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Abstract
There is a growing appreciation for the network biology that regulates the coordinated ex-

pression of molecular and cellular markers however questions persist regarding the iden-

tifiability of these networks. Here we explore some of the issues relevant to recovering

directed regulatory networks from time course data collected under experimental con-

straints typical of in vivo studies. NetSim simulations of sparsely connected biological

networks were used to evaluate two simple feature selection techniques used in the con-

struction of linear Ordinary Differential Equation (ODE) models, namely truncation of terms

versus latent vector projection. Performance was compared with ODE-based Time Series

Network Identification (TSNI) integral, and the information-theoretic Time-Delay ARACNE

(TD-ARACNE). Projection-based techniques and TSNI integral outperformed truncation-

based selection and TD-ARACNE on aggregate networks with edge densities of 10-30%,

i.e. transcription factor, protein-protein cliques and immune signaling networks. All were

more robust to noise than truncation-based feature selection. Performance was comparable

on the in silico 10-node DREAM 3 network, a 5-node Yeast synthetic network designed for

In vivo Reverse-engineering andModeling Assessment (IRMA) and a 9-node human HeLa

cell cycle network of similar size and edge density. Performance was more sensitive to the

number of time courses than to sample frequency and extrapolated better to larger networks

by grouping experiments. In all cases performance declined rapidly in larger networks with

lower edge density. Limited recovery and high false positive rates obtained overall bring

into question our ability to generate informative time course data rather than the design of

any particular reverse engineering algorithm.
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Introduction
Before the emergence of high throughput techniques, biology was deeply entrenched in a re-
ductionist study of one component gene or protein at a time. Though now often depreciated,
such studies have provided a wealth of information about the various roles of individual
molecular entities. With the advent of high-throughput techniques such as microarray, mass
spectrometry, RNA-seq, chip-seq and multi-channel flow cytometry, it is now possible to si-
multaneously survey many cellular components including mRNA, proteins, and metabolites.
There is now a growing appreciation that almost all biological morphologies and functions
emerge as a result of complex interactions between constituent molecules or entities [1].
These interactions drive fundamental processes within various intra-cellular compartments,
ultimately determining the behavior of a cell as well as the extent and nature of signaling with
neighboring cells [2] in both health and disease. As such, understanding these interactions can
ultimately lead to more effective clinical treatments. Specifically, an integrative systems ap-
proach to biology has the potential to provide new insights into complex illnesses by leveraging
broad molecular and cellular surveys [3] to cast various disease-associated genes and related
pathways [2] in the proper mechanistic context. However, two major challenges exist: (i) the
accurate identification of biological regulatory networks, also called reverse engineering and,
(ii) the quantitative study of regulatory network structure and function, as it applies to clinical
medicine.

In the past two decades, the reverse engineering of causal gene regulatory networks from
time course expression profiles has received special attention with a number of methods and
mathematical formulations being proposed for network inference. In S1 Table we present a
summary of the principal methods grouped into several broad classes, namely: Logic-based
models such as Boolean networks (BN) [4–9], probability based methods such as dynamic
Bayesian networks (DBN) [10–17], information theoretic approaches [18, 19], and Ordinary
Differential Equations (Linear and Non-linear) based methods [20–28]. In addition, model-
free approaches with roots in machine learning/data mining [29–31] and hybrid methods [18,
32–35] have also become popular avenues for the inference of directed biological regulatory
networks from time course data. A number of excellent reviews exist that describe the underly-
ing principles, advantages and limitations of various inference methods [36–45]. However,
with the exception of the DREAM (Dialogue on Reverse Engineering Assessment and Meth-
ods) community-wide challenge [46–50], very few initiatives have sought to compare the rela-
tive performance of these methods directly [51–54] and in quantitative terms. They do agree
nonetheless that the availability of suitable data constitutes one of the primary obstacles to the
more complete and accurate inference of directed biological networks [49]. This is only exacer-
bated with in vivo human or animal studies where blood can only be sampled at low frequency
(10–15 time points) across a relatively short time horizon (24 hours or less). Moreover, for
budgetary reasons such detailed studies are typically limited to relatively small subject groups
(often less than 20 subjects) examined under a select number of response conditions (often
only 1) [55].

It is very important to keep such experimental limitations in mind if in addition to recover-
ing connectivity one is also attempting to infer directed networks for the purpose of designing
candidate treatment courses that might be directly predictive of clinical trial outcomes in
human subjects. If this is the objective then the method must also allow the user to simulate the
dosage and timing of specific network perturbations. While several important inference algo-
rithms have been proposed (S1 Table), many require a quantity and type (e.g. knockout) of
data that is more consistent with in vitro experimentation in cell cultures than with in vivo ex-
perimentation in human or animal subjects. For example, Boolean network (BN) models allow
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the user to draw on a broader body of a priori knowledge and represent response dynamics as
discrete on-off transitions with a simple delay. However BN algorithms such as REVEAL [6]
remain computationally expensive and sensitive to experimental noise [56]. Moreover, discrete
on-off behavior remains a coarse-grained approximation with a resolution that is typically un-
suitable for treatment design beyond the initial exploratory phases. These issues are partially
addressed by computationally faster and noise-tolerant probabilistic Boolean networks (PBN)
[8, 9] where relationships between variables are captured as joint probability distributions. Dy-
namic Bayesian networks (DBN) offer further improvements in the analysis of experimental
time course data [57] and several algorithms have been proposed including BANJO [10]
BNFINDER [14,15], GlobalMIT [13], and DREM [16, 17]. While DBNs can infer feedback
loops they continue to require data exceeding that of typical in vivo animal studies despite ef-
forts to control computational complexity with alternative scoring methods such as GlobalMIT
[13] and BNFINDER 2 [15]. Similar to DBNs, information theoretic algorithms such as Dy-
namic CLR [18] and TD-ARACNE [19], have become available to infer regulatory networks
from time course data. In general, information-theoretic approaches use a generalization of the
pair-wise correlation coefficient called mutual information (MI) [58]. As with the basic Bayes-
ian model, MI is a non-parametric measure, making no assumption regarding the distribution
of the data. Although such methods typically require substantial amounts of data, improve-
ments in performance reported for TD-ARACNE are such that we have retained the latter as a
candidate method in the current comparative analysis.

Making simplifying assumptions about the distribution of the data allows one to move to-
wards more conventional regression-based models. Perhaps the simplest of these are time-
delay forecasting models that are based on Granger causality. With roots in machine learning
and data mining these methods are often called model-free since they do not assume any regu-
latory model structure a priori. However their general applicability is accompanied by a sub-
stantial data requirement that matches or even exceeds that of DBNs [59] despite the recent
introduction of LASSO penalties [31, 60]. The discrete time equivalent of an ODE, a classical
difference equation, can be obtained by restricting this type of forecast model to a single time
step lag in the response variable and no lag in the regressor variables. Indeed this is the basic
model underlying the TSNI integral method [20] evaluated in this work. Classical continuous
ODE models have long been used to describe biochemical reaction kinetics. The data require-
ments of ODE based methods, at least in their basic linear form, can be quite succinct and this
form can readily capture the direction and type of regulation. These models can also be used di-
rectly to simulate treatment perturbations making them well suited to support the computa-
tional design of clinical interventions. Of the popular ODE-based methods surveyed in S1
Table, some like NIR [22], and the Inferelator [25] require additional prior information, for ex-
ample the use of gene knockout data, making them less suitable for human in-vivo studies.
Moving beyond a linear ODE formulation several variants of the nonlinear ODE S-system
model have been proposed such as TDSS [27] and NeRDS [28]. However, increases in the
number of model parameters leads to a corresponding increase in the data requirements [28].
Moreover this does not necessarily lead to an increase in fidelity as some of the results pre-
sented here will show. Hybrid methods combine the strengths of different methodologies. For
example, the algorithm proposed in [18] combines the scalability of information theoretic
method CLR and causal inference capability of ODE based method, the Inferelator. However,
with few exceptions [34], these methods require the expression time course be supplemented
with different types of data such as knockout and knockdown data that are not frequently avail-
able for human subjects [18, 32, 33].

