
Submitted 14 May 2020
Accepted 24 August 2020
Published 25 September 2020

Corresponding authors
Furong Wang, wfr1125@126.com
Jun Zhang, zj0928@126.com

Academic editor
Rogerio Sotelo-Mundo

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.9936

Copyright
2020 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Genome-wide analysis of PRR gene
family uncovers their roles in circadian
rhythmic changes and response to
drought stress in Gossypium hirsutum
L.
Jingjing Wang1,2,*, Zhaohai Du1,*, Xuehan Huo1,2, Juan Zhou1, Yu Chen1,
Jingxia Zhang1, Ao Pan1, Xiaoyang Wang3, Furong Wang1,2 and Jun Zhang1,2

1Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and
Rural Affairs, Cotton Research Center, Shandong Academy of Agricultural Sciences, Jinan, P. R. China

2College of Life Sciences, Shandong Normal University, Jinan, P. R. China
3 State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural
Sciences, Anyang, P. R. China

*These authors contributed equally to this work.

ABSTRACT
Background. The circadian clock not only participates in regulating various stages of
plant growth, development and metabolism, but confers plant environmental adapt-
ability to stress such as drought. Pseudo-Response Regulators (PRRs) are important
component of the central oscillator (the core of circadian clock) and play a significant
role in plant photoperiod pathway. However, no systematical study about this gene
family has been performed in cotton.
Methods. PRR genes were identified in diploid and tetraploid cotton using bioinfor-
matics methods to investigate their homology, duplication and evolution relationship.
Differential gene expression, KEGG enrichment analysis and qRT-PCRwere conducted
to analyze PRR gene expression patterns under diurnal changes and their response to
drought stress.
Results. A total of 44 PRR family members were identified in four Gossypium species,
with 16 in G. hirsutum, 10 in G. raimondii, and nine in G. barbadense as well as in
G. arboreum. Phylogenetic analysis indicated that PRR proteins were divided into five
subfamilies and whole genome duplication or segmental duplication contributed to
the expansion of Gossypium PRR gene family. Gene structure analysis revealed that
members in the same clade are similar, and multiple cis-elements related to light and
drought stress response were enriched in the promoters of GhPRR genes. qRT-PCR
results showed that GhPRR genes transcripts presented four expression peaks (6 h, 9 h,
12 h, 15 h) during 24 h and form obvious rhythmic expression trend. Transcriptome
data with PEG treatment, along with qRT-PCR verification suggested that members of
clade III (GhPRR5a, b, d) and clade V (GhPRR3a and GhPRR3c) may be involved in
drought response. This study provides an insight into understanding the function of
PRR genes in circadian rhythm and in response to drought stress in cotton.
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INTRODUCTION
The circadian clock is an autonomous endogenous biological rhythm that enables the
living organisms to adapt to external daily and seasonal cycles, which play a significant
role in plant growth and development for plant fitness (Harmer, 2009; Hsu & Harmer,
2014; Lee et al., 2005; Mcclung, 2006; Uehara et al., 2019). Although the circadian clock
in different organisms is tissue-specific, most organisms have a conserved molecular
mechanism-the core oscillator of positive and negative feedback loops formed at both the
transcriptional and translational levels based on genome-wide gene expression regulation.
(Strayer et al., 2000; Harmer, 2009; Hsu & Harmer, 2014; Takata et al., 2009; Uehara et al.,
2019). Numerous studies have indicated that imperative roles for PRR gene family (PRR9,
PRR7, PRR5, PRR3 and TOC1) in circadian clock (Eriksson et al., 2003; Farre & Kay,
2007; Fujiwara et al., 2008; Gould et al., 2006; Ito et al., 2009; Kaczorowski & Quail, 2003;
Nakamichi et al., 2020; Salome & McClung, 2005; Yamamoto et al., 2003).

In Arabidopsis thaliana, the gene expression and protein expression levels of PRR family
members have obvious circadian rhythmic expression pattern (Matsushika et al., 2000).
PRR proteins contain two domains, the N-terminal contains a conserved PR (Pseudo
reciever) domain, the C-terminus is a CCT domain, and CCT domain might interact
with CONSTITUITIVE PHOTOMOR-PHOGENIC 1 (COP1) to control CONSTANS
(CO) protein stability, and confer CO the ability to directly bind to DNA (Makino et al.,
2000; Jang et al., 2008). PRRs could interact with CO at specific times and stabilize CO
expression during the day, which promoting the CO protein to bind the promoter of
FLOWERING LOCUS T (FT ), inducing FT expression and promoting flowering (Hayama
et al., 2017; Kobayashi et al., 1999;Nakamichi et al., 2007; Song et al., 2012). The CCTmotif
of PRRs is essential for recognizing key transcriptional factors such as CCA1 (CIRCADIAN
CLOCK-ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL) to coordinate
physiological processes with daily cycles (Gendron et al., 2012; Kiba et al., 2007; Nakamichi
et al., 2012). Many studies showed that PRRs have role at circadian rhythmic expression
levels in both transcriptional and protein levels, whether in continuous light or dark (Más
et al., 2003; Strayer et al., 2000). Either in the toc1 deletion mutant or TOC1 overexpressing
plants ofArabidopsis thaliana, the performance of the core oscillator has significant changes
(Huang et al., 2012). Besides, PRR9, PRR7 and PRR5 could act as transcriptional repressors
of CCA1 and LHY (Nakamichi et al., 2010).

