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Potentially Extreme Population 
Displacement and Concentration 
in the Tropics Under Non-Extreme 
Warming
Solomon M. Hsiang1,2 & Adam H. Sobel3,4,5

Evidence increasingly suggests that as climate warms, some plant, animal, and human populations 
may move to preserve their environmental temperature. The distances they must travel to do this 
depends on how much cooler nearby surfaces temperatures are. Because large-scale atmospheric 
dynamics constrain surface temperatures to be nearly uniform near the equator, these displacements 
can grow to extreme distances in the tropics, even under relatively mild warming scenarios. Here we 
show that in order to preserve their annual mean temperatures, tropical populations would have to 
travel distances greater than 1000 km over less than a century if global mean temperature rises by 2 °C 
over the same period. The disproportionately rapid evacuation of the tropics under such a scenario 
would cause migrants to concentrate in tropical margins and the subtropics, where population densities 
would increase 300% or more. These results may have critical consequences for ecosystem and human 
wellbeing in tropical contexts where alternatives to geographic displacement are limited.

It is now widely understood that ecosystems and, to some extent, human populations respond to changing cli-
mates by moving1–25. For example, butterflies3, marine fish4, and plants5 have been shown to move to cooler 
locations due to recent warming, and human populations have moved rapidly in response to the American 
Dustbowl21, as well as recent persistent warming events in Mexico10, Indonesia17, and Pakistan16. Prior work 
has identified many local factors that influence how populations may move in response to changes in their local 
climate26,27, such as the role of local topography or the movements of nearby competitor populations. We build on 
this understanding, and emphasize a constraint from planetary-scale atmospheric dynamics which may also play 
an important role in determining how ecosystems and human populations might move in response to climate 
change. We intentionally develop a simple model to highlight a single climate-biology linkage that emerges as a 
consequence of the earth’s sphericity and rotation.

We adopt the most basic possible starting point, a model in which populations adapt to climate change by 
moving such that their environmental temperature remains the same. This simple model intentionally does not 
capture many of the dynamics previously studied, but it is at least conceptually consistent with many empirical 
observations2,7,8,10–14,16,18,19. We point out here that the magnitudes of such temperature-preserving displacements, 
and the concentrations of populations that would necessarily result, have the potential to be extraordinary in the 
tropics even for magnitudes of warming that are at the low end of current projections. Because horizontal tem-
perature gradients are small in the tropics, large displacements are generally required to achieve even small reduc-
tions in temperature. The smallness of tropical temperature gradients results from fundamental fluid mechanical 
constraints on the atmospheric circulation which are well understood28–30.

To clarify ideas, we imagine a topography-free planet with a zonally symmetric climate. On this planet, there 
are only north-south gradients in the climatological distribution of temperature T(y), where y is the signed 
distance from the equator (e.g. latitude). If we impose a small change in climatology Δ T(y), the characteristic 
length-scale L of a temperature-preserving displacement is
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For a fixed temperature change, L depends inversely on the local temperature gradient d T(y)/d y (see  
Methods).

Horizontal temperature gradients in the atmosphere are closely related to horizontal pressure gradients by 
hydrostatic balance. Outside the tropics, relatively large horizontal pressure gradients, and thus also large tem-
perature gradients, can be sustained because the Coriolis force can balance the pressure gradient force. Near the 
equator, the horizontal component of the Coriolis force becomes weak due to the small projection of the earth’s 
rotation vector on the local vertical. As a consequence tropical pressure and temperature gradients are much 
smaller than extratropical ones. Perusal of global maps of temperature on a surface of constant altitude show 
much larger variations at high latitudes than low31, no matter what season, year, or time-averaging period is 
chosen. Because of this, the displacement distance L is necessarily larger in the tropics than in the extratropics, 
sometimes dramatically so.

Results
We estimate L in Equation 1 for a scenario in which global mean temperatures rise 2.0 °C. We compute the 
multi-model mean zonally-averaged climatology for twenty general circulation models collected by the 
Intergovernmental Panel on Climate Change (IPCC)32. We compare a baseline climatology T(y) computed for 
the immediate future 2011–2030 against a more distant climatology over 2080–2099, the period on which IPCC 
projections are primarily focused. In the following analysis, we separately examine surface temperatures over 
the oceans and over the continents since we assume that populations can only inhabit one or the other of these 
environments. We also limit our analysis to 50°S-50°N latitude. The polar regions require special consideration 
because no displacement can go further poleward than the poles themselves; furthermore, the populations of 
human and most species become small near the poles under the present climate.

In Fig. 1, panels A and B plot the initial temperature profiles T(y) for the oceans and continents, respectively, 
while panels C and D plot the local derivative d T(y)/d y, which is smoothed for clarity. As we expect, d T(y)/d y  
is basically zero close to the equator and increases in magnitude in middle latitudes. Panels E and F plot the 
change in temperature Δ T(y) in the 2.0° scenario, which is relatively constant over latitude except for far southern 
regions that warm somewhat less.