In the present study, we focus on the inference of local directed regulatory networks from
time course data with properties similar to those that might be obtained from animal or
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human subjects under in vivo conditions. In keeping with this, we have attempted to assess al-
gorithms whose data requirements (data type and quantity) are in line with that typically avail-
able from in vivo time course studies and that also support the resolution required to simulate
treatment kinetics. Based on our survey of methods, we found ODE-based algorithms like
TSNI [24], TSNI integral [20] and the one proposed in Yeung et al. [21], most suitable. The al-
gorithm proposed in [21] and TSNI use similar techniques of Singular Value Decomposition
(SVD) and Principal Component Analysis (PCA) for dimensionality reduction. In contrast,
TSNI integral uses a forward stepwise regression technique to infer sparse directed networks.
Furthermore the conventional gradient formulation of the rate equation is re-written as finite
difference equations in TSNI integral to improve performance on noisy experimental data
[20]. The architecture of these methods, like most, is based on generic core components that in-
clude feature selection and parameter estimation steps. To further explore how performance
might be affected by design choices in these component parts we constructed and re-assembled
these simple generic building blocks de novo, applying two popular classes of feature selection
to a conventional linear ODE model namely the truncation of candidate terms or their projec-
tion onto composite constructs. Finally, we also assessed the performance of TD-ARACNE
[19] since the latter is reported to have circumvented the typically large data requirements as-
sociated with conventional information theoretic methods. Because there are no widely agreed
upon benchmark circuits in humans where the true circuit structure is known we used simulat-
ed data generated by a gene network simulator NetSim [61] to provide an equitable bench-
mark. This also made it possible to alter the underlying network size as well as sampling rate
and the number of time courses in each data set. To our knowledge this type of standardized
comparison focused on methods that are robust to the constraints of in vivo human studies
and that also offer sufficient temporal resolution for simulation-based treatment design has not
been conducted previously, especially not at the level of the component parts.

We found that all methods performed similarly on noise-free simulated data, with the ex-
ception of the information theoretic method TD-ARACNE, which typically exhibited a lower
median performance. In selecting ODE model terms, truncation was less tolerant of experi-
mental noise than projection-based approaches. Irrespective of noise levels, we found that all
methods were extremely affected by the reduction in network edge density obtained in larger
networks. In smaller simulated networks consisting of 5–10 nodes with edge densities similar
to typical biological networks (10–30%), values in excess of 0.40 were obtained for the F-score,
an aggregate measure summarizing precision and recall. To explore the broader applicability of
these results, we assessed the leading ODE-based methods in recovering the DREAM 3 in silico
10-node networks [48], the 5-node Yeast synthetic IRMA network [62] as well as a 9-node
human HeLa cell cycle network [30, 63]. Results were comparable to those obtained on NetSim
simulated networks of similar size and edge density. All methods were found to be more sensi-
tive to the number of time courses than to sample frequency. Based on the results of this simu-
lation study, at least 10 time course experiments, sampled at 10 time points, would be required
to infer a 10 node network with a median recall and median F score of 53%(±3%) and 0.39
(±0.04) respectively. In aggregating multiple experiments the most significant improvement in
performance was obtained by using the broken stick projection method on groups of 10 or
more time course profiles.

It would appear that inference of directed regulatory networks still faces challenges and that
less intrusive sampling techniques, i.e. higher frequency, and safer perturbation protocols may
be required if we are to infer regulatory networks that fully exploit the breadth of current multi-
plex surveys. It should be noted that the basic inference models examined in this work are not
novel, nor were they intended to be. Instead the analysis conducted here focused specifically on
how standard methods might be deployed under conditions typical of in vivo studies in human
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or animal subjects. Our results emphasize the value of aggregating networks identified from in-
dividual time courses and the stratification of subjects into groups. This work also highlighted
the importance of tuning the algorithm parameters using a priori simulation of artificial bio-
logical networks comparable in size and complexity. Indeed default parameter values do not
perform well across a broad range of conditions and even a simple reverse engineering model if
tuned correctly has the potential to perform as well as more sophisticated methods. For the
moment at least, both the data and the methods appear better suited to the study of individual
transcription factor sub-networks, as well as cytokine signaling and flow cytometric studies in
groups of experimental subjects.

Materials and Methods

Ethical approval
This study received ethics approval by the University of Alberta Health Research Ethics Board
(MS4_Pro00018859) and the Miami Veterans Affairs Medical Center Research and Develop-
ment Committee (file 4987.76)

Simulated experimental data
To reliably assess the performance of the selected methods we used simulated data such that
the true structure of the underlying regulatory network was known, and we could alter network
parameters in a controlled manner (network size, time points, noise levels, etc.). All reference
networks were created and their behavior simulated using a gene network simulator known as
NetSim [61]. NetSim enforces some of the known topological properties of biological regulato-
ry networks such as sparseness, scale-free distribution of connectivity, and clustering granulari-
ty independent of the number of nodes. Un-weighted directed networks were produced where
the sign of the edge (positive or negative) described the type of regulatory action (+1 for pro-
motion or -1 for inhibition). These network interactions were then translated into fuzzy logic
statements by NetSim. The target transition state for a given node at time t+1 is determined by
resolving the fuzzy logic statement describing the regulation of that node. A sigmoidal activa-
tion function is then used by NetSim to modulate the incremental transition from the node’s
current state in the direction of its target state. This incremental change in state is weighted by
a time constant capturing both synthesis and degradation dynamics. In all simulations the pa-
rameters describing node dynamics were sampled from Gaussian distributions with mean and
standard deviation as recommended by the authors. Similarly the initial states were assigned
randomly for all nodes at the beginning of each simulation run. Consistent with the current lit-
erature (e.g. [19]), we computed all performance metrics based on the direction (source to tar-
get) but not the type of interaction (promotion or inhibition). Reverse engineering algorithms
are commonly evaluated based on the recovery of regulatory networks using very similar or
even identical models as those used in the generation of simulation data. In this work we made
concerted efforts to avoid this; using standard ODE and probabilistic models to recover net-
works from data that was generated by logic-based simulation instead. We consider this to be a
more challenging task.

Selected Network Identification Methods
Rate Equation Models. A standard rate equation model is a popular formulation used as

the foundation for a broad group of contemporary network identification methods [21–24], in-
cluding that of Yeung et al. [21], Network Identification by multiple Regression (NIR) [22],
Mode-of-action by Network Identification (MNI) [64], Time Series Network Identification

Inferring Networks under Constraints Typical of In Vivo Studies

PLOS ONE | DOI:10.1371/journal.pone.0127364 May 18, 2015 5 / 27



(TSNI) [24], TSNI integral [20] and others. According to this model, the rate of change in
concentration of one gene/transcript/protein can be described through a linear system of ordi-
nary differential equations (ODEs) as a function of the current concentration of other genes/
transcripts/proteins as described in Eq 1, where ai,j is the parameter describing interaction be-
tween node i and j. More precisely, it represents the influence of node j on the rate of change of
expression of node i. A positive value of ai,j represents activation of node i by node j, negative
value represents inhibition and zero value represents no interaction between node j and i.

dxi
dt

¼ ai;1x1 þ ai;2x2þ Ð Kþ ai;nxn ð1Þ

Eq (1) can be rewritten in the matrix form (Eq 2). Here, X is an n x 1 vector and A is an n x
nmatrix containing the weight of all the edges of the network. This matrix has also been called
the adjacency matrix.

_XyðtÞ ¼ A � XðtÞ ð2Þ

Many methods including the popular time-series network identification (TSNI) method
proposed in [24] accommodate external perturbations u(t) to the system. For example, dose re-
sponse experiments provide a strong basis for the identification of system dynamics. In ac-
counting for external perturbations, Eq 2 will become,

_XyðtÞ ¼ A � XðtÞ þ B � uðtÞ ð3Þ

Here, B is similar in size to A and u(t) represents the external perturbation at time t.
While most ODE-based methods use the instantaneous derivative at time t, a recent exten-

sion called TSNI integral [20] uses an equivalent model integrated and rewritten as a finite dif-
ference equation (Eq 4) as a means of improving robustness in the presence of experimental
noise.

