between similar drug phenotypic responses and similar
drug actions is not always great [60]. Phenotype-based methods associate different drugs by analyzing
the biological phenotype responses, such as gene expression profiles in cell lines or proteomic data [42].
Several reviews have evaluated the recent advances in using genomics- and proteomics-based methods
to establish drug–target relationships [61]. A wide spectrum of computational methods including
machine learning, statistical analysis and network analysis can be used. Seminal work is the national
NCI-60 project, which selected and analyzed 60 human tumor cell lines coupled with more than 100,000
related compounds to construct a database recording the basal gene expression and drug sensitivity
knowledge [62]. Recently, Iskar et al. [63] developed a computational normalization and scoring
procedure to screen and establish drug response gene expression profiles. The drug-induced gene
expression profile can be used not only to establish a global drug-disease network for the investigation
of drug mechanisms [64], but also to identify common disease modules and pluripotent targets [65].
It is reported that other phenotype information including cell imaging have also been utilized to
connect different drugs and to speculate about their potential targets [66,67]. For instance, based on
the image-based cellular phenotypic screening, Young et al. [67] developed a factor analysis method to
profile chemical compounds. Using text mining approach, Campillos et al. [66] utilized a molecular
signature associating English terms with drug side effects to connect a drug with its unknown targets.
It is to be expected that more and more phenotype information that can be applied in basic biology
and drug discovery research such as drug–target and pathway-disease interactions will be generated
from phenotype screening experiments in the future.

4. Network-Based Drug Discovery

In conventional drug discovery, the philosophy of drug design has relied heavily on the
single-drug-single-target paradigm. However, in real biological systems, it has been appreciated
that many effective drugs act on multiple targets, which can form complex interaction networks
included in cellular state regulation. The complication of biological systems has limited this paradigm
of drug design since there are multiple interactions between the genes and other molecules instead
of the change of a single gene. It is thus extremely difficult to discover better drugs with therapeutic
effects expected to treat various diseases because of the enormous complexity of various networks
involved in various disease states [68,69]. Therefore, network pharmacology-based approaches that
consider such biological complexity are the driving force behind a new concept in drug discovery.

Regarded as the technical route to the ultimate ideal of systems pharmacology, the network
pharmacology aims to identify a set of drug targets for any disease by network analysis and
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investigates the effects of the drugs binding to these targets by chemical biology approaches. Network
pharmacology has the potential to accelerate drug discovery through the identification of connectivity,
redundancy, and pleiotropy in biological networks [70]. A network pharmacology-based approach
to the prediction and analysis of the interactions between a drug and its targets not only develops a
systems-level comprehension of drug action and disease complexity, but also helps to improve the
drug design efficiency. Generally, network pharmacology-based approaches can be divided into two
categories: static network and dynamic network.

4.1. Static Network

In a topological sense, there are two main components of the static network include entities
(“nodes”) and modeling the relationships (“edges”) (Table 2, Figure 2). The nodes are the vertices in
the network that represent different types of objects such as genes, proteins, small molecules, molecular
pathways, disease or any other entity with interacting in the modeled system. Edges are the pairwise
interactions between the nodes that represent protein–protein interactions, drug–target interactions,
target–disease interactions or transcriptional regulation. When the information is accessible, directions,
weights and other attributes can be shown in edges; therefore, understanding about hierarchy of effects
will be developed.

Table 2. Important topological characteristics in static network.

Network Characteristics Definition Biological Entities and Functions

Node
Basic component interacting

(pair-wise) with other node(s)

Small-molecular (metabolic network)
Genes (genetic regulatory network)
Proteins (protein-protein network)

Edge A relationship between the nodes
Connection may be physical, regulatory, genetic interaction
Metabolic network: enzyme-catalyzed reactions
Genetic regulatory network: expression data

Degree Number of links to other nodes Associated with topological robustness of biological networks
i.e., small degree nodes are more “disposable” than hubs

Betweenness Number of shortest paths that
pass through each node

Important for finding non-hub crucial nodes or classifying
hubs according to their positions in the network

