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Abstract

Introduction

Assisted reproductive technology has been proposed for women with infertility. Moreover, in

vitro fertilization (IVF) cycles are increasing. Factors contributing to successful pregnancy

have been widely explored. In this study, we used machine learning algorithms to construct

prediction models for clinical pregnancies in IVF.

Materials and methods

A total of 24,730 patients entered IVF and intracytoplasmic sperm injection cycles with clini-

cal pregnancy outcomes at Taipei Medical University Hospital. Data used included patient

characteristics and treatment. We used machine learning methods to develop prediction

models for clinical pregnancy and explored how each variable affects the outcome of inter-

est using partial dependence plots.

Results

Experimental results showed that the random forest algorithm outperforms logistic regres-

sion in terms of areas under the receiver operating characteristics curve. The ovarian stimu-

lation protocol is the most important factor affecting pregnancy outcomes. Long and ultra-

long protocols have shown positive effects on clinical pregnancy among all protocols. Fur-

thermore, total frozen and transferred embryos are positive for a clinical pregnancy, but

female age and duration of infertility have negative effects on clinical pregnancy.
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Conclusion

Our findings show the importance of variables and propensity of each variable by random

forest algorithm for clinical pregnancy in the assisted reproductive technology cycle. This

study provides a ranking of variables affecting clinical pregnancy and explores the effects of

each treatment on successful pregnancy. Our study has the potential to help clinicians eval-

uate the success of IVF in patients.

Introduction

Background

Infertility is a global health issue that affects individuals, families, and society. The prevalence

of infertility has increased in recent years. In the United States, the prevalence of infertility is

approximately 8.8% (National Center for Health Statistics, 2020). In the United Kingdom, the

prevalence of infertility was 12.5% in women and 10.1% in men [1]. In 2010, in 190 countries

and territories worldwide, women aged 20–44 faced the possibility of pregnancy, and 1.9%

were unable to experience a live birth [2]. In Taiwan, the female fertility rate decreased from

7.04 children per woman in 1951 to 1.165 in 2014. As a result, Taiwan has one of the lowest fer-

tility rates worldwide [3]. Therefore, infertility has become a major healthcare issue in Taiwan.

Since the advent of assisted reproductive technologies (ARTs) in 1984, the use of in vitro
fertilization (IVF) cycles has increased worldwide. Clinical pregnancy is defined as the preg-

nancy that lasted 6 weeks (or 42 days) after the onset of the last menstrual period and con-

firmed by human chorionic gonadotropin (hCG) assay [4]. Achieving high clinical pregnancy

rates has been a major goal for both physicians and patients. Pregnancy rates after IVF treat-

ment are approximately 30–70%, depending on the age of the female patient and the different

types of interventions employed. Factors that contribute to successful pregnancies have been

widely explored. Factors that affect the success of ARTs include age, body mass index (BMI),

uterine and ovarian factors, the type of stimulation protocol used, the stimulation dose, and

the use of fresh or frozen protocols. ART lies in the interaction of these variables to achieve

higher numbers of oocytes and higher pregnancy rates. There are no fixed protocols for indi-

vidual patient conditions.

While reducing or removing adverse factors for pregnancy, prediction models based on

existing large-scale databases have been established to boost our understanding of IVF proce-

dures and improve pregnancy rates [5]. The development of prediction models can help physi-

cians provide personalized treatment for each infertility couple. Artificial intelligence (AI) is a

technology suitable for application in ART fields for several reasons. ARTs require highly indi-

vidualized protocols. Parameters affecting the success of ARTs may be discovered during the

process of AI calculations. Moreover, by predicting the best pregnancy rates, individualized,

tailored protocols can be used for infertile couples. This study aimed to utilize machine-learn-

ing algorithms to predict clinical pregnancy rates.

Literature review

Machine learning is a computational method that focuses on how computers learn from data.

It intersects with statistics, with the goal of discerning relationships from data and computer

science, and emphasizes efficient computing algorithms [6]. Algorithms use AI and statistics

to find patterns in a dataset. Data patterns are then used to make predictions [7]. Several
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previous studies proposed predicting pregnancy using IVF based on traditional statistical and

machine-learning methods.

