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Abstract

Background: Recent studies have shown that human ferritin can be used as a reporter of gene expression for magnetic
resonance imaging (MRI). Bacteria also encode three classes of ferritin-type molecules with iron accumulation properties.

Methods and Findings: Here, we investigated whether these bacterial ferritins can also be used as MRI reporter genes and
which of the bacterial ferritins is the most suitable reporter. Bacterial ferritins were overexpressed in probiotic E. coli Nissle
1917. Cultures of these bacteria were analyzed and those generating highest MRI contrast were further investigated in
tumor bearing mice. Among members of three classes of bacterial ferritin tested, bacterioferritin showed the most promise
as a reporter gene. Although all three proteins accumulated similar amounts of iron when overexpressed individually,
bacterioferritin showed the highest contrast change. By site-directed mutagenesis we also show that the heme iron, a
unique part of the bacterioferritin molecule, is not critical for MRI contrast change. Tumor-specific induction of
bacterioferritin-expression in colonized tumors resulted in contrast changes within the bacteria-colonized tumors.

Conclusions: Our data suggest that colonization and gene expression by live vectors expressing bacterioferritin can be
monitored by MRI due to contrast changes.
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Introduction

Magnetic Resonance Imaging (MRI) has revolutionized in vivo

imaging due to its non-invasive nature, high spatial resolution and

extraordinary tissue contrast abilities.

The ability to non-invasively monitor gene expression in vivo in a

longitudinal fashion further expands the utility of MRI as a tool in

both basic research and ultimately in the clinical setting. For

example, the development of reporter gene technologies that

provide a readily measurable signal of transcriptional activity

enable non-destructive gene expression studies during develop-

mental or disease processes.

Many bacterial strains tested show preferential replication in

solid tumors. Using those replication capabilities to develop cancer

therapies and/or diagnostics has become an area of growing

interest in recent years (see [1,2,3,4,5] for reviews). Among these

are anaerobic bacteria like Bifidobacteria or Clostridia, whose spores

germinate in the anoxic/hypoxic regions of tumor tissues prior to

replication and show promising results in tumor therapy. In

addition to these strict anaerobes, facultative anaerobic bacteria

have also been shown to replicate inside solid tumors. Most of the

bacteria used in these studies were derived from pathogenic

bacteria. In several studies, we and others recently showed that

probiotic E. coli Nissle 1917 (EcN) is also able to colonize and

exclusively replicate in tumor tissue [6,7,8,9]. In contrast to most

tumor-targeting bacteria, probiotic bacteria do not replicate in

organs (e.g., spleen and liver), perhaps due to the lack of virulence

factors in this strain and lead to ratios exceeding 106:1 of bacteria

in the tumor compared to bacteria in specific organs.

The specificity of tumor-colonizing bacteria makes them suitable

as simultaneous therapeutic and diagnostic agents for cancer.

Therapeutic effects have already been demonstrated using Clostridia
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and Salmonella strains [10,11]. Moreover, when such bacteria are

engineered to express therapeutic genes (e.g. toxins, prodrug

converting enzymes, therapeutic siRNAs, immunmodulatory mol-

ecules) they can elicit enhanced therapeutic effects (reviewed in [12]).

Therefore, for future clinical studies, it will be crucial to reliably

detect and monitor the presence of bacteria in tumors (and in deep

tissues) without needing to excise the respective tissues. So far,

non-invasive optical fluorescence and/or low light imaging

[6,13,14,15], as well as SPECT or PET imaging [16,17,18] have

been used to visualize the presence and distribution of bacteria

within tumor-bearing mice. The current optical imaging modal-

ities are, however, limited by light scattering and light extinction in

tissues and are, therefore, mainly limited to small animal imaging

or near-surface detection. In contrast, radiotracer imaging (e.g.,

PET) is not limited by tissue depth but shows poor spatial and

anatomical resolution. MRI, on the other hand, has the potential

to provide much better resolution, but is generally less sensitive.

Ferritins are ubiquitous iron storage proteins found in species

ranging from microbes to man [19,20]. Their function is to

maintain a cellular reservoir of iron in a non-toxic, bioavailable

form, and to protect the host cell from oxygen and its free radical

products [21,22]. This is achieved via a ferroxidase function that

converts Fe2+ to Fe3+, the paramagnetic form of iron responsible

for T2 contrast modification in MRI. In MRI transverse relaxation

(T2) is shortened by the presence of iron and its reciprocal, known

as R2 is directly proportional to iron concentration. Expression of

human H-chain ferritin can be used to generate contrast in T2

weighted MRI in vivo [23,24,25,26,27,28,29,30,31], causing a local

reduction in the signal intensity. The iron loading of human

ferritin, which has been intensively studied at different magnetic

field strengths, results in changes to the longitudinal (R1 = 1/T1)

and transverse (R2 = 1/T2) relaxation rates of water [32,33]. It has

been shown that human ferritin creates a unique linear

dependence of R2 on the magnetic field [34,35].