Ztf
0

_XyðtÞdt ¼ A

Ztf
0

XðtÞdt þ B

Ztf
0

UðtÞdt; f ¼ 1; 2;K;M ð4Þ

Whether based on the conventional differential equation or the equivalent finite difference
equation, the final form is that of a linear regression model where estimates for the values of
the unknown parameter sets A and B (Eq 3) are recovered from the experimental data.

In biological systems, the regressor terms in these equations are not expressed independent-
ly of one another but rather follow coordinated patterns. Traditional ordinary least squares es-
timation will generally perform poorly when correlated or collinear terms are used together as
these leading to an increase in the uncertainty in parameter estimation referred to as variance
inflation [65]. This is typically resolved by one of the two basic approaches namely truncation
and projection. The first of these consists in selecting subsets of the original regressors that are
minimally redundant. In this work we used a stepwise variable selection [66] method whereby
terms were evaluated sequentially based on their respective partial-F test values. Model terms
with a p (partial F)< 0.05 were selected for recruitment into the ODE regression model while
those currently in the model but showing a revised p (partial F)> 0.10 were pruned.

The second approach consists of projecting the original regressor variables onto a new set of
aggregate constructs that are mutually independent. These constructs or latent vectors consist
of weighted linear combinations of the original variables and are typically estimated using
a diagonal covariance matrix estimate produced by singular value decomposition (SVD) or
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principal component analysis (PCA) [67]. The most significant of these latent vectors (LV)
then serve as a basis for least square regression and the identification of the parameter set A.
While there exist as many LV as original variables, the bulk of the shared signal is typically re-
covered in the first few features. In this work we used an extension of standard PCA called
partial least squares (PLS) regression [68, 69] to identify the structure of the LVs. We then eval-
uated two methods for selecting the number of these features that should be retained, namely
the so-called broken stick method, a variant of Horn’s technique [70] for determining signifi-
cant decrease in the importance of the leading eigenvalues [71], and the Bartlett’s method [72]
which evaluates the trailing eigenvalues for equality. These and other methods are reviewed in
Jackson (1991b) [73] and more recently Peres-Neto et al., (2005) [74]. Finally, consistent with
the compatible literature, we also applied pre-processing of the data that included log transfor-
mation and z-score normalization. We also applied a first order hold interpolation model for
inferring values between sample points.

Parameter tuning of ODE based models. Both stepwise sequential selection and PLS pro-
jection methods were evaluated for identification of the conventional ODE model. The finite
difference formulation was evaluated as implemented in the TSNI integral method. The latter
uses stepwise feature selection in its estimation of the parameter set A. In addition, for this
method we used the final prediction error (TSNIF) with the default parameters values with the
exception of the parameter ‘restk’ which we tuned to obtain the maximum F score, a combined
measure of positive predictive value (PPV) and recall. The ‘restk’ parameter imposes sparseness
to the inferred network and therefore affects the F score directly. For more details on TSNI in-
tegral, we refer readers to [20]. TSNI integral is freely available at http://dibernardo.tigem.it/
softwares/time-series-network-identification-tsni-integral.

In order to assess permutations of the basic algorithmic components associated with the
conventional ODE formulation, we implemented these separately rather than use the specific
combinations encoded into existing packages. In these implementations we again tuned the al-
gorithm parameters to each problem scenario in an attempt to provide best achievable F score.
For example, in the case of stepwise variable selection the null probability threshold values for
inclusion and removal into the model (penter and premovel) were tuned. To mimic this in the case
of projection methods the variable influence on projection (VIP) [68] was used. Based on this
metric PLS regression terms were ranked according to the weight of their contribution to the
latent vectors capturing the most overall variability in the data. Typically a VIP>1.0 is consid-
ered significant; this threshold was optimized here for each scenario. Finally, in order to retain
only the most important edges the resulting networks were pruned on the basis of the quantile
rank of the edge weight. Here again the quantile threshold applied to the edge weight was
tuned for each scenario. This was done using a global optimization method, namely a con-
strained simulated annealing, to balance computational cost and thoroughness. All algorithms
were encoded in MatLab using the functions available in the Statistics Toolbox and the Global
Optimization Toolbox (The MathWorks, Inc., Natick, MA).

Information Theoretic Time-delay ARACNE (TD-ARACNE). TD-ARACNE [19] is an
extended version of the popular information-theoretic algorithm ARACNe (Algorithm for the
Reconstruction of Accurate Cellular Networks) [75] that also retrieves the statistical time de-
pendency between sequential gene expression profiles. Similar to ARACNe, the information
theoretic measure of Mutual Information (MI) is used to capture the dependency between two
molecular species or network nodes, with statistically independent nodes having a MI value of
0. The MI value between two nodes i and j, can be represented as described in Eq 5.

MIij ¼ Hi þ Hj � Hij ð5Þ

Inferring Networks under Constraints Typical of In Vivo Studies

PLOS ONE | DOI:10.1371/journal.pone.0127364 May 18, 2015 7 / 27

http://dibernardo.tigem.it/softwares/time-series-network-identification-tsni-integral
http://dibernardo.tigem.it/softwares/time-series-network-identification-tsni-integral


where Hi and Hj are the entropies of nodes i and j, respectively. Entropy H is defined as follows
where p(xi) is the probability that node i will assume state i = 1:n:

HðXÞ ¼
Xn

i¼1

pðxiÞlogðpðxiÞÞ ð6Þ

TD-ARACNE infers directed networks in three steps: 1) detection of the time point corre-
sponding to the initial change in expression for all individual nodes e.g genes, 2) network con-
struction based on pair-wise MI and 3) network pruning. The first step is meant to identify
possible regulator nodes or genes based on the sequence of activation. The initial change of ex-
pression (IcE) in a sequence of expression values for gene ga; ga

0, ga
1, . . . ga

t can be defined as
follows (Eq 7) where τup and τdown are two fold-change thresholds defining relative increase or
decrease in expression.

IcEðgaÞ ¼ arg jmin g0a
�
g
j

a
� tup or gja

�
g
0

a
� tdown

h i
ð7Þ

In the second step, TD-ARACNE uses bootstrapping to identify significant statistical depen-
dencies between the activation of gene a at time t and gene b at time t+Δt. This is subject to the
constraint of temporal precedence whereby gene ‘a’may only influence gene ‘b’ if IcE(ga)� IcE
(gb). In the last step TD-ARACNE uses an additional information theoretic measure Data
Processing Inequality (DPI) [76] to identify and remove indirect associations, first among syn-
chronously expressed nodes and in a second step across time points. TD-ARACNE is freely
available as part of the Bioconductor package and can be downloaded from http://www.
bioconductor.org/packages/2.12/bioc/html/TDARACNE.html or from http://bioinformatics.
biogem.it. For further details about TD-ARACNE, we refer readers to Zoppoli et al. [19]. In
our assessment, all user-adjustable parameters were set to the optimal values recommended by
the authors for a network of equivalent node degree.

Assessing Network Recovery
We assessed the performance of each selected method on the different sizes of networks, noise
levels and time points. We use standard statistical measures such as positive predictive value
(PPV), recall and F1 score to report the performance for each method. PPV describes the num-
ber of correctly identified connections as a fraction of all connections inferred, both correctly
(true positive, TP) and incorrectly identified (false positive, FP) (Eq 8). Recall is calculated as
the number of connections that were correctly recovered by the algorithm expressed as a frac-
tion of all connections present in the true simulated network, namely those that were recovered
(true positive, TP) as well as those that were missed (false negative, FN) (Eq 9).

PPV ¼ Truly inferred connections
Total inferred connections

¼ TP
TP þ FP

ð8Þ

Recall ¼ Truly inferred connections
Total no: of connections in true network

¼ TP
TP þ FN

ð9Þ

F1 score (F) is an aggregate measure combining PPV and recall. It is akin to the geometric
mean of PPV and recall and can be represented as follows:

F ¼ 2ðPPV � recallÞ
PPV þ recall

ð10Þ
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Results

Personalized Networks
Personalized medicine is directed at the identification of illness and intervention at the level of
a specific individual. While this is an attractive goal, several questions arise. For example, if we
wanted to recover a network from a single experiment for a given individual, how well would
we do on average in a diverse population? Moreover, how would the result change for the same
person from one day to the next?