Logistic regression is a popular statistical method that develops prediction models. To con-

struct a prediction model based on logistic regression, Ottosen et al. used 1,675 records con-

taining IVF and intracytoplasmic sperm injection (ICSI) treatment cycles. Their variables

included embryo quality, patient age, duration of infertility (months), BMI, basal follicle-stim-

ulating hormone (FSH), treatment type, indication for treatment, number of oocytes retrieved,

fertilization rate, and scores of the best and second-best embryos. Embryo quality, patient age,

and basal FSH levels showed statistically significant effects on pregnancy. A receiver operating

characteristics (ROC) curve was incorporated to evaluate the predictive performance, and the

area under the ROC curve (AUC) values were 0.64 and 0.68 for singleton and twin pregnancy

models, respectively [8]. Hansen et al. used a logistic regression to analyze conception, clinical

pregnancies, and live births in a dataset that included 19 medical and socioeconomic variables

of 900 couples with unexplained infertility. The AUC values of the prediction models for con-

ception, clinical pregnancies, and live births were 0.66, 0.64, and 0.65, respectively [9]. Meijer-

ink et al. developed a prediction model based on multivariate logistic regression using a

dataset containing 289 couples with 553 testicular sperm extraction (TESE)-ICSI cycles. The

dataset included types of infertility, duration of infertility (months), female age, parity, average

menstrual cycle length (days), uterine abnormalities, antral follicle count before stimulation,

alcohol use and smoking status for men and women, BMI at baseline for men and women,

male age, male luteinizing hormone (LH), male inhibin levels, male FSH, total testicular vol-

ume, and a suspected primary diagnosis of azoospermia before sperm retrieval. The AUCs of

the logistic regression prediction model were 0.62 and 0.67 for the validation data [10].

Compared to logistic regressions, machine learning algorithms are more sensitive and

more specific screening techniques, for which the assumptions and restrictions of traditional

regressions are relaxed. Machine learning algorithms have become increasingly common for

learning from data to develop more reliable predictions [11]. In reproductive science, machine

learning algorithms have also been incorporated in several studies. Blank et al. used a dataset

collected by the Department of Reproductive Medicine, Ghent University Hospital, Belgium,

containing 1,052 patients who underwent single-embryo transfer (SET) using fresh day-5 blas-

tocysts. The dataset contained 32 variables, including continuous variables (male and female

age and anti-Müllerian hormone [AMH]), categorical variables (stimulation protocols), and

discrete variables (number of oocytes). To predict implantation after blastocyst transfer in

IVF, a random forest algorithm showed better predictive performance than a logistic regres-

sion in terms of the AUC (0.74 for the random forest and 0.66 for the logistic regression) [12].

Qiu et al. applied variables, including age, AMH, duration of infertility, BMI, previous live

births, previous miscarriages, previous abortions, and type of infertility (classified into tubal,

anovulatory, male factor, and unexplained factors) with 7,188 records of women who were

undergoing their first IVF treatment. To compare predictive performances based on the AUC,

machine learning algorithms, including support vector machines, random forest, and extreme

gradient boosting (XGBoost), outperformed traditional logistic regression in personalized pre-

dictions of live births prior to the first IVF treatment. Moreover, XGBoost and random forest

algorithms achieved higher AUCs of approximately 0.73 compared to the other algorithms

[13].

In addition to models for predicting pregnancy in ARTs, machine learning algorithms have

also been incorporated to evaluate fetal health status. Akbulut et al. proposed an e-Health

application based on machine learning algorithms to predict fetal anomaly status by referring

to maternal and clinical data. Several binary prediction models were trained with a clinical

dataset consisting of 96 pregnant women, and the highest accuracy achieved was 89.5% in a
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test set with a random forest model. In addition, the proposed model was applied to a real-life

test of 16 users and obtained an accuracy of 87.5% [14]. This study aimed to incorporate

machine learning algorithms to analyze independent variables influencing clinical pregnancy

outcomes using ART, which may also provide useful information for clinicians and infertile

couples.

Materials and methods

Dataset

Taipei Medical University Hospital (TMUH) is one of the leading hospitals in reproductive

medicine in Taiwan, with more than 2,000 ART cycles conducted annually. Every IVF cycle

was registered in a national health bureaucracy database. More than 100,000 IVF cycles were

registered in the database. This study was approved by the Institutional Review Board (IRB)

of TMUH (TMU-Joint Institutional Review Board N201908012). The IRB waived the

requirement to obtain informed consent. In total, 24,730 patients underwent IVF/ICSI

cycles with clinical pregnancy outcomes in the original data from the Health Promotion

Administration, Ministry of Health, and Welfare. We used deidentified personal data and

performed the study in accordance with the Declaration of Helsinki. As shown in Table 1,

the clinical data of women aged 21–55 years who underwent IVF/ICSI cycles at TMUH were

analyzed. Patients who underwent embryo transfer with both fresh and freeze-thawed

embryos simultaneously in the same cycle of IVF treatment were excluded because the

embryo origin could not be defined when assessing pregnancy outcomes. Moreover, we col-

lect 3,352 new samples from 2020–2021 as an independent test set for external validation of

our proposed model.