In bacteria, three types of ferritin-like proteins are recognized:

the archetypal ferritins (e.g., ftn), the heme-containing bacter-

ioferritins (e.g., bfr), and the smaller Dps-type ferritins (e.g., fri of

Listeria). All of these peptides are capable of forming endogenous

nanoparticles consisting of a protein shell surrounding a hydrated

iron oxide core of up to 4,500 iron atoms [22].

Three-dimensional structures have been deduced for human H-

chain, horse spleen, rat liver, Escherichia coli, and bullfrog ferritins,

as well as for the bacterioferritin (Bfr) of E. coli, demonstrating high

homology between the different ferritin-like proteins [36,37,38,39,

40]. The ferroxidase activity of mammalian ferritins is due to an

active site (the ferroxidase center) in the middle of the four-helix

bundle of each H-chain subunit where a dinuclear iron species is

thought to form [36,41]. Key amino acid residues in the

ferroxidase centers of ferritins are conserved in bacterioferritins,

suggesting that Bfr possesses a ferroxidase center similar to that of

H-chain ferritins [42,43]. This suggestion has been confirmed by

studies on iron uptake by wild-type Bfr and site-directed mutants

of Bfr [44], and is also supported by the presence of a dinuclear

metal-binding site at the ferroxidase center in the Bfr crystal

structure [40].

The presence of at least seven iron uptake systems in E. coli

Nissle 1917 [45,46] makes this strain an attractive candidate for

iron acquisition. Here, we investigate the feasibility of using three

different bacterial ferritins as reporter genes in EcN for magnetic

resonance imaging in animal studies. We demonstrate that tumors

colonized by EcN can be visualized and detected based on

enhanced iron accumulation due to bacterial amplification, iron

uptake, and iron storage upon exogenous induction using L-

arabinose as a non-toxic inducer of gene expression.

Results

Iron accumulation in EcN over-expressing ferritin-like
proteins

We evalutated different bacterial ferritin-like proteins as MRI

reporter genes. We, therefore, overexpressed the genes for three

different ferritins (E. coli ferritin-ftn; E. coli bacterioferritin-bfr; and

L. monocytogenes non-heme iron-binding protein-fri) in E. coli Nissle

1917. To determine whether expression of additional iron storage

proteins alone leads to increased iron accumulation in the

bacteria, we chose to overexpress L. monocytognes fri instead of the

structurally related E. coli dps. In contrast to Dps, Fri does not have

DNA-binding capacity and, therefore, will not directly affect

expression of other genes. Expression of GFP served as a negative

control. Each of these genes was initially placed under control of

the constitutive Bacillus megaterium xylA promoter (PxylA), which

resulted in elevated expression of the target genes in EcN (Fig. 1A).

The over-expression of the heme-containing Bfr resulted in a color

change of the bacteria (to red) and the presence of the iron storage

proteins was confirmed by Coomassie-staining of SDS-PAGE gels.

Even though the amount of Bfr reaches up to 35% of the total

bacterial protein content, the effect on the bacterial growth

(evaluated by optical density measurements at 600 nm) of the GFP

and Bfr expressing strain was negligible (Fig. 1B).

Overnight growth of ferritin-expressing bacteria in iron-supple-

mented brain heart infusion (BHI) broth resulted in augmented

iron accumulation in EcN cells. This was shown by quantitative

inductively coupled plasma mass spectrometry (ICP-MS) analysis

performed on bacterial lysates treated with Proteinase K to release

iron atoms from the iron-storage proteins (Fig. 2A). The results

indicate that increased iron accumulation occured upon overex-

pression of all the ferritin-like proteins but that the level of iron

accumulation was dependent on the type of ferritin-like protein

used. Cultures of Bfr-expressing EcN cells showed a red coloration

due to high amounts of heme-containing Bfr (Fig. 1) and stored

similar amounts of iron when compared to Ftn- (p = 0.21), but more

than Fri- (p,0.01) or GFP-control bacteria (p,0.01). Ftn- and Fri-

expressing EcN cells showed 5.9- and 3.6-fold more iron storage

than control bacteria (Fig. 2A, grey bars, p,0.01).

Quantitative analysis of Coomassie-stained protein gels enabled

calculation of the number of ferritin molecules and indirectly

facilitated calculation of the average number of iron atoms per

molecule of ferritin, using the ICP-MS data. Ftn was found to load

the highest number of iron atoms (approx. 75 per holomer),

followed by Bfr (approx. 44 iron atoms per holomer). Fri bound

the lowest amount of iron atoms (approx. 10 per holomer).