Mapping individuals with a single time course experiment. To explore the effects of
person-to-person variability on network recovery we used NetSim to generate 20 sparse modu-
lar networks randomly, composed of 10 nodes each and with similar topological characteris-
tics. Each simulated 10-node network consisted of 10–20 interactions that translated into
median edge density of 15.6%. Edge density for a directed network of E edges and N nodes can
be calculated as E/ N(N-1). This number of nodes and edge density is consistent with the scale
found in synthetic biological networks that have been studied in vitro. For example, E.coli SOS
response network that is often used in the evaluation of reverse engineering methods consists
8–9 nodes [19, 24] and the edge density of cortico-cortical fiber tract of the mammalian brain
ranges between 10–30% [77]. We used each simulated network to generate a single time course
that was sampled at 10, 25 and 50 time points. Expression profiles were generated both with
and without 20% Gaussian noise allowing us to assess the effect of sampling frequency and ex-
perimental noise respectively on the performance of selected methods (S1 Fig). For noise-free
data all methods performed over a narrow range of median F scores (0.2–0.26) (S2 Table).
Nonetheless results of a two-way analysis of variance (ANOVA) presented in Table 1 show
that F score is significantly affected by the choice of method irrespective of noise (p� 0.001).
Though sampling frequency did not affect F scores significantly in the presence of 20% Gauss-
ian noise (p = 0.69) over this initial range of values, this factor did trend towards significance in
the absence of noise (p = 0.07). Indeed while the majority of methods appear relatively robust
(S1 Fig and S2 Table) the inclusion of noise produced a noticeable decrease in network recall
and corresponding significant decrease in the median F score in the case of the stepwise fit
method.

Both Bartlett’s and broken stick methods for the selection of latent features in the ODE pro-
jection model produced comparable results in terms of PPV, recall and F score values. On aver-
age, both of these methods could infer 70–95% of the true network (median recall). However,
this required that 5–7 connections be inferred for every true connection recovered, leading to

Table 1. Impact of sample size, experimental noise and algorithm selection on network recovery.

Effect Sum Sq. d.f. Median Sq. F Null p

0% Noise

Time points 0.0224 2 0.0112 2.66 0.07

Method 0.0772 4 0.0193 4.57 0.0014

Method x Time points 0.0313 8 0.0039 0.93 0.49

20% Noise

Time points 0.0046 2 0.0023 0.377 0.69

Method 0.1986 4 0.0497 8.055 0.00

Method x Time points 0.0494 8 0.0062 1.001 0.44

Results of a two-way ANOVA for the F score obtained by applying the 5 reverse engineering methods to single time course simulations of 20 different

sparse and modular 10-node biological networks sampled at 10, 25 and 50 time points, both with and without 20% experimental noise (S1 Fig)

doi:10.1371/journal.pone.0127364.t001

Inferring Networks under Constraints Typical of In Vivo Studies

PLOS ONE | DOI:10.1371/journal.pone.0127364 May 18, 2015 9 / 27



low median PPV (S2 Table). Slightly better PPV values were obtained with the stepwise fit to
the conventional ODE however in the presence of noise this method could only infer 15–30%
of the true network leading to lower F scores. The finite equation based TSNI integral provided
equivalent or slightly better median PPV but with a loss of approximately 5–30% in coverage
of the true network (median recall) resulting median F scores comparable to those obtained
with the projection techniques. The information theoretic method TD-ARACNE produced the
sparsest estimates of all selected methods. TD-ARACNE was able to infer one true connection
out of every 4–6 inferred connections i.e. 18–25% PPV. However, this improvement in PPV
cost most of the reference network unrecovered (S2 Table). Also, only minimal effects of noise
were observed on PPV, recall and F score at any of the three sampling frequencies for this
method.

Variations in time course from the same individual. In addition to person-to-person
variability we may also expect a slightly different response from the same person on any given
day. To explore the consistency of recovery for a specific network from any single experiment
we randomly generated a reference network of 10 nodes consisting of 19 interactions (i.e. 21%
edge density) with modular topology using NetSim. We then used this fixed reference network
to simulate 20 different expression time courses each initiated at random conditions. These
were once again sampled at 10, 25 or 50 time points respectively in the presence and absence of
20% noise. Similar trends in performance were observed when using the different methods for
the recovery of a single reference network as was observed across the different networks (data
not shown). Improved F scores were observed at higher edge density but these remained below
0.40 even in the absence of noise.

Scaling to larger networks. Most of the proposed network inference methods have been
found to work better on small sub-networks of 5–10 nodes whether they be rate equation-
based such as TSNI integral or information theoretic like TD-ARACNE [19, 20]. However,
Vinh et al. (2012) [78] questioned how representative the recovery statistics might be on such
small networks. To explore this further, we used the above-mentioned methods to recover net-
works including those composed of a larger number of nodes than that found in the synthetic
networks typically reported. We constructed random reference networks composed of 5,10,15,
20, 30 and 50 nodes and with decreasing order of edge densities of 40, 21, 11, 8, 5 and 3% re-
spectively, all with the same properties of sparseness and modularity. Each network was used
to generate 20 simulated time course experiments, sampled at 50 time points, where 20%
Gaussian noise was added to mimic experimental noise (S2 Fig and S3 Table).

Overall a significant drop in median F-score was observed with increasing number of nodes
or decreasing edge density for all the methods (Table 2, p<0.01). Rate equation models, both
ODE from projection-based regression and difference equation formulations (i.e. TSNI integral)
performed better than TD-ARACNE and step-wise truncation on sparse networks constructed
with up to 15 nodes i.e. with 11–40% edge densities. However for networks with edge densities

Table 2. Impact of network edge density and algorithm selection on network recovery.

Effect Sum Sq. d.f. Median Sq. F Null p

Method 0.662 4 0.165 61.14 0.000

Node degree/Edge density 9.312 5 1.862 688.44 0.000

Method x Node degree 0.598 20 0.029 11.06 0.000

Two-way ANOVA of F score values corresponding to the recovery of random reference biological networks composed of 5,10,15, 20, 30 and 50 nodes

with 40, 21,11, 8, 5 and 3% edge densities respectively, all with the similar properties. Each network was used to generate 20 simulated time course

experiments, sampled at 50 time points, where 20% Gaussian noise was added mimic experimental noise (S2 Fig, S2 Table)

doi:10.1371/journal.pone.0127364.t002
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of less than 10% or more than 15 nodes, no noticeable difference in performance was observed
among methods (S2 Fig). All methods delivered an F score below 0.10 in their recovery of a
50-node sparse modular network with 3% edge density. In the case of rate equation models
identified with projection methods (i.e. ODE-Bartlett and ODE-broken stick) and TSNI integral,
the loss in performance was driven mainly by a loss in PPV. This was not the case for the re-
maining methods, stepwise regression and TD-ARACNe, where both PPV and recall were ad-
versely affected by increasing node degree and decreasing edge density (S3 Table).

Using repeated time course experiments
As experimental subjects are typically stratified into more homogenous phenotypic groups for
study, it may be more relevant to the current realm of clinical research to examine the effects of
noise when aggregating several time course experiments in some way. Instead of considering
the median performance in recovering the same underlying network at the level of individual
time courses we next considered how combining these separate experiments might allow us to
make a stronger statement about the group. This could be compared to the difference between
narrow patient sub-typing and personalized medicine.

Combining networks from the same individual. First, we explored how repeating a chal-
lenge multiple times on the same subject might bring us closer to our eventual goal of deliver-
ing personalized medicine. We constructed a 10-node reference network with 19 interactions
i.e. with 21% edge density and used it to generate 20 time course experiments, each sampled
with 50 time points. Next, we added 20% Gaussian noise similar to the previous cases discussed
above. We then applied a simple voting scheme to aggregate the networks inferred from each
individual time course. A quorum rule was applied to each element across the 20-adjacency ar-
rays. A specific element was conserved in the final consensus array if it was identified as signifi-
cant in certain minimum number of time course experiments. For example if an edge was
present more frequently than a certain threshold, say 12 times across the 20 adjacency matrices,
then that edge would be considered as present in the underlying network shared by the
grouped experiments. The threshold frequency of occurrence for the selection of edges was de-
termined by optimization on the basis of maximum F score achievable. Typically, a threshold
of greater than 50% occurrence was sufficient to deliver stable solutions in inferring a given
edge. Because of its higher sensitivity to noise we omitted the stepwise truncation-based ap-
proach from this analysis. TD-ARACNE was included despite achieving a poor median recall
on single time course experiments to provide a basis for comparison with an information
theoretic approach.