Table 1. Characteristics of the analytical variables.

Variable Definition or Range

Male age (years) 23 to 78

Female age (years) 21 to 55

Duration of infertility (years) 1 to 14

Number of IVF cycles

performed

0 to 16

Number of oocytes retrieved 0 to 52

The Number of Embryos

Transferred

1 to 4

The Total Number of Frozen

Embryos

0 to 36

Cause of infertility Tubal factor, ovary factor, endometriosis, uterine factor (myoma adenomyosis,

uterine synechia), others (other female factors), male factor, either two factors,

unexplained

Fertilization method IVF/ET (in vitro fertilization/embryo transfer), ZIFT/TET (zygote intrafallopian

transfer/tubal embryo transfer)

Micromanipulation technique ICSI (intracytoplasmic sperm injection), assisted hatching, ICSI and assisted

hatching, PGT (preimplantation genetic testing), no use, others

Source of sperm and oocytes Without donation, oocyte donation, sperm donation

The use of fresh/freeze-thaw Fresh, freeze-thaw

Ovarian hyperstimulation

syndrome

None, mild, moderate, severe

Ovarian stimulation protocol Natural cycle (including frozen-embryo transfer cycle), oral stimulation drug,

short protocol, long protocol, ultra-long protocol, antagonist protocol, others

https://doi.org/10.1371/journal.pone.0267554.t001
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Imputation and data partition

In total, 7,362 records of missing values in ovarian stimulation protocols were imputed by the

missForest function in the random forest algorithm. This random forest-based function can

impute missing values and perform better compared to other methods of imputation, espe-

cially in datasets that consist of different types of variables and complex interactions or non-

linear relationships [15]. The imputation of missing values plays an important role in the data

analysis. Moreover, we used the functional strata of package sampling for random sampling to

divide the original dataset into 50% as the training dataset for model development and 50% as

the test dataset for model validation.

Descriptive statistical analysis

Statistical analyses were conducted using the RStudio (2009–2018 RStudio) software version

1.1.463 and SAS version 9.4 (SAS Institute, Cary, NC, USA). Means and standard deviations

(SDs) were calculated for continuous variables, and frequencies and percentages were com-

puted for categorical variables. Baseline characteristics between participants with and without

a clinical pregnancy were compared using a chi-squared test for categorical variables and Stu-

dent’s t-test for continuous variables.

Machine learning algorithms

To predict pregnancy outcomes after IVF, we compared the performances of prediction mod-

els built using logistic regression or random forest algorithms. Previous studies used logistic

regressions to build prediction models and observed their results using odds ratios (ORs). We

incorporated the random forest algorithm to develop predictive models because advantages of

the random forest include that it converges due to the law of large numbers and shows no

overfitting without pruning in its predictions [16]. This study aimed to accurately predict clini-

cal pregnancies and to depict the partial effect of each variable on the outcome.

The random forest method is a combination of tree predictors, in which all trees are inde-

pendently built by random vector sampling and have the same distribution in the forest. The

generation error converges to a limit as trees in forests become larger. The classifier error in a

forest depends on the strength and correlation between the trees [16]. Breiman proposed the

random forest model in 2001, which can be created using the randomForest package, and is

also available in the R environment [17]. The random forest model was constructed using the

randomForest package [17]. We built the model using 1,000 trees, and three variables were

sampled randomly in each tree. The importance of the variables in the model was measured by

the mean decrease accuracy (MDA), which was calculated by how much accuracy was reduced

when each variable was left out.