Closeness Number of link to the center Only applicable to connected networks

Eigenvector Influence of a node in a network Assigning relative scores to all nodes in the network
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commonest centrality measures [72]. The degree is the number of edges connected to a node.
A molecule interacting with many other distinct molecules would have a high node degree, the
so-called “hubs” [73]. In scale free networks, a power-law distribution is followed by the node
degree, which conveys us how much access a particular node has to the other nodes. Betweenness
is yet another commonly used measure of centrality that describes the influential level in node pairs
communication [74]. In other words, betweenness is defined as a measure of the number of shortest
paths that pass through each node. It is important for finding non-hub important nodes [75] or
classifying hubs according to their positions in the network. The reciprocal of farness is closeness
centrality which could assess the time required for information to transmit to a given node in a network
through calculating the length of the path between them. This feature is usable only in connected
networks because of the distance ambiguity between unconnected nodes. Eigenvector centrality, which
is a measure of the impact of a node in a network, is not restricted to the shortest paths. It can be used
for evaluating relative scores of all network nodes on the basis of the connections to high-scoring nodes
leading more to the problematic node score compared with low-scoring nodes. In conclusion, these
centrality measure may help us to get clearer insight about the topological properties of the network,
thus could be promising for elucidating the disease therapies and guiding novel drug discovery in
complex static network study.

4.2. Dynamic Network

Unlike static networks, dynamic ones are networks whose structure may change in terms of
time-series depending on various factors. The dynamic networks are more challenging compared with
static network, since dynamic network obliges temporally, sometimes spatially resolves data or even
more data. The descriptions of dynamic networks usually include edge directions, signs, conditionality
and many dynamically changing quantitative measures. As a new source to promote the development
of novel drugs, dynamic network simulation and analysis not only help us understand the dynamic
behavior of key actors in space and time, but also provide better insights into the predicting drug
targets and their role in human pathophysiology. The modeling and simulation flowchart of dynamic
network is shown in Figure 3.
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In general, dynamic network modeling is considered to be a series of chemical reactions, whose
kinetics can be described by ordinary differential equation (ODE) and partial differential equation
(PDE) to execute deterministic and stochastic simulations (Table 3). A system of ODEs is the most
fundamental way to quantitatively simulate the dynamic response of each components in a network
under different conditions [76], which can either be figured out exactly or by an approximate analytical
method. The network modeled with deterministic ODEs can easily investigate steady states and
the varieties of dynamic behavior with the state of system. Despite compartmental ODE modeling
frequently used as a simplification for PDEs [77], sometimes detailed spatial localization is critical for
cell signaling networks [78,79]. In this case, as reaction-diffusion equations in biochemical processes,
PDEs can be used to explain diffusion and biochemical reactions of signaling markers in network.
Under such situations, a stochastic model based on PDEs that allows for inherent fluctuations in
dynamic network may give rise to qualitatively different behavior which differs significantly from those
predicted by deterministic models. Different from the deterministic implementation, the stochastic
simulation reactant equations were considered to interact as discrete entities. The explanation of
random fluctuations which possibly affect reaction dynamics can be achieved [80]. The increased
concern on the significance of signaling noise and the proliferation of single cell measurements
proposed that stochastic models will be more accepted due to the potential availability and replicability
of the variation of individual cell responses.

Table 3. Summary of different methods used in dynamic network.