Effects of iron-storage protein expression levels on R2
relaxation rates

In addition to the iron determination experiments, samples were

prepared for R2 relaxation measurements. Bacteria were harvested

from overnight cultures grown in BHI supplemented with ferrous

citrate, washed with phosphate-buffered saline (PBS) and re-

suspended in a 1:1 mix of PBS and OCT embedding medium to

prevent bacteria from sedimenting during T2 relaxation rate

measurements. Samples were analyzed in a 7T small animal MRI

scanner using a spin echo sequence and R2 relaxation rates were

determined (Fig. 2A derived from values obtained from images in

Fig. 2B). All ferritin overexpressing strains showed a significant

increase in transverse relaxation compared to control cultures

(p,0.01). Bfr overexpression resulted in the highest negative

contrast, followed by Ftn and then Fri (p#0.01 for all possible

comparisons). As Bfr overexpressing EcN accumulated most iron

Bacterial MRI Reporters
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and also showed highest impact on R2 relaxation (see below), all

mouse experiments were performed with bfr-encoding EcN.

Enhanced R2 relaxation by Bfr
When diluting Bfr expressing bacteria in wild-type EcN (1:1 and

1:3 mix, respectively), the R2 relaxation decreased accordingly

(R2-value: 0.9759) as shown in Figure S1. The concentration of

bacteria in the agarose gels corresponded to a 40-fold concentrat-

ed over-night culture of 2236109 cfu/ml resulting in about

161011 cfu/ml. Therefore, 161011 cfu of the 100% pure Bfr-

expressing EcN culture resulted in a T2 relaxation rate of approx.

30, 50% in a T2 relaxation rate of approx. 17 etc.

Furthermore, we found that Bfr had a 50% greater effect upon

R2 relaxation than Ftn, even though iron levels in the samples were

almost equivalent. Therefore, we decided to investigate whether Bfr

was the most suitable reporter, due to the presence of heme iron on

the Bfr molecule. Ferritin-like proteins isolated from bacteria may

be free of heme or may contain heme, with bacterioferritins

containing up to 12 heme molecules per holomer [21].

To determine the effect of the Bfr hemes on R2 relaxivity, we

generated Bfr mutants in which the heme binding methionine

residue (Met52) [40] was replaced using site-directed mutagenesis

with either a leucine (Bfr M52L) or a histidine (Bfr M52H). These

mutations resulted in a Bfr lacking heme groups [44]. Further-

more, an additional point mutation L19P was generated to disrupt

the first alpha helix of Bfr, resulting in Bfr-expressing strains that

did not accumulate additional iron (Fig. 2A).

The lack of heme binding capacity in Bfr M52L and Bfr M52H

was readily observed when the bacteria were grown in iron-

supplemented BHI overnight. While the Bfr-overexpressing strain

showed the typical red color of heme, the heme-negative mutants

appeared like wild-type EcN. Nevertheless, the iron uptake and

storage was not negatively affected and R2 relaxation rates were

not reduced in the absence of heme in Bfr M52L and Bfr M52H

(Fig. 2C). However, effects on R2 relaxation and iron storage were

abrogated when the helix-disrupting L19P mutation was intro-

duced (p,0.01) (Fig. 2A).

Induction of bacterioferritin in murine tumors colonized
by EcN

We recently reported the use of L-arabinose as an exogenous

inducer for gene expression in tumor-colonizing EcN [6]. EcN cells

carrying a plasmid with the luxABCDE-operon of Photorhabdus

luminescens, under control of the PBAD-promoter, were injected into

tumor-bearing mice. Light emission from EcN-colonized tumors was

observed for about 24 h after systemic administration of L-arabinose,

while no light was detected in the absence of L-arabinose. Here, we

demonstrated that Bfr-carrying EcN colonize tumors equally well

compared to wild-type EcN (data not shown) and used the same L-

arabinose dependent promoter system for induction of bfr expression,

which was the most promising as a MRI reporter gene. MRI was

performed in a 7T small animal scanner (echo time (TE)/repetition

time (TR): 30/4000 ms) before injection and after 1 h, and 24 h

following intraperitoneal (IP) injection of L-arabinose. One hour after

L-arabinose administration, the tumors revealed non-specific

darkening around the tumor vasculature by MRI, compared to

images of the same animals taken before injection of the inducer (data

not shown). This darkening was probably due to osmotic effects

caused by the inducer compound. Twenty four hours after inducer

injection, the non-specific ‘L-arabinose-effect’ was no longer

apparent. Further, a significant contrast increase was observed in

tumors colonized with bacteria carrying plasmid DNA with the bfr

gene under control of the inducible PBAD promoter (see Figure S2 for

a 3D-reconstruction). This high contrast zone, lining the necrotic

center of the tumor, was not observed in non-colonized tumors or in

tumors colonized with a control EcN strain expressing GFP rather

than Bfr (Fig. 3A). Furthermore, the dark zone strongly resembled

the bacterial distribution within the tumor, as verified by independent

immunofluorescent staining of 100 mm sections of another tumor

which also was colonized with the bfr encoding EcN (Fig. 3B).