To depict the influence of different variables, the random forest model can generate the

importance of variables by observing the out-of-bag (OOB) error of a specific variable, as the

other predictors remain stable [17]. The importance of a variable depicts the rank of that vari-

able in influencing pregnancy predictions when building a prediction model. After comparing

the importance of variables, we analyzed how the variables affected the probability of a clinical

pregnancy. The use of partial dependence plots is a good way to provide insights into each

machine learning model, as they depict how each variable influences the prediction when all

other variables are simultaneously averaged [18]. partialPlot is a function in the randomForest

package, which depicts the marginal effects of variables on the class probability for classifica-

tion. Plots show the relative logit distributions of class probabilities from the model. Positive

values on the y-axis indicate that the values of the independent variables are more likely to be a
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positive class. In contrast, negative values are less likely to be a positive class. Zero indicates the

absence of an average influence on the class probability.

Hyperparameter tuning

One of the most important variables in the random forest algorithm is the mtry parameter,

which is defined as the number of predictors sampled for splitting at each node. In our experi-

ments, two approaches were incorporated for hyperparameter tuning of the mtry variable. The

function “tuneRF” of the package “randomForest” and function “train” of package “caret” are

two methods in tuning hyperparameter “mtry” for random forest algorithm. We used

“tuneRF” to find the “mtry” with the minimum OOB error for 10 times and applied “train” to

find the highest AUC with ten-fold cross-validations.

Evaluation measures

Four measures, including accuracy, sensitivity, specificity, and AUC, were used to evaluate the

predictive model. Accuracy, sensitivity, and specificity were generated from a function confu-

sion matrix, and the AUC was generated from the ROCR package in the R environment. The

accuracy, sensitivity, and specificity of the clinical pregnancy prediction model were calcu-

lated. Sensitivity and specificity points were plotted in the ROC curve, where the x-axis denotes

“1-specificity,” whereas the y-axis represents “sensitivity.” An ROC curve with good predictive

performance showed an AUC close to 1.

Results

Analytic flowchart for clinical pregnancy prediction

The workflow of this study is shown in Fig 1. The original dataset included 24,730 records. We

excluded patients who were simultaneously administered fresh and freeze-thawed embryos,

those without implantation, and those with frozen embryos. In addition, we randomly sam-

pled patients with the same features to avoid bias in elderly patients to improve prediction

accuracy. In total, 7,362 (approximately 42.58%) missing values of the ovarian stimulation pro-

tocol were imputed based on the missForest package in the R environment. With the exception

of the natural cycle and others, all other missing values were imputed. In addition, the dataset

was divided into two parts, and machine learning algorithms were compared based on the pre-

dictive performance of test dataset in terms of AUC. Finally, the effect of each analytic variable

on clinical pregnancy was depicted.

Characteristics of the datasets

In total, 17,288 women were analyzed in this study, and 37.88% of women (aged 36.07±3.85

years) achieved a clinical pregnancy. The chi-squared test was used to examine the indepen-

dence between categorical variables. As shown in Table 2, all variables, except for artificially

assisted reproductive methods and sources of sperm and oocytes, showed statistical signifi-

cance in clinical pregnancy. Student’s t-test was used to examine whether the means of contin-

uous variables showed statistically significant differences (Table 3).

Predictive performance of clinical pregnancy

The original dataset was randomly separated into training and test datasets. According to the

results generated based on the random forest model, the best “mtry” equals 3 with the minimum

OOB error and maximum AUC (shown as S1, S2 Figs in S1 File). In the training set, the AUC

was used as the main evaluation measure to assess the clinical pregnancy performance of the
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prediction model. Four measures were used to assess the training dataset (accuracy: 62.20% vs.

83.39%; sensitivity: 62.05% vs. 83.02%; specificity: 62.36% vs. 83.76%; AUC: 0.9197 vs. 0.6783)

and the test dataset (accuracy: 62.78% vs. 64.78%; sensitivity: 61.81% vs. 66.58%; specificity:

63.12% vs. 64.16%; and AUC: 0.6766 vs. 0.7208) in the random forest vs. logistic regression pre-

diction models. Table 4 shows that the random forest model outperformed the logistic regres-

sion model in terms of accuracy, sensitivity, specificity, and AUC. In Fig 2, the ROC curve of

the random forest is closer to the upper left corner of the diagram. Therefore, the random forest

model was chosen as the best model for predicting clinical pregnancy outcomes in our study.