At present, research mainly focuses on exploring the molecular mechanism of the
photoperiod regulation pathway in Arabidopsis thaliana, and its regulation mechanism
is becoming clear (Song, Ito & Imaizumi, 2013; Wang, Kim & Somers, 2013; Wickland &
Hanzawa, 2015). Flowering time is an important factor affecting crop yield, thus dissection
of photoperiod pathways regulating flowering time in crops and ornamental plants also
becomes one of the hotspots in current researches (Brambilla et al., 2017;Nakamichi, 2015;
Yang et al., 2020). However, molecular mechanisms of the photoperiodic control in crop
flowering remain unclear. Only some studies on the cloning and functional analysis of
PRR genes have been carried out in crops currently, such as rice (Oryza sativa) (Murakami

Wang et al. (2020), PeerJ, DOI 10.7717/peerj.9936 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.9936


et al., 2005), wheat (Triticum aestivum) (Nakahira et al., 1998; Beales et al., 2007), barley
(Hordeum vulgare) (Turner et al., 2005) and soybean (Glycine max) (Liu et al., 2009).

Flowering in an appropriate period has a critical effect on the fiber yield and quality of
cotton, and there were only a few studies on genes related to flowering regulation in cotton
(Gossypium spp.) (Cai et al., 2017; Zhang et al., 2016). With the completion of the genome
sequencing of Gossypium species (Du et al., 2018; Hu et al., 2019; Huang et al., 2020; Li et
al., 2015; Wang et al., 2012a; Wang et al., 2012b; Wang et al., 2018; Yuan et al., 2015; Zhang
et al., 2015), the identification of new genes and the establishment of a new regulatory
model would be helpful for studying the function of genes involved in cotton flowering
pathways. Recently, a group also has reviewed a detailed study on other genetic bases of
cotton drought tolerance (Mahmood et al., 2020).

In addition, the biological clock plays a vital role in adapting to external environmental
stress, such as drought stress. In Arabidopsis, a triple mutant of prr9 prr7 prr5 confers
drought stress tolerance by mediating cyclic expression of stress response genes, including
DREB1/CBF (dehydration-responsive element B1/C-repeat-binding factor), which are
regulated by the circadian clock (Nakamichi et al., 2009; Fowler, Cook & Thomashow,
2005). In soybeans, studies shown that drought stress affects the expression of circadian
clock genes, and the expression of drought-responsive genes also has shown circadian
rhythm (Gome et al., 2014). TOC1 has been shown to directly bind to the ABAR promoter
region and regulate the periodic expression of ABAR, while ABA can up regulate TOC1.
Therefore, TOC1 is considered to act as a molecular switch between the drought stress
signaling pathway and the biological clock (Legnaioli, Cuevas & Mas, 2009)

Here, we identified 44 PRR genes from the four Gossypium species, and conducted basic
bioinformatics analysis.We also investigated the expression pattern of PRR familymembers
at the transcriptional level during 24 h. Further, we identified six PRRmembers responded
to drought stress by analyzing transcriptome data with PEG treatment along with qRT-PCR
verification. This study lays a foundation for studying the molecular mechanism of cotton
photoperiod regulation and also provides an insight into understanding PPRs gene function
in response to drought stress in cotton.

MATERIALS & METHODS
Identification of PRR gene family in Gossypium spp.
The domain numbered PF00072 (Response receiver domain) and PF06203 (CCT
domain) in the Pfam database are often found in plant light signal transduction factors
(Sara et al., 2019). Firstly, genome sequence of G. hirsutum (NAU-NBI v1.1 assembly
genome), G. arboretum (CRI-updated_v1 assembly genome), G. raimondii (JGI_v2_a2.1
assembly genome) and G. barbadense (ZJU_v1.1 assembly genome) were downloaded
from the Cottongen database (http://www.cottongen.org), respectively. This study
used the protein sequences of 5 Arabidopsis PRRs were as queries to search the four
Gossypium spp. proteomes through the basic local alignment search tool (BLAST, v 2.10.0)
with default parameters (E-value = 1 ×103) for each identified gene (Altschul et al.,
1990). PR (Response receiver domain) and CCT domains, the typical PRRs domains,
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were aligned and searched in HMMER 3.0 (https://www.ebi.ac.uk/Tools/hmmer/)
(Potter et al., 2018). Next, sequences were searched and verified on the Conserved
Domain Database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) and SMART
(http://smart.embl-heidelberg.de/) (Letunic et al., 2002). Finally, the online site ExPASy
Proteomics Server (http://www.expasy.org/) and Softberry (http://linux1.softberry.com/
berry.phtml?topic=protcomppl&group=programs&subgroup=proloc) were used to
analyze the physicochemical properties of the identified cotton PRR gene family, including
amino acid number, nucleotide data, molecular weight, isoelectric point prediction and
subcellular localization.