In panels A and B of Fig. 2, we compute the characteristic length scale L(y) using the meridional profiles 
shown in Fig. 1. Because the temperature change Δ T is roughly constant with latitude while temperature gra-
dients approach zero near the equator, L increases to large values both in the tropical ocean and on tropical 
continents.

The zonally symmetric model in Equation 1 implicitly constrains population movements to occur along the 
north-south axis and assumes that local temperature gradients do not vary over the course of a migration. We 
relax these two assumptions by computing the shortest actual distance that populations must move to preserve 
their average temperature. For each pixel i, we locate the nearest pixel j that exhibits a future mean temperature 
that is equal to or lower than the initial temperature at i, subject to the constraint that j is not oceanic if i is con-
tinental and vice versa. We plot the distribution of these distances for each 2° latitude band in panels C and D of 
Fig. 2. The displacement distances thus computed tend to be substantially larger for initial positions in the tropics 
than for those in the middle latitudes, consistent with our simpler length scale analysis. For several latitude bands 
near the equator, more than 75% of oceanic locations require that populations must migrate more than 1000 km 
to preserve their average surface temperatures. On the continents, more than 25% of locations in a broader lat-
itude band near the tropics require that populations move more than 1000 km. Both in the ocean and on conti-
nents, displacements exceeding 2000 km appear in a narrow band near the equator.

While the structures shown in panels C and D of Fig. 2 match those in panels A and B quite well, there are 
some deviations that can be understood by examining the map of our calculated displacement distances shown 
in Fig. 3A. For example, the North-South asymmetry in the dispersion of oceanic displacements (Fig. 2C) is due 
to large movements required by populations initially in the north Indian Ocean, where the Asian continent pre-
vents northward movements; and large distances arise in the southern continents (Fig. 2D) because the Southern 
Ocean prevents continuous southward movements from New Zealand and the southern tips of Africa, South 
America and Australia. The map also reveals the local influence of topography (on the continents) and coastal 
upwelling (in the oceans), both of which are important because these features perturb local temperature gradients 
relative to the zonal mean.

A logical consequence of greater displacements of tropical populations than others is the extreme concentra-
tion of populations at the margins of tropical regions. To illustrate this, we simulate a population which is initially 
distributed uniformly around the globe but whose members follow the temperature-preserving displacements 
in Fig. 3A without experiencing any population growth. The resulting population density is shown in Fig. 3B. 
In the middle latitudes, population densities are largely unchanged because populations at each location shift 
poleward at roughly the same rate, analogously to many cars all moving forward together at the same speed. In 
contrast, the large displacements in the tropics lead to an almost complete evacuation of the equatorial band, with 
the displaced populations accumulating in tropical margins where the speed of migration rapidly slows. This is 
analogous to the traffic jam that occurs when a highway accident brings fast moving cars to an abrupt halt. The 
effect on population densities in tropical margins is dramatic, in both the oceans and on the continents, as pop-
ulation densities climb to above 400% of their initial concentrations. If populations were actually to concentrate 
this quickly in what are already exceptionally arid environments, we would expect there to be many adverse 
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consequences in both natural and human systems, such as an accelerated transmission of infectious diseases or 
conflict over scarce resources.

Discussion and Conclusions
For many species (including humans), geographic displacement is only one of multiple possible adaptations to 
climate change, the choice of which may vary by population and context7–9,12. The temperature-preserving dis-
placements presented here are likely to be employed only when less costly adaptations are unavailable9,33. In 
addition, some populations may not move even if they are unable to adapt along other dimensions—instead, 
they will simply bear the cost of elevated environmental temperatures. The tropics are already the warmest part 
of the planet, however, and the cost of thermal exposure may rise nonlinearly at a critical threshold9,11,34–39. As a 
consequence, “staying put” and enduring additional warming may be extremely harmful to many tropical spe-
cies and societies. For tropical populations, temperature-preserving displacement may be simultaneously a more 
beneficial strategy and—because the required displacements are larger—one more difficult to execute than it is 
for those starting outside the tropics.

Figure 1. Zonally-averaged surface temperature patterns averaged over 20 climate models. (A) Zonal mean 
surface temperature T(y) of ocean pixels, 2011–2030. (B) Same, but for continental pixels. (C) Derivative  
d T(y)/d y for panel A (grey, smoothed is black). (D) Same, but for panel B. (E) Zonal mean ocean surface 
temperature change Δ T(y) between 2011–2030 and 2080–2099. (F) Same, but for continents.
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Population displacements could be in part vertical as well as horizontal, taking advantage of vertical tem-
perature gradients in additional to horizontal ones18,19. Vertical temperature gradients are generally large in the 
tropics, with temperatures dropping quickly as one moves higher into the atmosphere or deeper into the ocean. 
Our analysis captures this effect on continents for topographic features resolved at the coarse climate model 
resolutions we use. In the oceans, and in continental locations where topographic features are too localized to 
be captured by global climate models, horizontal temperature-preserving displacements may be shorter than we 
calculate if populations are able to move vertically at the same time. It may not be feasible for many species to do 
so, however, due to other environmental constraints. Light availability decreases rapidly with depth in the oceans, 
and available land area declines quickly with altitude on topographic features of sufficiently fine scale to be absent 
from our analysis.