External validation using an independent dataset

To further validate the prediction model, we collected 3,352 new samples from 2019 to 2020 as

the external dataset to evaluate the performance of our prediction model. The training and test

data sets were combined together to construct a prediction model, and the external data set

was used as an independent test set to evaluate the true predictive performance. As shown in

Table 5, the predictive performance of the external dataset is similar to the original test dataset

(accuracy: 64.78% vs. 62.98%; sensitivity: 66.58% vs. 68.55%; specificity: 64.16% vs. 60.97%;

and AUC: 0.7208 vs. 0.7123). This demonstrated that the proposed prediction model did not

show overfitting of predictive performance, and thus it can be generalized to predict the clini-

cal pregnancy rate of other patients.

Variable importance ranking

In the random forest model, the function varImpPlot() can generate a partial dependency plot

of the importance of variables by measuring the mean decrease in accuracy (MDA). The

Fig 1. Experiment flowchart for predicting clinical pregnancy outcomes.

https://doi.org/10.1371/journal.pone.0267554.g001
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Table 2. Descriptive statistics of categorical variables for clinical pregnancy and non-clinical pregnancy groups.

N = 17,288 Pregnancy

(N = 6,548)

No pregnancy p-value

(N = 10,740)

N Percentage N Percentage

Female age group ���

<30 years 294 4.49 267 2.49

30~34 years 1903 29.06 2091 19.47

35~39 years 3124 47.71 4425 41.20

>40 years 1227 18.74 3957 36.84

Cause of infertility ���

Tubal factor 902 13.78 1335 12.43

Ovary factor 607 9.27 826 7.69

Endometriosis 691 10.55 1037 9.66

Uterine factor (myoma adenomyosis, uterine synechia) 306 4.67 454 4.23

Others (other female factors) 2078 31.73 3962 36.89

Male factor 985 15.04 1311 12.21

Either two factors 940 14.36 1779 16.56

Unexplained 39 0.60 36 0.34

Oocyte retrieval ��

Yes 4416 67.44 7412 69.01

No 2132 32.56 3328 30.99

Artificially assisted reproductive method

IVF/ET 6544 99.94 10,739 99.99

ZIFT/TET 4 0.06 1 0.01

Fertilization method ���

ICSI 4375 66.81 7352 68.45

Assisted hatching 223 3.41 226 2.10

ICSI and assisted hatching 13 0.20 27 0.25

PGS 121 1.85 117 1.09

PGD 0 0.00 0 0.00

No Use 1760 26.88 2943 27.40

Others 56 0.86 75 0.70

Source of sperm and oocytes

Without donation 6445 98.43 10,596 98.66

Oocyte donation 75 1.15 93 0.87

Sperm donation 28 0.43 51 0.47

The use of fresh/freeze-thaw ��

Fresh 4406 67.29 7456 69.42

Frozen 2142 32.71 3284 30.58

Ovarian hyperstimulation syndrome ���

None 6323 96.56 10,526 98.01

Mild 218 3.33 212 1.97

Moderate 6 0.09 1 0.01

Severe 1 0.02 1 0.01

Ovarian stimulation protocol ���

Natural cycle (including frozen-embryo transfer cycle) 2132 55.84 3328 54.51

Oral stimulation drug 0 0.00 3 0.05

Short protocol 248 6.50 442 7.24

Long protocol 306 8.01 356 5.83

(Continued)
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results showed that the ovarian stimulation protocol, the total number of frozen embryos, and

female age were the most important variables in the analysis. We discuss how variables affect

the probability of clinical pregnancy. Important variables affecting clinical pregnancy out-

comes were further analyzed to determine the relationships between predictors and clinical

pregnancy. These results can help us understand the relationship between the marginal effects

of predictors and clinical pregnancy (Fig 3).

Correlations between clinical variables and pregnancy

The correlations between analytic variables and clinical pregnancy depicted by partial depen-

dency plots were shown in Fig 4. The total number of frozen and transferred embryos was pos-

itively correlated with clinical pregnancy outcomes, whereas the female age and duration of

infertility were negatively correlated. The total number of frozen embryos showed a non-linear

relationship with clinical pregnancy outcomes. As shown in Fig 4a, the marginal effect posi-

tively increased in eight frozen embryos and began to gradually decrease. The female age

showed an obvious negative effect. Women< 36 years old exhibited constant conditions.

After 36 years of age, there was a negative propensity for clinical pregnancy. After 40 years of

age, the probability of a clinical pregnancy dramatically declined (Fig 4b). As shown in Fig 4c,

the propensity of clinical pregnancy was positively correlated with the number of embryos

transferred in the same IVF cycle, and the transfer of three and four embryos had little effect

Table 2. (Continued)

N = 17,288 Pregnancy

(N = 6,548)

No pregnancy p-value

(N = 10,740)

N Percentage N Percentage

Ultra-long protocol 124 3.25 165 2.70

Antagonist protocol 1006 26.35 1803 29.53

Others 2 0.05 8 0.13

� p < 0.05,

�� p < 0.01,

��� p < 0.001 by a chi-squared test for categorical variables.