In order to examine the effect of group size we repeated our analysis with each selected
method on groups of 5, 10, 15 and 20 time course experiments respectively, each sampled at
50 time points (S4 Table). As might be expected the performance of these methods improved
when inferring the networks from a group of time courses. Though TSNI integral (S4 Table)
was the least responsive when increasing the number of time courses from 1 to 20 trajectories,
projection-based approaches overall produced noticeably better F-scores than did TD-
ARACNE. With the latter the optimal threshold values for inclusion were so low that the ag-
gregated consensus network approximated the set union of all individually inferred networks.
In other words an edge was accepted into the aggregate network if it was present in any one
of individual networks. Interestingly, TD-ARACNE continued to show an increasing trend
in F-score while the other methods achieved a peak performance at group sizes of 10 or
20 trajectories.

F-score is a composite measure and the improvement brought about by aggregation can be
better visualized using an example network. In Fig 1 we present a simulated 10-node network
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with 19 connections (21% edge density). A group of 15 time course experiments with 50 time
points each were simulated using NetSim. Fig 1A and 1C show one of the 15 inferred networks
resembling the median performance of TD-ARACNE and broken stick respectively whereas,
Fig 1B and 1D show the consensus networks obtained after the aggregation of 15 inferred net-
works. In the case of TD-ARACNE, aggregation of networks increases the number of predicted
edges whereas this same operation reduced the number of edges predicted in consensus by the
broken stick method. At the level of the individual network in Fig 1A, TD-ARACNE predicted
very sparse network of 12 connections and predicted 3 out of 19 true connections resulting in
median PPV, recall and F score values of 25%, 16% and 0.19 respectively. This performance
improved on aggregation of 15 inferred networks where 9 of the 19 true connections were in-
ferred correctly; increasing recall from 16% to 47% (Fig 1B). PPV also increased from 25 to
29%, yielding an aggregate network F score of 0.32. However, the threshold occurrence for the
inclusion of an edge in the consensus network was very low i.e. 3 events. In other words, select-
ed edges in the aggregated network were the ones that were inferred in 3 or more networks out
of 15 inferred networks. In comparison inference with broken stick achieved median recall of
84% on individual networks i.e. on average 16 out of the 19 true connections could be inferred

Fig 1. Recovery of an example 10-node network. (A) Median inference by TD-ARACNE using single time course, (B) best possible inference by
TD-ARACNE using a group of 15 simulated time courses for the same network, (C) Median inference by broken stick using single time course and (D) best
possible inference by broken stick using a group of 15 simulated time courses for the same network.

doi:10.1371/journal.pone.0127364.g001
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from a single time course experiment with 50 time points (Fig 1C). Unfortunately in order to
predict these 16 true connections (recall = 84%) 65 false positive connections were inferred
(grey colored), leading to a PPV of 20%. When aggregating across a group of 15 experiments,
the broken stick method inferred a consensus network of 14 connections, 8 of which were pres-
ent in the true network (Fig 1D). This important reduction in false positive predictions trans-
lated into a PPV of 57%. Though some loss in recall (42%) was incurred, the result was
nonetheless a net gain in median F score (F = 0.48 vs 0.32). In assessing these performance
metrics it is important to remember that we considered only direction of the edges, as is the
norm in current literature.

Describing illness sub-groups by aggregating networks across individuals. To verify
how robust these results might be across different networks of the same size we simulated
groups of 1, 5,10,15 and 20 time courses, sampled at 50 time points from10 different networks
each comprised of 10 nodes with edge densities ranging from 0.10–0.20. These simulated time
courses were then analyzed using both projection methods and TSNI integral (Fig 2). Despite
being reasonably robust to noise, TD-ARACNE typically lagged projection based methods and
TSNI integral in performance (S4 Table and Fig 1). For this reason, we omitted TD-ARACNE
from further analysis. Median PPV, recall and F score for each group were calculated along
with the standard error. As expected, the greater the number of time courses in a group of di-
verse individuals, better the performance of the method. However these improvements once
again begin to taper off beyond 10–15 time courses. The F score could be improved by a factor
of ~1.5 over that of a single time course by using 10 experiments with the broken stick model
and 15 experiments for Bartlett’s model and TSNI integral. This improvement in F score for
the broken stick method was driven by an initial increase in median PPV at the expense of re-
call. Similar but less dramatic trends were found for TSNI integral. In contrast, recall values for
the Bartlett method recovered and trended positively for group sizes above 10 time courses (Fig
2). Once again while the median performance of TSNI integral was slightly better on single
time course experiments, the broken stick projection method delivered equivalent or slightly
better performance at all other group sizes (5–20) when sampling 50 time points (Fig 2). A
two-way ANOVA of F-score values from grouped data confirmed the significance of this dif-
ference in performance between methods (p = 0.008) (Table 3). While the choice of group size
also produced a significant affect on F score (p = 0.000), the combined effect of method and

Fig 2. Median performance calculated across subsets from 10 different 10-node simulated networks recovered using (A) Broken stick (B)
Bartlett’s and (C) TSNI integral methods applied to groups of time courses . Each network was used to generate groups of 1, 5, 10, 15 and 20 simulated
time courses each sampled at 50 time points. All simulations included 20% experimental noise.

doi:10.1371/journal.pone.0127364.g002
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group size did not (Table 3). Further analysis revealed that the benefit of increasing group size
dissipated quickly and that there was no significant effect (p = 0.40) on F score values for
groups of 10 and more time courses. However even at these larger group sizes the choice of
method (p = 0.03) continued to be a significant factor (not shown).

Sampling for group inference. Network recovery in the previous sections was based on
the availability of 50 time points. However, in actual in vivo studies the collection of samples at
multiple time points is a significant challenge from the perspective of subject well being and
cost. To explore the minimum number of time points that might be required by each method,
we simulated groups of 1,5,10,15 and 20 time courses sampled at 5, 10 and 50 time points. We
found that the broken stick model was less sensitive to the number of time points than the Bart-
lett and TSNI models. While the former produced the highest F scores when 10 and 50 samples
were drawn, this improvement was only noticeable when a group of more than 10 time courses
was used (Fig 3). In contrast, drawing 50 samples was uniformly better when using the Bartlett
method almost regardless of group size. In the case of TSNI integral, the use of 10 samples was
sufficient to produce comparable results, 5 samples being inadequate for all group sizes. These
preliminary results suggest that while similarly affected by group size, the broken stick and
TSNI integral methods may be fairly tolerant of lower sample frequency. The Bartlett method
on the other hand would require the largest number of samples.

Table 3. Impact of time course aggregation into subject groups.

Effect Sum Sq. d.f. Median Sq. F Null p

Method 0.0726 2 0.0363 4.96 0.0083

Group size 0.3306 4 0.083 11.3 0.0000

Method x Group size 0.0245 8 0.003 0.42 0.91

Two way ANOVA of F score values corresponding to the recovery of 10 different networks of 10 nodes with similar properties of sparseness and

modularity and with edge densities similar to those of biological networks (10–20%) using groups of 1, 5, 10, 15 and 20 time courses. Each time course

was simulated at 50 time points and 20% Gaussian noise was added to mimic experimental noise

doi:10.1371/journal.pone.0127364.t003

Fig 3. Median F scores calculated on 10 different simulated 10-node networks recovered using (A) Broken stick (B) Bartlett’s and (C) TSNI integral
methods on group of expression profiles . Each network was used to generate groups of 1, 5, 10, 15 and 20 simulated time courses each sampled at 5
(blue), 10 (red) and 50 (black) time points. All simulations included 20% experimental noise.

doi:10.1371/journal.pone.0127364.g003
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General applicability of the results
Generalization of findings to the DREAM challenge. In order to facilitate a broader

comparison of these findings we applied this same methodology to the in silico benchmark
dataset provided under the DREAM3 sub-challenge for a set of 10-node networks. This dataset
was generated using an open source Java tool, GeneNetWeaver [79], and consisted overall of 5
simulated network structures with corresponding steady state and time series data. A modular
topology was produced based on patterns of tightly connected gene clusters extracted from ex-
perimentally validated regulatory networks. More precisely, 2 out of 5 network structures were
based on gene modules extracted from in vivo networks of E.coli [80] and the other 3 on mod-
ules from the S.cerevisiae in vivo network [12]. A thermodynamic quantitative model of gene
regulation that includes both transcription and translation [81] was applied to these network
structures to generate dynamic and static simulated experimental data [79].