Enhanced R2 relaxation in EcN-colonized tumors after bfr
induction

We also measured the changes on R2 relaxation 24 h after

induction of bfr expression in colonized tumors (Fig. 4). R2

relaxation maps were obtained from images of mice that were

scanned with constant TR (4000 ms) but varying TE (10, 20, 40

and 80 ms). While no significant changes were observed in control

tumors, the R2 relaxation around the necrotic region of tumors

colonized with the bfr-encoding E. coli Nissle 1917 increased

Figure 1. Expression of various bacterial ferritin-like proteins
in EcN. A) The over-expression of heme containing Bfr results in a color
change of the bacteria (upper picture, left tube). The overexpression of
Bfr (18.4 kDa), Fri (18.0 kDa), and Ftn (19.3 kDa) was confirmed by
Coomassie-stained SDS-PAGE gels. B) Only minimal effects on bacterial
growth were observed when wild-type (wt) EcN or GFP- and bfr-
encoding EcN (gfp + bfr) were grown in BHI. Standard deviation (,2%)
of measured values is not shown.
doi:10.1371/journal.pone.0025409.g001

Bacterial MRI Reporters

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e25409



Figure 3. Effects of induced Bfr expression on T2 weighted imaging in vivo. A) Tumor-bearing mice were injected with PBS (no bacteria), an
EcN control strain (EcN control), or EcN expressing Bfr upon induction with L-arabinose (EcN PBAD-bfr). Mice were imaged just before, and 24 h after
injection of L-arabionse. Only in the Bfr overproducing EcN were distinct dark regions visible 24 h after the inducer was injected. B) Enlarged EcN
PBAD-bfr colonized tumor before and 24 h after L-arabinose injection. Arrows point to the dark rim around the necrotic center of the tumor
corresponding to immunofluorescent staining of EcN (red) in sections of (a different) tumor (right panels). Actin was stained green.
doi:10.1371/journal.pone.0025409.g003

Figure 2. Effects of ferritin-like proteins on iron uptake and R2 relaxation. A) Iron uptake and the effects on R2 relaxation were determined.
Data represent mean (n = 3) plus standard deviation of one representative experiment. Expression of Bfr resulted in the highest iron uptake and the
most obvious effects on R2 relaxation. B) Bacterial suspensions were put into wells of agarose-gels and images were obtained using a TR of 4000 ms
with varying TEs to determine the R2 relaxation values in A). C) Expression of non-heme containing Bfr did not result in decreased R2 relaxation
(p.0.05).
doi:10.1371/journal.pone.0025409.g002

Bacterial MRI Reporters
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dramatically and was comparable to R2 relaxation rates obtained

in overnight cultures (Fig. 2A and Fig. 1).

In the tumors the concentration of bacteria was about

1226109 cfu/g. In the tumor sections (e.g., Fig. 3B), the bacteria

were concentrated in a small area within the tumor mass (about

5% of the total tumor area in Fig. 3B resulting in a local

concentration of approx. 361010 cfu/g). Furthermore, the bacte-

rial concentration within the bacteria-colonized area was not

evenly distributed. Therefore, the concentration of bacteria

reached similar levels as those used in the agarose gels

(161011 cfu/ml) which explains the similar R2-values.

Discussion

The iron storage properties of bacterial ferritin-like proteins have

been known for years, yet no detailed investigations have been

carried out to ascertain whether they are suitable as MRI reporter

genes in vivo. Recent studies successfully tested the potential of

magnetotactic bacteria (Magnetospirillum magneticum) or one of their

genes (magA) for the detection of tumors [47,48], as well as the human

H-chain ferritin as a reporters for non-invasive MRI of mammalian

cells in different applications [23,24,25,26,27,28,29,30,31]. Here we

report, for the first time, the evaluation of bacterial ferritin-like genes

(namely bfr, fri, and ftn) as MRI reporter genes expressed in

prokaryotic organisms. We showed that overexpression of bacterial

ferritin-like proteins, in general, can be used to significantly affect

transverse relaxation in MRI.