Method Description Reaction Equation Advantages Disadvantages

ODEs

Series of
reaction-rate

equations solved
using numerical

methods A k1
Ñ B

d rAs
dt

“ ´k1 rAs

d rBs
dt

“ k1 rAs

Well
understood
formalism

Limited to
temporal modeling

Deterministic
Assumed high

concentrations and
uniform mixing

Produces graphs
or tables of

reagent
production and

consumption

Fast
Brittle

Mathematically
robust

PDEs

Expresses spatial
and temporal
dependence

through partial
derivatives

A` B k1
Ñ C

B rAs
Bt

“ D1∇2 rAs ´ k1 rAs rBs

B rBs
Bt

“ D1∇2 rBs ´ k1 rAs rBs

B rCs
Bt

“ ´D1∇2 rCs ` k1 rAs rBs

Note : ∇2 rAs “
B2 rAs
Bx2 `

B2 rAs
By2 `

B2 rAs
Bz2

Well
understood
formalism

Complicated

Possible to be
fast

Difficult to
implement or

generalize

Bases on
numerical
methods

With diffusion
of molecules at

rate D1

Mathematically
robust

Unable to model
state of

discontinuous
transitions

Produces
numeric output

of concentrations
and x, y, z

coordinates

Enables
modeling of

time- and
space-dependent

process

Brittle

Given a dynamic network, one can characterize the system behaviors using various analysis
approaches, such as sensitivity analysis, metabolic control analysis and bifurcation analysis. These
methods are useful for exploring the potential system dynamics and quantitative insights into emergent
system behaviors, such as robustness. Sensitivity analysis is used to quantify changes in system
behaviors with respect to parametric perturbations [81]. In a complex system with a large number
of parameters, different parameters may have various impacts on the system dynamics. Sensitivity
analysis which requires the most precise measurement provides a way to select parameters with
greatest influence on the production of system. [82]. Similar to sensitivity analysis, bifurcation analysis
also focuses on a qualitative understanding of the system dynamics and performs by varying a
parameter until a qualitative change in dynamics is observed. Bifurcation analysis is favorable in
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comprehending the transitions between dynamic behaviors due to the changes in model parameters.
Metabolic control analysis develops the mathematical and theoretical framework to outline the
quantitatively control method for a specific enzyme which functions on flux and the concentration
of metabolites, consequently substituting the intuitive and qualitative limitation concept. It provides
a conceptual framework for understanding the control of fluxes through metabolic pathways at
the molecular level. It is a valuable post-genomic tool to handle systems of any complexity and
does not need all system components to be known previously. By applying these approaches,
it is possible to identify the important steps or key factors that should have significant alteration
on flux or concentration in pathways, so as to understand the complex mechanism of disease and to
predict target for developing novel drugs.

5. Conclusions

The drug discovery process is a time consuming and complex process requiring multi-disciplinary
approaches to develop riskless and effective medicines. Despite the great synthetic diversity derived
from the development of combinatorial chemistries and high-throughput screening methods, they
have had notably small influence on the derivation of novel drugs and candidate compounds for
primary optimization [83,84]. Post-marketing failures of blockbuster drugs remain recognized as
extremely important elements in the pharmaceutical industry. Contemporary clinical knowledge and
experiential databases are helpful in raising success rate by lessening the time wasted, money spent
and diverse effect occurrence, which are the leading bottlenecks in drug development in contrast to
ordinary approach integrating various technologies for screening from small molecule compounds.
However, due to the complexity of the interactions between drugs and their targets, a quick search and
understanding of therapeutic molecules based on the traditional method is a massive challenge. These
call for systematic and critical reviews of methods and mindsets involved in drug discovery today,
which must overcome problems above and become more integrated, fast, focused and predictive,
where safety and efficacy issues are addressed alongside the developmental costs [85].

The present review focuses on the concepts of innovative drug discovery rather than on specific
pharmaceutical techniques and knowledge. This review aims to outline accessible information on
current methods and strategies in novel especially complementary and alternative drug discovery.
Moreover, it will benefit individualized therapy, which provides the chance to improve therapeutic
efficacy targeting the genomic aberrations in disease states as well as reducing the undesirable toxicity
due to the alteration of drug metabolism based on the patients’ genotype. Such an advance contributes
to diagnostic tests recording benefits of individualized medicine on certain patients. Our strategy in
this review will not only lead to saving of expenditure and time, associated with increased success rate
in small molecule drug discovery and development, but also be considered to minimize the risk of
post-marketing withdrawals and go a long way in safeguarding the interests of both pharmaceutical
industry and ordinary civilians.
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