In keeping with the focus of our current analysis, we used only the dynamic perturbation
data. Specifically, we applied both projection-based feature selection techniques along with
TSNI integral on the 4 time series provided in DREAM3 for the E.coli2 network of 15 interac-
tions and compared their performance with the median performance obtained using NetSim
data for networks with a comparable number of interactions (median interactions = 14). We
found that all the selected methods performed similarly in terms of PPV, recall and F score on
networks of comparable topology simulated with either NetSim or GeneNetWeaver (S5 Table)
suggesting that both simulators are designed to capture the similar network properties.

Further, we compared the performance of these methods with that of Yip et al. (2010) [26],
the winning team in the DREAM3 challenge. The latter inferred the underlying networks by
combining the inferences obtained from a null hypothesis noise model applied to static knock-
out/ knock down data, as well as linear and nonlinear ODE models applied to perturbation
time course data. Seven different batches were formed consisting of a consensus of different
model inferences. We focused first on the results obtained by Yip et al. (2010) [26] using only
the time course data to support the consensus of a similar linear ODE model with a more so-
phisticated nonlinear model (Batch 1 Table 6 of Yip et al., 2010). We then compared the results
of assessed ODE models identified from time course perturbation data with that reported in
Yip et al. (2010) [26] for the null hypothesis noise model identified from static knockout/
knockdown data (Batch 1 Table 3 of Yip et al., 2010).

When applied to the DREAM3 perturbation time series data, the basic feature selection
techniques assessed here based on a simple linear ODE model (broken stick, Bartlett’s and
TSNI integral) performed better than the combination of linear and nonlinear ODE models
used in Yip et al. (2010) [26] for all networks (Table 4). This being said all ODE models, includ-
ing those studied in this work, were outpaced by identification based exclusively on homozy-
gous deletion data when inferring sparse networks i.e. networks with 10–15 interactions.
However, Bartlett’s and broken stick method of feature selection from time course data ap-
proached the performance of the noise model on slightly denser but still sparse networks i.e.
Yeast 2 (25 interactions) and Yeast 3 (22 interactions) respectively (Table 4). F scores for the
inference of the networks with 10, 15, 22 and 25 interactions were improved with increasing
edge density for Bartlett’s (0.22, 0.28, 0.34 and 0.42) and broken stick method (0.19, 0.27, 0.3
and 0.38) respectively whereas that of the noise model fell (Table 4).

Marbach et al. 2010 [49] further confirmed that the homozygous deletion data was the most
informative of all types of data used in DREAM 3 challenge. However, knockdown/knockout
data is not easily accessible in human subjects. In further agreement to the findings of Yip et al.
2010 [26] and Marbach et al. 2010 [49], we also found that complex nonlinear models and/
or complex adjustments to linear models did not add significant value to the inference of
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regulatory interactions and that much simpler more computationally efficient models performed
as well when feature selection parameters were optimized based on a priori simulations.

Recovery of yeast synthetic gene network
As an additional verification of the applicability of the simulated networks used here, we again
applied our simple model to data obtained from a synthetic biological network. Cantone et al.
(2009) [62] constructed a synthetic network of five genes in the simple eukaryotic organism
Saccharomyces cerevisiae for In vivo Reverse-engineering andModeling Assessment (IRMA).
This synthetic network includes a variety of regulatory interactions, thus capturing the behav-
ior of larger eukaryotic gene networks on a smaller scale. The network was also designed to be
negligibly affected by endogenous genes, and to respond to galactose, which activates transcrip-
tion of its genes.

Table 4. Recovering a 10-node network from a DREAM-3 data set.

E.coli1 (11 interactions)

Method Predicted Correct PPV Recall F score

Yip et. al. Noise model 11 7 0.64 0.64 0.64

Yip et al. linear/nonlinear model 6 1 0.16 0.09 0.12

Broken stick 70 9 0.13 0.82 0.22

Bartlett's method 77 10 0.13 0.91 0.23

TSNI integral 34 4 0.11 0.36 0.17

E.coli2 (15 interactions)

Yip et. al. Noise model 16 12 0.75 0.8 0.77

Yip et al. linear/nonlinear model 5 1 0.2 0.07 0.1

Broken stick 73 12 0.16 0.8 0.27

Bartlett's method 82 14 0.17 0.9 0.28

TSNI integral 31 5 0.16 0.33 0.22

Yeast 1(10 interactions)

Yip et. al. Noise model 11 9 0.82 0.9 0.86

Yip et al. linear/nonlinear model 5 0 0 0 0

Broken stick 72 8 0.11 0.8 0.19

Bartlett's method 83 10 0.12 1 0.22

TSNI integral 26 3 0.11 0.25 0.15

Yeast 2(25 interactions)

Yip et. al. Noise model 13 9 0.69 0.36 0.47

Yip et al. linear/nonlinear model 5 1 0.2 0.04 0.07

Broken stick 71 19 0.26 0.74 0.38

Bartlett's method 83 23 0.28 0.9 0.42

TSNI integral 29 9 0.33 0.36 0.34

Yeast 3(22 interactions)

Yip et. al. Noise model 12 8 0.67 0.36 0.47

Yip et al. linear/nonlinear model 5 4 0.8 0.18 0.29

Broken stick 70 14 0.2 0.61 0.3

Bartlett's method 80 18 0.22 0.8 0.34

TSNI integral 31 7 0.23 0.32 0.27

Comparison of the performance obtained in inferring a 10-node network using the generic methods presented here versus the best performing methods in

the DREAM 3 sub-challenge, namely the basic noise model and the combined linear/ nonlinear model.

doi:10.1371/journal.pone.0127364.t004
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We used the switch ‘on’ and switch ‘off’ time series data generated for the IRMA network
and inferred the underlying regulatory interactions using projection-based feature selection
and TSNI integral. Since the underlying structure of the IRMA network was known a priori we
tuned the parameters accordingly for the algorithms in question to optimize network identifi-
cation based on data averaged across of 5 time courses. All three methods performed compara-
bly in terms of F score on both datasets, with TSNI integral and the Bartlett’s method being the
best performers on the switch ‘on’ and switch ‘off’ time series data respectively (Table 5). With
the exception of TSNI integral on switch off data, all methods were found to achieve better
PPV than a random reconstruction on this synthetic network. Although ODE-based TSNI, the
predecessor of TSNI integral was reported by Cantone et al. (2009) [62] to achieve better per-
formance on switch ‘on’ time series (F score = 0.80). However Bartlett’s method (0.67) outper-
formed TSNI (0.60) on switch ‘off’ time series [62]. Note that the performance of these
methods in recovering the 5-node IRMA network appears better than that obtained in the case
of 5-node NetSim networks with similar edge density. This is due to different optimization ob-
jectives. In the case of the NetSim networks the tuning parameters were optimized to produce
maximal median F score on a group of 20 time course profiles whereas the parameter values
used in recovering the IRMA network were identified by maximizing F score on a single target
time course profile.

Recovery of human gene regulatory network in HeLa cell culture
In addition to the DREAM3 and yeast IRMA data, we also used microarray time course data
sampled to characterize periodically expressed transcripts during cell division human HeLa
cell line cultures [82]. This data is available at http://genome-www.stanford.edu/Human-
CellCycle/HeLa. Sambo et al. 2008 extracted the expression of 9 genes with known and docu-
mented interactions in the BIOGRID database (www.thebiogrid.org) sampled at 47 time points
from this dataset in their assessment of the reverse engineering method CNET [63]. This same
time course dataset has since been used for the assessment of several inference methods [30,
31]. It is important to note that the BIOGRID database is updated as new biological knowledge
of these interactions becomes available. For example, the network obtained from BIOGRID in
[30] is an updated version from the one used in [63] incorporating new interactions. We as-
sessed projection-based feature selection techniques and TSNI integral on the BIOGRID net-
works used in [63] and [30] respectively. Although this data provides an opportunity to further
assess our simulation results in reconstructing a human gene regulatory network it is important
to remember that this remains data sampled from an in vitro cell culture system and hence
may be sampled at a much higher rate typically available in vivo from human subjects.