When overexpressing the iron-storage proteins, we determined

that the iron content of the bacteria significantly increased (up to

6-fold in Bfr-expressing EcN in culture), which is consistent with

previous reports on their role as iron-storage proteins. Also, the

average number of iron atoms we found per holomer were

comparable to earlier reports [49], although we did detect more

iron ions in Ftn (75, in contrast to 5–20). These findings might be

due to the different growth conditions used or to the fact that more

iron storage proteins were expressed in this system (about 35% and

16% of total protein were Bfr and Ftn, respectively, while

previously 3–18% and 11–14% were reported [49]).

The most striking structural difference between bacterioferritin

and the other ferritin-like proteins is the presence of heme, with up

to 12 molecules bound to one 24-mer of Bfr. However, we found

that heme-free Bfr-mutants still exhibited the same effects on R2

relaxation rates as wild-type Bfr. Therefore, the presence of heme in

Bfr alone is not responsible for the enhanced effect of Bfr on R2

relaxation, compared to other ferritin-like reporters. Differences in

the intrinsic mechanisms of iron packaging within the protein shell,

even at similar iron concentrations, or the activity of the respective

ferroxidase center could account for these findings. The differences

in iron load might also explain the effects on R2 relaxation, since

changes in iron contents within human ferritin was previously

reported to affect longitudinal and transverse relaxation rates [33].

Differences in the structure (e.g. Bfr and Ftn are built of 24-mers,

while Fri complexes are made out of 12 monomers) or in the

maximal iron uptake capacity (Bfr and Ftn: 2000–3000, and Dps-

like 12-mers like Fri: 500 Fe molecules/holomer [50]) did not seem

to have marked influence on the generated contrast. Nevertheless,

these studies showed that Bfr has the strongest effect on R2

relaxation under the experimental conditions used.

Induction of Bfr in EcN-colonized tumors provided unequivocal

evidence for the utility of the bfr gene as a reporter. In the tumor

regions colonized by EcN, we saw significant effects on contrast in

T2-weighted images 24 h after administration of the inducer L-

arabinose. The contrast change very strongly resembled the

characteristic distribution of E. coli in tumors that could be observed

in Fig. 3B as well as in previous publications by us and others

[6,8,51,52]. The yet unexplained L-arabinose effect early after

administration, maybe due to osmotic effects resulting in unspecific

darkening in some regions of the tumor. Furthermore, unspecific

darkening was observed in the central region of some tumors (e.g.,

in the control tumors in Fig. 3) but these do not correlate with the

bacterial distribution and are also visible in non-colonized tumors.

Despite those effects, we are convinced that expression of Bfr offers

great utility in MRI-based visualization of bacterial infections, as

well as for colonization of tumors in deep tissues. Alternatively,

constitutive overexpression of Bfr could provide a marker protein to

track the movement of bacteria in complex systems by MRI, for

example, in non-invasively monitoring bacterial distribution within

tissues. Moreover, tumor-colonizing bacteria expressing bfr or

similar genes under control of externally activated promoters could

be used to efficiently locate tumors and metastases by comparing

images generated pre- and post- gene induction and during cancer

therapy. Also, it is likely that the described approach will be

applicable to the study of intercranial as well as peripheral tumors

Figure 4. R2 relaxation maps of tumors obtained before and after induction of protein expression. Tumor-bearing mice were injected
with control bacteria (left) or PBAD-bfr encoding EcN (right). Upper panels: Before, and 24 h after injection of L-arabinose, mice were imaged in a 7T
small animal scanner (TE/TR 30/4000 ms:). Lower panels: In addition, images at TE: 10, 20, 40, and 80 ms (TR: 4000 ms) were obtained and used to
generate R2 relaxation maps of tumors, which were overlayed on top of the images shown in the upper panels.
doi:10.1371/journal.pone.0025409.g004
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given that L-arabinose can readily cross the blood brain barrier

[53,54]. The L-arabinose uptake in the brain has been shown to be

competitively inhibited by glucose, suggesting that the transfer to the

brain is mediated by glucose transporters as has been reported for

similar transporters from erythrocytes and adipose tissue [55,56]. In

contrast to the recently described PET-imaging approach taking

advantage of the endogenously expressed E. coli thymidine-kinase

[18], the described system lacks the potential to quantify the number

of bacteria within the tumor tissue and is dependent on the

overexpression of bacterioferritin. Therefore, it cannot be used for

imaging natural infections. However, the spatial resolution using

MRI is much better when compared to PET. In addition, the L-

arabinose inducible system allows imaging before and after contrast

change which is not possible with the described PET-procedure.

Therefore, both systems do have their advantages and limitations

thus making a combination of both modalities desirable.