IVF/ET, in vitro fertilization/embryo transfer; ZIFT/TET, zygote intrafallopian transfer/tubal embryo transfer; ICSI, intracytoplasmic sperm injection; PGS,

preimplantation genetic screening; PGD, preimplantation genetic diagnosis.

https://doi.org/10.1371/journal.pone.0267554.t002

Table 3. Descriptive statistics of continuous variables for clinical pregnancy and non-clinical pregnancy groups.

Variable Pregnancy No pregnancy p-value

(N = 6548) (N = 10,740)

(M±SD) (M±SD)

Duration of infertility (years) 3.73±2.75 4.24±3.04 ���

Number of IVF cycles performed 0.99±1.48 1.27±1.77 ���

Number of oocytes retrieved 6.96±7.22 5.17±6.02 ���

Embryos 5.62±4.11 4.23±3.38 ���

The Number of Embryos Transferred 2.66±0.89 2.58±1.01 ���

The Total Number of Frozen Embryos 2.79±3.76 1.53±3.00 ���

Female age (years) 36.07±3.85 37.94±4.34 ���

Male age (years) 38.29±5.02 39.87±5.52 ���

Abbreviations: M, mean; SD, standard deviation; IVF, in vitro fertilization

��� p < 0.001 by Student’s t-test for continuous variables.

https://doi.org/10.1371/journal.pone.0267554.t003
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on clinical pregnancy compared to one or two, which showed a greater propensity of becom-

ing pregnant. The duration of infertility was negatively correlated with clinical pregnancy.

After 1 year of infertility, the propensity decreased dramatically (Fig 4d). Compared to other

causes of infertility, other female factors and either of the two factors were the main factors

that decreased the probability of a clinical pregnancy (Fig 4e). The use of frozen embryos was

positively correlated with clinical pregnancy, while the transfer of fresh embryo was negatively

correlated (Fig 4f). Long and ultra-long protocols were two effective treatments compared to

the other protocols (Fig 4g).

Discussion

Significance and contribution of this study

This study attempted to identify variables that could affect clinical pregnancy outcomes and

interactions among different variables. Twelve variables were used for analysis in this study.

Table 4. Predictive performance of different machine learning algorithms for the training and test datasets.

Algorithm Dataset Number Accuracy (%) Sensitivity (%) Specificity (%) AUC

Logistic regression Training 8644 62.20 62.05 62.36 0.6783

Test 8644 62.78 61.81 63.12 0.6766

Random forest Training 8644 83.39 83.02 83.76 0.9197

Test 8644 64.78 66.58 64.16 0.7208

AUC, area under the receiver operating characteristics curve.

https://doi.org/10.1371/journal.pone.0267554.t004

Fig 2. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) for clinical

pregnancy predictions based on the logistic regression and random forest for the test set.

https://doi.org/10.1371/journal.pone.0267554.g002
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Data were collected from IVF patients between 2007 and 2019 for the model development.

Our results demonstrated that 37.88% of women achieved a clinical pregnancy. After develop-

ing our predictive model, the random forest model outperformed the logistic regression model

for all measures. Among all variables, we found that the “ovarian stimulation protocol” was the

most important variable, and long and ultra-long protocols had positive effects on achieving a

clinical pregnancy. The second most important variable was the total number of frozen

embryos, which had positive effects, peaked at eight, and then began to flatten out.

Data of patients from TMUH were connected to a database of the Health Promotion

Administration, Ministry of Health and Welfare, Taiwan. The dataset contained >15,000 IVF

cycles with 50 variables. Among these, 42.6% of the “ovarian stimulation protocol” variables in

our dataset contained missing values. We compared three functions to impute the missing val-

ues. Finally, we incorporated the dataset imputed by the “missForest” function for the analysis.