In our assessment, both projection-based techniques namely, broken stick (F scores = 0.40
and 0.56) and Bartlett’s method (0.47 and 0.60) not only outperform TSNI integral (0.17 and
0.26) in the reconstruction of 9-gene HeLa cell cycle network but also match the performance
of methods used in [63] and [30] respectively (Fig 4; Table 6). These results re-affirm that even
simple models, if tuned a priori with simulated data, have the potential to perform as well as
more complex methods.

Discussion
The main purpose of this study was to examine the core design features of some of the basic
classes of methods currently available for the reverse engineering of biological networks. In
particular, we attempted to gauge their applicability to data collected under experimental con-
straints typical of in vivo studies where the range of allowable perturbations (e.g. virtual ab-
sence of knockout data), the sample frequency and the number of subjects are all significantly
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limited. Using the two alternative types of parameter estimation commonly applied in the iden-
tification of ODE models we assessed the recovery of known networks from simulated pertur-
bation time course data produced by the NetSim platform. Importantly, this was done under a
range of sampling frequencies and group sample sizes, key parameters in the design of such

Table 5. Reconstruction of 5-node synthetic Yeast IRMA network.

Switch on data Switch off data

Method PPV Recall F score PPV Recall F score

Broken stick 0.40(0.5) 0.67(0.67) 0.50(0.57) 0.67(0.67) 0.33(0.33) 0.44(0.44)

Bartlett 0.60(0.75) 0.50(0.5) 0.60(0.55) 0.56(0.56) 0.83(0.83) 0.67(0.67)

TSNI integral 0.40(0.63) 0.83(0.83) 0.53(0.71) 0.29(0.44) 0.67(0.67) 0.40(0.53)

TSNI in Cantone et al. - (1.00) - (0.67) - (0.80) - (0.75) - (0.50) - (0.60)

Broken stick, Bartlett’s and TSNI integral were evaluated on the dynamic data of Yeast 5 node synthetic IRMA network against TSNI performance

reported in Cantone et al. 2009 [62]. Values in parentheses show the performance when self-regulation is not considered in the inference as in DREAM

3 challenge.

doi:10.1371/journal.pone.0127364.t005

Fig 4. Reconstruction of human HeLa cell cycle network. Directed graphs recovered using (i) Broken stick (ii) Bartlett’s feature selection and (iii) TSNI
integral methods applied to the BIOGRID reference network reported in Sambo et al. 2008 and Lozano et al. 2009 (A and B). Solid lines represent correctly
inferred interactions (true positives) where as dash lines represent incorrectly inferred connections (False positives).

doi:10.1371/journal.pone.0127364.g004

Inferring Networks under Constraints Typical of In Vivo Studies

PLOS ONE | DOI:10.1371/journal.pone.0127364 May 18, 2015 18 / 27



experiments. The conventional gradient-based ODE form was also compared to the equivalent
time-lagged difference equation (TSNI integral). In addition, the performance of TD-AR-
ACNE, a recently reported information theoretic method adapted for use with time course ex-
periments was also assessed. Finally, the general applicability of our simulation results was
explored by reconstructing in silico networks using data from the DREAM3 challenge, from
the synthetic IRMA network as well as from 9-gene HeLa cell cycle network. In our analysis,
none of the methods evaluated performed to the standards of their reported average perfor-
mance on single simulated time courses created using the logic-based NetSim. It is important
to note that in many cases the edge count of the simulated networks was not reported. In addi-
tion many of these methods were typically assessed under the more ideal condition where sim-
ulated time course data was generated using models similar to those encoded in the reverse
engineering algorithm. For example, in evaluating the probabilistic method TD-ARACNe Zop-
poli et al. (2010) used a random network to define a set of statistical dependencies then trans-
lated these into stochastic differential equations to simulate the actual time course data.
Likewise the authors of TSNI integral used very similar differential equation models to generate
both the test data and to perform the reverse engineering (Bansal and DiBernardo 2007).
Though this is an important departure from real-world conditions it nonetheless offers a possi-
ble upper bound for the performance achievable under near ideal conditions. Despite such fa-
vorable conditions these reverse engineering methods barely achieve an F score of 0.4 in
recovering a 10-node network from 50 time points sampled with 10% noise (based on Table 1
in Bansal and Di Beranardo 2007 and Table 2 in Zoppoli et al. 2010). Based on this body of lit-
erature an F score of 0.40 might be considered a near-ideal performance for these methods in
recovering networks with small to moderate node degree using single time course data alone.

Here we purposely generated data using a simulation method based on a fuzzy logic frame-
work that differed significantly from the ODE model structure used for reverse engineering.
Though still artificial, we consider this situation more realistic. Understandably under these
conditions the recovery performance based on single time courses consisted in a median F
score of 0.30 or less. Rather than focus on the recovery of networks in individual subjects, we
used the commonly accepted practice in human studies of stratifying the cohorts into groups
of subjects. In our analysis, projection methods applied to the standard ODE as well as the

Table 6. Reconstruction of 9-gene BIOGRID network related to Human HeLa cell cycle.

Network PPV Recall F score

BioGrid network in Sambo et al. 2008
C-NET (Sambo et al. 2008) 0.36 0.44 0.40

Broken stick method 0.36 0.44 0.40

Bartlett's method 0.50 0.44 0.47

TSNI Integral 0.10 0.44 0.17

BioGrid network in Lozano et al. 2009

GGGM (Lozano et al. 2009) 0.50 0.72 0.59

Broken stick method 0.63 0.50 0.56

Bartlett's method 0.65 0.55 0.60

TSNI Integral 0.22 0.30 0.26

Recovery of 9-gene BIOGRID network involved in human HeLa cell cycle by applying broken stick and

Bartlett’s feature selection methods compared to TSNI integral. These two versions of BIOGRID network

were used to assess proposed methods in Sambo et al. 2008 and Lozano et al. 2009 respectively.

Reported performance of these methods is also included.

doi:10.1371/journal.pone.0127364.t006
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difference equation model (TSNI integral) were successful in recovering typical biological net-
works having edge densities of 10–30%, producing a median F score of 0.40 or more when used
on groups of time courses. This translated into a predictive precision (PPV) in the range of
~30–40% with recall values between ~50–60% for simulated data from sparsely connected arti-
ficial networks designed to exhibit key topological properties similar to those expected in real
biological networks. Interestingly this is consistent with values obtained from in vivo regulatory
sub-networks surveyed in human immune cells. In recent work, Wang et al. (2009) [83] ap-
plied MINDy, an extension of the information theoretic method ARACNe, to the genome-
wide identification of modulators of the MYC transcription factor using 254 gene expression
sets previously generated for several studies of normal and tumor-related B-cell phenotypes. A
literature-based assessment using the Ingenuity software (Ingenuity Systems) revealed that of
the 83 reported direct and indirect modulators of MYC expressed in B cells and present on the
array, 29 had been recovered correctly, a recall of 35%. Furthermore, 17 of the 35 transcription
factors inferred as MYC modulators were either literature-validated (6 or 17%) or had enriched
binding sites, leading to an overall upper bound on precision of 48%. It is important to remem-
ber that in contrast to these local regulatory modules we intentionally focused in this work on
the recovery of networks exhibiting the same edge densities as those observed in broader bio-
logical networks, namely 10–30% [77]. We considered this a more challenging task than the re-
covery of more densely connected sub-networks that are typically used for benchmarking.
Indeed, our results show that edge density and performance of the selected network recovery
methods are directly proportional with higher values of edge density leading to better perfor-
mance. The recovery of sparse networks is also highly relevant. Several noteworthy biological
networks are known to have low edge density, for example this can be as low as 3.85% between
neurons in C. elegans, and global protein-protein interaction networks in human show edge
densities of ~0.4%. Our results suggest that in such sparse networks one might expect reason-
able recovery only in the better-connected component sub-networks where edge density is
maintained above 10%. Examples of such networks include cytokine signaling between im-
mune cells (60% edge density), cytokine signaling with tissue (40%) and neural networks of cat
brain (30% edge density) [84].