The use of ferritin-like molecules as reporter proteins may affect

the iron homeostasis in the host organism. High levels of ferritin in

the cytoplasm could potentially reduce the amount of free Fe2+

ions and, therefore, derepress iron uptake systems. In bacteria, this

could result in the induction of siderophore biosynthesis and other

iron-scavenging systems such as heme and transferrin-binding

proteins. However, in most bacteria, when inside a mammalian

host, the low free-iron availability acts as a signal to upregulate

these systems. Moreover, any augmentation of iron uptake is likely

to result in increased iron storage, which could increase the

sensitivity of the Bfr reporter system. In these studies, we observed

only minor differences in bacterial growth in cultures (Fig. 1B) and

no differences in colonization of tumors between EcN and its

derivatives (data not shown), which express either GFP alone or

Bfr and GFP together. This indicates that Bfr expression has no

detrimental effect on the bacterial physiology.

In conclusion, we propose that the use of bacterioferritin

expression is not limited to tumor detection using bacteria alone.

Although not experimentally tested, we think that bfr, carried by

oncolytic viruses, would also enable the clinical monitoring of

therapeutic efficacy of these biological therapies. However, the

iron uptake into the virus infected cells must be guaranteed (e.g.,

by co-expression of a transferrin receptor). The expression of

bacterioferritin in pathogenic organisms could also help to analyze

and characterize infection processes in deep tissues of live (larger)

animals in real time with high spatial resolution. Furthermore, the

bacterioferritin-expressing live vectors could be equipped with

additional reporter genes (e.g., luciferases or PET reporter genes),

enabling multi-modality imaging approaches that combine the

high spatial resolution of MRI with the high sensitivity of optical

and/or PET imaging.

Materials and Methods

Ethics statement
All animal experiments were carried out in accordance with

protocols approved by the Institutional Animal Care and Use

Committee (IACUC) of Explora BIOLABS, located in San Diego

Science Center (San Diego, USA) (protocol number: EB08-003),

the IACUC of the University of California, San Diego (San Diego,

USA) (protocol numbers: R06041 and R08335), and/or the

‘‘Regierung von Unterfranken’’ (Würzburg, Germany) (protocol

number AZ 55.2-2531.01-17/08).

Bacterial strains and plasmids
Plasmid-cured E. coli Nissle 1917 (EcN) was transformed with

plasmids indicated in Table 1. Primer sequences for PCRs used to

construct the plasmids can be found in Table S1.

For construction of pBR322DEST(inv), the ccdB gene for negative

selection and the chloramphenicol resistance gene cmR for counter-

selection, flanked by attR3 and attR4 recombination sites, were PCR

amplified from pDESTR4-R3 using ccdBf ClaI and ccdBr ClaI

Table 1. Plasmids used in this study.

Name Relevant Properties Reference or Source

pENTR-PBAD ParaBAD, araC, kanR, attL4, attR1 (6)

pENTR-PxylA PxylA, kanR, attL4, attR1 T. Perehinec

pDONR221 attP1, attP2, kanR, ccdB, cmR Invitrogen

pENTR221-GFP GFP, kanR, attL1, attL2 T. Perehinec

pENTR-bfr bfr, kanR, attL1, attL2 This work

pENTR-bfrM52L bfrM52L, kanR, attL1, attL2 This work

pENTR-bfrM52H bfrM52H, kanR, attL1, attL2 This work

pENTR-bfrL19P bfrL19P, kanR, attL1, attL2 This work

pENTR-ftn ftn, kanR, attL1, attL2 This work

pENTR-fri fri, kanR, attL1, attL2 This work

pENTR-term rrnBT1T2, kanR, attL3, attR2 (6)

pENTR2RP3-GFP GFP, kanR, attL3, attR2 T. Perehinec

pBR322DEST rop, ccdB, cmR, ampR
, tetR, attR3, attR4 (6)

pBR322DESTinv rop, ccdB, cmR, ampR
, tetR, attR4, attR3 This work

pBR322DESTinv-PxylA-GFP-term PxylA, GFP, rrnBT1T2, rop, ampR
, tetR This work

pBR322DESTinv-PxylA-bfr-GFP PxylA, bfr, GFP, rop, ampR
, tetR This work

pBR322DESTinv-PxylA-ftn-GFP PxylA, ftn, GFP, rop, ampR
, tetR This work

pBR322DESTinv-PxylA-fri-GFP PxylA, fri, GFP, rop, ampR
, tetR This work

pBR322DEST-PBAD-bfr-GFP PBAD, bfr, GFP, rop, ampR
, tetR This work

doi:10.1371/journal.pone.0025409.t001
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primers, digested with ClaI, ligated with ClaI restricted and calf

intestinal alkaline phosphatase treated pBR322. The mixture was

then transformed into E. coli ccdB Survival T1R. Orientation of the

insert was confirmed by PstI digest and agarose gel electrophoresis.

In pBR322DEST, attR4 is closer to the b-Lactamase of pBR322

and, in pBR322DESTinv, the attR3 site is closer.