Another strength of our study is that we provide the importance and propensity of each var-

iable to achieve a clinical pregnancy. Most studies used logistic regression to construct predic-

tion models for pregnancy and live births [19–22], and ORs were used to explain the marginal

effects of each variable. Our model comparison results showed that the random forest model

outperformed the logistic regression model in terms of accuracy and AUC. In addition, the

effects of each continuous variable on the clinical pregnancy probability were nonlinear, and

partial dependency plots could be used to illustrate positive or negative effects on clinical preg-

nancy outcomes. Previous studies have demonstrated that the day of transfer is an important

variable associated with pregnancy [19, 23]. In our study, the number of embryos transferred

did not distinguish between the day of transfer.

The AUC evaluates the performance of the prediction model. The AUC of the test dataset

was 0.7208, and was comparable with other previous studies based on logistic regression with

Table 5. Predictive performance based on random forest for the training, test, and external dataset.

Dataset Year Number Accuracy (%) Sensitivity (%) Specificity (%) AUC

Training 2007–2018 8644 83.39 83.02 83.76 0.9197

Test 8644 64.78 66.58 64.16 0.7208

External 2019–2020 3352 62.98 68.55 60.97 0.7123

https://doi.org/10.1371/journal.pone.0267554.t005

Fig 3. Rank of importance of variables based on random forest clinical pregnancy predictions.

https://doi.org/10.1371/journal.pone.0267554.g003
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AUCs ranging 0.6–0.7 [7–9]. Our study showed that the random forest model is a good algo-

rithm for classifying clinical pregnancies. Kaufmann et al. reported an accuracy of 58.8% for

predicting outcomes of IVF using neural networks [24], and Blank et al. reported that the aver-

age AUC, sensitivity, and specificity were 0.74, 0.84, and 0.48, respectively [11].

Clinical interpretations of analytic variables

(1) Female age. The baseline characteristics of the female age group were significantly

correlated with clinical pregnancy outcomes as shown in Table 2 and Fig 2b, and the mean

female age in the clinical pregnancy group was younger than that in the group without clinical

pregnancy. In the random forest model, the female age was a non-linear curve and showed

negative effects on clinical pregnancy outcomes. The probability of a clinical pregnancy dra-

matically declined after the age of 40 years. Compared to other studies, it is a common predic-

tor in prediction models of clinical pregnancy or live births and has negative effects on clinical

pregnancy outcomes [8, 19, 21, 25, 26]. This can be explained by aneuploidy in embryos

increasing with maternal age [27], which weakens their developmental potential [28].

Fig 4. Partial dependence plots of the most influential continuous and categorical variables for clinical pregnancy

outcomes analyzed for (a) the total number of frozen embryos, (b) female age, (c) the number of embryos

transferred, (d) duration of infertility, (e) cause of infertility, (f) the use of fresh/freeze-thaw, and (g) ovarian

stimulation protocol. Continuous variables are presented as line plots, and categorical are presented as bar plots.

https://doi.org/10.1371/journal.pone.0267554.g004
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(2) Freeze-thawed embryos or fresh embryos. As shown in Fig 4f, there were more

freeze-thawed embryos than fresh embryos. Table 2 shows the rate of pregnancy with freeze-

thawed embryos that was 2% higher than that with fresh embryos. In recent studies, the preg-

nancy rate in frozen embryos was higher than that in fresh embryos [29–32]. Freeze-thawed

embryo technology plays a key role in IVF because traditional freezing technology has greatly

improved [33]. The number of transfer cycles of freeze-thawed embryos has increased over the

past decade, and the technology of freeze-thawed embryo transfer enhanced the live birth rate

[34]. Chen et al. found that the advantage of frozen-embryo transfer was correlated with a

higher live birth rate and lower ovarian hyperstimulation syndrome risk for infertile women

with polycystic ovary syndrome [35]. They also observed that frozen embryo transfer allows

the ovary to recover from ovarian stimulation and the estradiol levels. Although there is evi-

dence that freeze-thaw embryo transfer has a significant effect on live births, its effect on clini-

cal pregnancies is uncertain. Wang et al. reported that the rate of clinical pregnancy with

freeze-thaw embryo transfer was higher than that with fresh transfer, but the difference was

not significant [33]. Our results showed that the freeze-thaw transfer group was more likely to

achieve pregnancy than the fresh group. Previous studies reported that the clinical pregnancy

rate of the cryopreservation group was significantly higher than that of the fresh group [36,

37]. Shapiro et al. reported that the pregnancy rate with freeze-thawed embryo transfer cycles

was greater than that with fresh cycles may be because the typical freeze-thawed embryo trans-

fer cycle uses suboptimal embryos for cryopreservation after their superior siblings are trans-

ferred in a fresh state. To keep endometrium steady without ovarian hyperstimulation

syndrome (OHSS), intentionally implanting freeze-thaw embryos but not fresh ones to

patients in the clinical practice is conducted when the total number of egg retrieval is greater

than 20 and estradiol (e2) is greater than 3000. In addition, many freeze-thaw protocols are

inadequate to confirm recovered embryo development [37]; therefore, fresh or frozen embryo

transfer remains controversial.