Our analysis intentionally abstracts away from many of these complexities to focus on the role of weak 
temperature gradients in the tropics and we do not focus on any specific species since our result comes from 
general dynamics of the atmosphere. Nonetheless, it is instructive to develop a heuristic example by applying 
temperature-preserving migrations to the actual population distribution of a real species, an exercise that—while 
limited in numerous ways—provides some additional perspective on the structure and magnitude of the dynamics 
in our simplified model. For demonstration purposes, we use a specific species distribution that is both conven-
ient and intuitive: the distribution of modern humans41 (Fig. 4A). Recognizing this calculation is not a prediction 
of actual human migrations, we relocate all currently living people according to our temperature-preserving 
assumption. As shown in Fig. 4B, the final population distribution is generally more concentrated, especially in 
the tropical margins of Latin America, Africa, and South Asia. Computing a histogram for the number of people 

Figure 2. Theoretical migration length scales and actual temperature-preserving displacements are 
extreme in the tropics. (A) Length scale for temperature preserving displacement (Equation 1) in the ocean, 
computed with zonal mean profiles from Fig. 1. (B) Same, but for the continents. (C) Distributions of the 
shortest actual temperature-preserving migration for pixels in each 2° latitude bin of the oceans. Circles are 
medians, boxes are inter-quartile ranges, vertical lines are ranges, dots are outlying observations, and the black 
line connects mean values. (D) Same, but for continental pixels.
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who would migrate each distance (Fig. 4C), we find that 12.5% of the global population, most of which is cur-
rently in the tropics, would have to migrate more than 1000 km. 33.9% of the population would have to migrate 
more than 500 km. Imagining the tremendous cost of actually undertaking such massive spatial reorganization of 
the global population helps illustrate the potential importance of the dynamics we highlight here, although in the 
context of humans there are likely many local adaptations that are preferred to these displacements.

It is likely that some populations might migrate to conserve features of the local temperature climatology 
other than average temperature8,9,12,19, such as the variance of interannual temperature or maximum seasonal 

Figure 3. The length of minimum-distance temperature-preserving displacements and their impact on 
population density. The shortest temperature-preserving migration is computed for each pixel under 2 °C of 
global mean warming. Populations that are initially in the ocean (on land) are constrained to remain in the 
ocean (on land). Striped appearance over some regions occurs because the combined climate models vary in 
spatial resolution. (A) Logarithm of the minimum distance that an organism must travel to maintain the average 
temperature of its environment, plotted as a function of the organism’s initial location. (B) The percent change 
in population density that occurs if a hypothetical population were initially distributed uniformly over the globe 
and all members of that population undertake the minimum-distance temperature-preserving displacement in 
(A). Maps created by authors using Matlab.

Figure 4. Heuristic example applying results to the global human population. To aid in visualizing the result 
of this analysis, temperature-preserving displacements are applied to the global distribution of the people as 
an illustrative thought experiment, since this is one species distribution that is familiar and well documented. 
Actual human migrations will certainly differ and likely will be less extreme, as people can adapt and access 
technologies that may allow them to avoid displacement, behaviors that are abstracted away in this analysis. 
(A) Logarithm of the current distribution of humans41. (B) The distribution of this population if all individuals 
undertake the displacement in Fig. 3. (C) Histogram with 1 km bins (grey, smoothed is black) for the minimum 
distance traveled by each person currently on Earth. Maps created by authors using Matlab.
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temperature. While displacements which preserve these statistics will differ somewhat from those we present 
here, the extreme behavior of the tropics is likely to persist. Tropical gradients in most of these statistics are weak 
for the same reason that gradients in average temperature are weak. Due to the weak Coriolis force near the 
equator, temperature changes throughout the tropics occur coherently across planetary spatial scales, making 
it difficult for surface-bound populations to move into a different temperature regime without traveling large 
horizontal distances.

For many species, particularly sessile species or those with limited motility, the speed of migration necessary 
to preserve temperature is more important than the total displacement distance7,8,18. For example mature forests 
and coral reef systems are sensitive to temperature and are much less mobile than most vertebrates, including peo-
ple. In the scenario considered here, extreme displacements of 1000–2000 km must be achieved within 89 years, 
requiring that temperature-preserving movements have an average speed of 11.2–22.5 km yr−1 (1.3–2.6 m hr−1). 
These speeds substantially exceed the rate of previously observed climate-induced range shifts1,4–6,19 and prior 
estimates for movement under future warming that do not account for large-scale temperature gradients18,40. If 
maintaining their present environmental temperature is a critical adaptation to anthropogenic climate change, 
some tropical populations may have to migrate at unprecedented speeds over extreme distances in order to cope 
with relatively optimistic warming projections, given current emissions trajectories.

Methods
For a global mean temperature change ∆T , we set the average temperature changes experienced by an organism 
to zero
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