The ferritin entry-clone plasmids pENTR-bfr, pENTR-ftn, and

pENTR-fri were constructed as follows: Each of the three open

reading frames was PCR-amplified with the appropriate attB1F

and attB2R primers, using genomic DNA (EcN for bfr and ftn; L.

monocytogenes for fri) as a template, followed by a BP-recombination

into pDONR221, according to the instructions of the manufac-

turer (Invitrogen, Carlsbad, USA). For construction of plasmids

pENTR-bfrM52L, pENTR-bfrM52H, and pENTR-bfrL19P, point

mutations were inserted using recombinant PCR. The 59-end of

the gene was PCR-amplified using pENTR-bfr as a template and

primers bfr-attB1F and bfr-M52L-rev, bfr-M52H-rev, or bfr-

L19P-rev while the 39-end was amplified using bfr-attB2R and bfr-

M52L-for, bfr-M52H-for, or bfr-L19P-for. In a second PCR, the

59- and 39-end products were mixed and bfr-attB1F and attB2R

were used as primers. The resulting PCR fragment was used for a

BP-recombination into pDONR221.

The plasmids pBR322DEST-PBAD-bfr-GFP, pBR322DESTinv-

PxylA-bfr-GFP, pBR322DESTinv-PxylA-ftn-GFP, and pBR322DES-

Tinv-PxylA-fri-GFP were obtained after 3-way LR-recombination

performed as described in the Multisite GatewayH three vector

construction kit protocol of the manufacturer (Invitrogen,

Carlsbad, USA). We chose to use pBR322 as plasmid backbone

as this plasmid was the most stable plasmid that we tested in EcN

both in culture as well as in tumor bearing mice (data not shown).

NMR and MRI imaging of E. coli cells and E. coli colonized
tumors

Twenty ml of overnight cultures of EcN strains grown in BHI

supplemented with 150 mM ferrous citrate were washed twice and

resuspended in 20 ml PBS. During the second wash, the amount

of bacteria per ml was adjusted so that each suspension had

identical optical densities at 600 nm.

The pellet derived from this suspension was resuspended in

500 ml PBS/OCT (1:1 mixture), loaded into wells of an agarose

gel (5% agarose in degassed water), and overlayed with 5%

agarose in water. The gel was then imaged in a 7T small animal

MRI machine (GE Medical Systems, Brooksville, Florida, USA) to

calculate the T2 changes in the gels (TE/TR 10–160/4000 ms,

Matrix 2566128 slice thickness 0.3 mm, 3 averages). Alternative-

ly, 250 ml of the suspension was added to 0.3 ml PCR-tubes and

analyzed (multi spin echo sequence with TE/TR 20–320/

1400 ms, slice thickness 2 mm, 2 averages, matrix 2566256,

and field of view 60640 mm2) in a 7T small animal scanner

(Bruker, Ettlingen, Germany).

For tumor models, BALB/c mice were obtained from Harlan

(Indianapolis, Indiana, or Borchen, Germany). Five- to six-week-old

female mice were injected s.c. with 3.36104 murine 4T1 mammary

cancer cells (ATCC: CRL-2539) re-suspended in 100 ml PBS. The

authentication of cells were analyzed by microscopy and growth

in immunocompetent BALB/c mice. For colonization studies,

bacteria were grown in 5 ml of LB-broth containing 100 mg ml21

ampicillin to an optical density of 0.4 at 600 nm (approx.

26108 CFU/ml). The cells were washed twice in PBS, then diluted

to 16107 CFU ml21. One hundred ml aliquots of the suspension

were injected into the lateral tail veins of 4T1 tumor-bearing

BALB/c mice 14 days after cell implantation. MRI of the tumor-

bearing mice began 3 days after inoculation with bacteria.

Following pre-induction scans, 200 ml of 25% L-arabinose was

administered i.p. Mice were scanned 1 h and 24 h after arabinose

administration. The mice were imaged under 1.5% Isoflurane

anesthesia in a 7T small animal MRI machine. (GE Medical

Systems MW) (TE/TR 10–80/4000 ms, Matrix 2566128, slice

thickness 0.3 mm, Bandwidth 31.25, 3 averages.) T2 changes in the

tumors were calculated using an in-house Matlab script and the T2

values were pseudocolored. Anatomical images were also acquired

for the overlay using the same matrix. Imaging parameters: TE/TR

30/4000 ms, 6 averages.