(3) Cause of infertility. Our results showed that the ovary factor, the male factor, and

unexplained reasons were more likely to achieve pregnancy through IVF compared to other

factors in Fig 4e. In previous studies [21, 38, 39], infertility was found to be the main predictor

of clinical pregnancy outcomes. The male factor, ovary factor, and unexplained reasons were

obviously more important in clinical pregnancy outcomes than tubal factors, which is in line

with a previous study [21]. Infertile women due to male factors can be successfully impreg-

nated with IVF. Other female factors, including recurrent miscarriages and higher prolactin

levels, are harmful to clinical pregnancy outcomes. Any of the factors raise the difficulty of

becoming pregnant due to interactions. In previous studies, women with unexplained infertil-

ity had a higher live birth rate per embryo transfer than those with other causes of infertility

[39].

(4) Ovarian stimulation protocols. Ultralong protocol and long protocol has have been

one of the standard protocols for ovarian hyper stimulation. Using Gonadotropin-releasing

hormone (GnRH) antagonist for ultralong protocol can tackle cases with endometriosis.

GnRH agonist is able to lower then effects of endometriosis, in the meanwhile we are able to

perform embryo transfer in the same cycle. In short protocol, the stimulation period is rela-

tively short without pretreatment. Therefore, we believe that the negative effect on short proto-

col compare to long or ultra-long protocol is without pretreatment with GnRH agonist.

(5) The numbers of embryos transferred. Higher embryo transfer numbers increase the

probability of achieving a clinical pregnancy as shown in Fig 4c. The transfer of more embryos

results in more clinical pregnancies. Baker et al. used logistic regression to analyze data and

found that a higher number of embryos transferred increased the probability of achieving

pregnancy [20].
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(6) Duration of infertility. In our study as shown in Fig 4d, infertile women with more

than 1 year of infertility were less likely to become pregnant than those with less than 1 year of

infertility, and the duration showed negative effects on clinical pregnancy outcomes. IVF

increases the probability of pregnancy and has the best effect on infertility in the first year. A

longer duration of infertility is correlated with a reduction in the possibility of conception, but

the effects on IVF outcomes remain unclear. Templeton et al. reported a significant reduction

in the success rate of IVF due to infertility with a longer duration of infertility [40]. Several

studies have reported that the duration of infertility is a predictor of clinical pregnancy. Similar

to most studies, the duration of infertility was treated as a continuous variable in our analysis.

Ottosen et al. used the duration as a categorical variable to analyze the effects on a pregnancy

model. Their results showed that the duration of infertility had a negative nonlinear effect [8].

Compared with the consensus of the duration of infertility in other studies, the probability of

clinical pregnancy decreases after the first year [8, 9, 19].

Highlights and limitations of the proposed study

Our findings highlight the importance of certain variables and the propensity of each variable

by machine learning with the random forest model to result in a clinical pregnancy in ART

cycles. In the future, the model can also be used to predict the probability of a clinical pregnancy

for individual patients, suggestive of methods to assist a patient in becoming pregnant. We will

include embryo image characteristics, hormone profiles, and embryo grading along with this

dataset to improve prediction ability. In the future, images and grading of embryos can be com-

bined with the important variables suggested in this study to achieve better predictions for

achieving a clinical pregnancy. The limitations of our study include data integrity, and some

variables used in previous studies were lacking for further discussion, such as BMI, embryo

grading, details of the stimulation protocol except for the drug dose, timing, AMH, basic hor-

mone, and semen analysis. Incorporated variables can influence the ability to predict clinical

pregnancy. Furthermore, information on lifestyle-related factors and disease status is limited.

Conclusions

Our analysis showed that RF outperformed logistic regression for predicting clinical preg-

nancy outcomes. In our results, the AUC values of the test dataset with the logistic regression

and random forest models were 0.6766 and 0.7208, respectively. The performance of logistic

regression was similar to those of previous studies, and the random forest model outperformed

them all.
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