For the sparser networks studied here, we found that ODE-based methods generally per-
formed better than TD-ARACNE under conditions that approximated in vivo time-course
studies, namely when data collection was restricted to smaller subject groups and infrequent
sampling. Among the ODE based methods, stepwise feature selection was less tolerant of ex-
perimental noise. Projection-based methods typically faired better as they aggregate terms into
composite features, creating an averaging effect that attenuates noise. Unfortunately as we re-
port in this work, projection methods tend to produce far less parsimonious models and a high
rate of false positive calls. This is only compounded further in real biological networks where
indirect associations may be introduced by unobserved moderators [85, 86]. Inferring networks
from a set of expression time course profiles improved the performance of all selected methods.
Accordingly, the recovery of personalized networks would require the use of multiple time
course experiments applied to the same subject. This is a less than desirable protocol for several
reasons. A much more attainable goal consists of grouping patients suffering from the same
variant and/or stage of a disease and that share other clinical parameters, such as age, BMI, sex,
ethnicity etc. Our analysis suggests that at least 10 time courses would be required for the infer-
ence of a representative network for a group of such individuals. Sample frequency is another
important design consideration. We found the more parsimonious of the projection ap-
proaches i.e. broken stick and TSNI performed consistently when at least 10 time points were
used. Our results also suggested that inclusion of additional time course experiments could not
correct for insufficient longitudinal sampling.
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Nor was there much to be gained on this type of perturbation data by increasing the com-
plexity of the model. Marbach et al., 2010 [49] conducted a comparative analysis of results
from all DREAM3 participating teams, some of which used sophisticated non-linear and com-
putationally intensive methods. Though accuracies in excess of 0.60 were produced on small
networks (10 nodes) they found that these results were heavily dependent on the type of data
available. Indeed, the top five teams all integrated steady-state knockout and knock down data
with time-series perturbation data, leveraging the complimentary nature of these data sources.
In fact even though both linear and non-linear differential equations were used by the winning
team of Yip et al. (2010) [26], the best performance was based on a simple statistical noise
model applied solely to steady-state homozygous knockout data. The use of more complex
nonlinear ODE forms contributed little if anything towards improving the identification of the
underlying networks [49]. Indeed, in single networks of 10 nodes we obtained comparable or
better results using a linear ODE model alone on time course perturbation data. Though clearly
a very important contributor to the accurate recovery of biological networks, the availability of
large-scale deletion libraries in higher mammalian species is currently limited though ongoing
efforts focused on the mouse genome are making inroads [87]. Even if such libraries were avail-
able for Homo sapiens, their analysis supports the broad identification of direct regulatory
structure but does not support the identification of co-regulatory motifs nor does it support the
identification of regulatory kinetics supporting pharmacokinetic studies. The latter will require
kinetic experiments over a range of frequencies as well as dose response methodology [88, 89].

Though preliminary and rooted in a set of basic assumptions regarding the properties of the
data, these findings offer an approximate set of guidelines for the design of pilot studies direct-
ed at the inference of in vivo network regulatory kinetics as well as some approximate bounds
on what we may realistically expect from simple in vivo perturbation studies. Our results and
those of others suggest that even in the favorable case of more densely connected sub-networks
such as those surrounding transcription factors, the reverse engineering algorithms and the
current generation of confirmatory assays may have reached an upper bound in terms of their
ability to recover the underlying regulatory network from experimental time course data. This
points to the larger issue of information content in the data collected, which is limited by the
breadth of experimental conditions that can be safely deployed in human subjects. Despite ad-
vances in the reverse engineering algorithms, more informative data sets will be required if we
are to realize the potential of personalized network medicine. Algorithms continue to be devel-
oped that design new incremental sets of experiments in order to iteratively refine the recovery
of the network model [90]. However the data requirements and the extent of the perturbations
involved make these more suitable to in vitro studies for the moment. The translation of such
methods to human studies will rely on the development of less invasive sampling techniques as
well as the development of perturbation techniques that interrogate the physiological system at
amplitudes comparable to that of background noise i.e. at scales that are biochemically relevant
but not physiologically disruptive [91, 92]. These are typically based on methods adapted from
the basic control theory of closed loop identification and are still in their infancy in biology
and medicine. In the end, the ultimate bottleneck at the present time may well be our limited
ability to generate informative data rather than the design of any particular reverse engineering
algorithm.

Supporting Information
S1 Fig. Median performance across a range of networks. 20 different networks of 10 nodes
each were used to generate a single time course profile sampled at 10, 25 and 50 time points.
Box plots on the left show the median and inter-quartile range of F scores for selected methods
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on the datasets in the absence of noise. Box plots on the right show the range of F scores for
each method on the datasets with 20% random noise added.
(TIFF)

S2 Fig. Effect of network scale and edge density on the performance of different methods.
For each network scale of node degree between 5 and 50 nodes, a single reference network was
created. From each network 20 simulated time courses were obtained using different initial
conditions and sampled at 50 time points. All time courses included 20% Gaussian noise. F
scores were obtained based on the network recovered from each simulated time course and me-
dian values plotted against node scale and with respective edge density.
(TIFF)

S1 File. Data for NetSim 10-node time course simulations. Simulated time course data from
20 random NetSim generated 10-node networks, each sampled at 10, 25 and 50 time points
with 0% and 20% experimental noise as used in Table 1, S1 Fig and S1 Table. In all data arrays
rows represent time point observations and columns represent node state variables.
(MAT)

S2 File. Data for 20 NetSim simulated time courses initialized at random conditions. Simu-
lated time course data for 5, 10, 15, 20, 30 and 50-node NetSim networks all sampled at 50 time
points with 20% experimental noise as used in Table 2, S2 Fig and S2 Table. In all data arrays
rows represent time point observations and columns represent node state variables.
(MAT)

S3 File. Data used to demonstrate sample rate and group size effects. Simulated data for 10
different NetSim-generated 10-node networks. Each network was used to generate groups of 5,
10, 15 and 20 simulated time courses each sampled at 5, 10 and 50 time points were selected as
reported in Fig 2, Table 3 and Fig 3. All simulations included 20% experimental noise. In all
data arrays rows represent time point observations and columns represent node state variables.
(MAT)

S1 Table. Review of methods. Review of methods for the reverse engineering of directed net-
works from time course data published over the past 10 years with the inclusion of select older
references describing seminal methods that remain popular.
(XLSX)

S2 Table. Summary performance statistics on single time course.Median (a) and mean (b)
performance of all selected methods in recovering 20 different 10-node simulated networks,
each from a single time course sampled at 10, 25 and 50 time points (S1 Fig).
(DOCX)

S3 Table. Impact of increasing network scale.Median (a) and mean (b) performance of all se-
lected methods across different expression profiles for random networks of increasing node de-
gree. Each network was used to generate 20 simulated time course experiments, sampled at 50
time points, where 20% Gaussian noise was added mimic experimental noise (S2 Fig).
(DOCX)

S4 Table. Impact of grouping single time courses. Improvement in performance of selected
methods by inferring a consensus network for a group of time series experimental data. The
reference network consists 10 nodes with 19 edges i.e. (21% edge density). Each experimental
time series have 50 time points. A consensus threshold to achieve best possible F score value
was used to infer consensus network.
(DOCX)
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S5 Table. Comparing the performance of methods on NetSim and DREAM3 data.Median
PPV, recall and F score obtained by applying broken stick, Bartlett’s and TSNI integral meth-
ods on comparable networks of DREAM 3 challenge (E.coli2 with 15 interactions) and NetSim
(median value of14 interactions). A set of 20 different networks consisting of 12–17 interac-
tions were simulated by NetSim whereas, 4 time series provided in DREAM 3 challenge were
used for E.Coli2 network. Values in parentheses show the performance when self-regulation is
not considered.
(DOCX)
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