Localization of bacteria in colonized tumors by 3D image
reconstruction

The data obtained from MRI were processed using ImageJ

1.37v and Amira V3.0. The tumor regions were manually

segmented in each individual axial slice. The segmented data

were used to generate three-dimensional surfaces. To visualize

changes in the iron content within the tumor, the dark regions,

presumably corresponding to the iron-loaded bacteria, were

segmented automatically. Within each slice, all signal intensities

from 0 to 40% of the mean grey level in the water phantom next to

the tumor were selected. The water phantom was used as

reference to eliminate variations in the signal intensities caused by

the inhomogeneity of the coil. This approach was verified by

comparing the mean grey level of the lightest region of the tumor

with the mean grey level of the water phantom, showing that the

ratios stay constant (data not shown). Low signal intensities at

the tumor surface were omitted, since the bacteria are located at

the border of necrotic and living tumor tissue within the tumor [6].

Histology and fluorescence microscopy
Histology and fluorescence microscopy were performed essen-

tially as described previously [6]. In brief, tumors were excised,

snap-frozen in liquid N2, fixed, washed in PBS and embedded in 5%

w/v low melt agarose (AppliChem, Darmstadt, Germany) in PBS.

Tissue sections were cut with a vibratome at a thickness of

100 mm and permeabilized in PBS containing 0.3% Triton X-100

for one hour. Sections were incubated for 12 to 15 h at room

temperature with FITC-labeled Phalloidin (1:200; Sigma, Tauf-

kirchen, Germany) and biotinylated anti-E.coli antibodies (1:200;

Sigma, Taufkirchen, Germany). After several rinses with PBS,

sections were incubated for 5 h with Cy3-labelled streptavidin,

again rinsed with PBS, incubated for 1 h in 60% (v/v) glycerol in

PBS, and mounted with 80% (v/v) glycerol in PBS.

Specimens were examined with the Stereo-Fluorescence micro-

scope (MZ16 FA, Leica, Heerbrugg, Switzerland) that is equipped

with a digital CCD camera (DC500, Leica). Digital images

(130061030 pixel color images) were processed with Photoshop

7.0 (Adobe Systems) and merged to yield pseudo-colored pictures.

Protein determination and iron uptake studies
For in vitro iron uptake studies, bacteria were grown at 37uC

overnight in brain heart infusion broth (BHI), supplemented with

150 mM ferrous citrate and 100 mg ml21 ampicillin. Twenty ml of

overnight cultures were washed twice and resuspended in 20 ml

ddH2O.

One ml of the suspension was concentrated tenfold and the

protein content was determined using the Bradford assay (BioRad,

Hercules, CA, USA). For SDS-PAGE, 10 mg protein samples were

mixed with Laemmli buffer, incubated at 96uC for 5 min, then

loaded onto a 15% SDS-polyacrylamide gel and electrophoresed

at 200 mA prior to staining with Coomassie Blue. The percentage

of ferritin-like proteins in the samples was determined using

densitometry of the stained gels, which allowed the estimation of

the quantity of ferritin-like molecules in the bacteria.
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The remaining bacteria were harvested, resuspended in 2 ml

ddH2O containing 10 mg Proteinase K, and incubated at 37uC for

24 h. Nitric acid (63%, 0.5 ml) was added to the cleared solution and

the samples incubated on ice for 2 h. Following filtration through a

0.2 mm filter (Millipore), samples were analyzed by Inductively

Coupled Plasma Mass Spectrometry (Varian, Darmstadt, Germany)

to determine iron concentration as 57Fe against standard solutions

(Merck, Darmstadt, Germany) of 500 and 1000 ppb Fe2+. Samples

with higher concentration than 1000 ppb were diluted with double-

distilled water to be within the calibration range.

Once the additional number of iron atoms in ferritin-like

protein expressing strains compared to control strains was

determined, the average number of iron ions within each holomer

was calculated. For this calculation, an assumption was made that

the additional iron was solely stored in the overexpressed proteins.

Supporting Information

Figure S1 T2 relaxation rate is dependent on the
concentration of Bfr overexpressing EcN. Bfr overexpress-

ing EcN were diluted in control (GFP-expressing) EcN and T2

relaxation rates were determined (Data represent mean (n = 3) +/

2 standard deviation of one representative experiment). T2

relaxation rates showed linear correlation (R2-value of 0.9759)

with the concentration of Bfr-overexpressing EcN.

(TIF)

Figure S2 Three-dimensional reconstruction of the EcN
PBAD-bfr colonized tumor from Fig. 3 before and 24 h
after L-arabinose injection. The surface of the tumor is

transparent while dark voxels appear yellow (before L-arabinose

injection) or red (after L-arabinose). The upper images show the

3D-reconstrcution of the tumor together with the plane that is

shown in Fig. 3A. In the middle the same 3D-reconstruction is

shown without the pictures from Fig. 3A. The lower images show

the same tumor but from another angle.

(TIF)

Table S1 Primer sequences used in this study.
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