Chromosomal locations, duplications, and synteny analysis of PRR
gene members
Chromosomal location information for PRR genes was obtained from general feature
format (gff) files of each cotton genomic databases and genes were mapped on the
chromosomes using TBtools (Chen et al., 2020). ThenMCScanX (Wang et al., 2012a;Wang
et al., 2012b) was used to determine and analyze cotton PRR duplication and collinearity,
Circos (http://circos.ca/) software were used to conducted image showing gene location
and gene homology relationship.

Phylogenetic analyses and gene structure organization of the PRR
proteins in Gossypium spp.
To analyze evolutionary relationship, the PRR proteins sequence of various plant
species including Arabidopsis thaliana (Initiative, 2000), Cocoa (Theobroma cacao)
((Argout et al., 2011)) and rice (Oryza sativa) (Yu et al., 2005) were downloaded from
the Arabidopsis database TAIR10 (https://www.arabidopsis.org/), the plant genome
database Phytozome 12 (http://phytozome.jgi.doe.gov/pz/portal.html) and EnsemblPlants
(http://plants.ensembl.org/index.html), respectively. Multi-protein sequence alignment
of the PRR proteins were aligned using MEGA7.0 (Sudhir, Glen & Koichiro, 2016), and
constructed a phylogenetic tree using neighbor-joining (NJ) method with the bootstrap
1000. Finally, the evolutionary tree is visualized and beautified by the online software iTOL
(https://itol.embl.de/) (Letunic & Bork, 2019). Location information of PRR members
were obtained from gff files using SeqHunter1.0 (Ye, Wang & Dou, 2010) and the gene
structures were displayed by the online software Gene Structure Display Server (GSDS
2.0) (http://gsds.gao-lab.org/) (Guo et al., 2007), and we performed motifs analysis on
the online software MEME (http://meme-suite.org/) (Bailey et al., 2009) with following
parameters: the maximum number discovered for the motif is 10, and the other parameters
are default values. The graphic display is based on the Amazing optional gene viewer section
in the software TBtools.

To identify the cis-elements in the promoter sequences of the 16 PRR family genes
in G. hirsutum, the 2,000 bp of genomic sequences upstream of the start codon for each
PRR gene were submitted to the online site PlantCARE (http://bioinformatics.psb.ugent.
be/webtools/plantcare/html/), and the results are displayed by the Simple Bio Sequence
Viewer in TBtools.
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Plant materials and treatment
The upland cotton (G. hirsutum) accession (Lumianyan 19, LMY 19) (Li et al., 2004), an
early maturing variety, selected in this study were kept in our laboratory, planted in growth
chamber (day/night temperature cycle of 28 ◦C light/25 ◦C dark with a 12-photoperiod),
and samples were picked every 3 h from leaf in three-true-leaves stage. Germinated TM-1
cotton seeds were planted in the same photoperiod and temperature environment as
LMY19, and treated with 400 mM polyethylene glycol (PEG6000) at the three-leaf stage
from 7 am. TM-1 seedlings were divided into four treatment groups, treated with PEG for
0, 1, 3 and 6 h, respectively, and non-PEG treated seedling (treated with sterilized water)
as control check at the same time point. Then we collected leaf samples at 0 h, 1 h, 3 h and
6 h after PEG treatment and non-PEG treated samples at each of the time point. Three
biological replicates for each sample, the leaves from three seedlings as a biological replicate,
and all samples were freezed with liquid nitrogen immediately and stored at −80 ◦C for
qRT-PCR.

RNA isolation and qRT-PCR analysis
The RNA was extracted from the samples using the Rapid Universal Plant RNA Extraction
Kit (Huayueyang Biotechnology Co. Ltd.), and the Prime Scrip First Strand cDNA Synthesis
Kit (Takara) used for reverse transcription, SYBR Premix Ex Taq II. (Takara) kit used for
real-time PCR experiment, qRT-PCR analysis was carried out using SYBR Green on
the Roche LightCycler R© 480 II. The primers of PRR gene family were designed using
Primer Premier 5.0 software and listed in Table S1, and the actin gene (AF059484) was
selected as the internal reference gene (Zhang et al., 2013; Zhang et al., 2013b). The volume
of the qRT-PCR reaction was 20 µL, and the amplification procedure was as follows:
pre-denaturation at 95 ◦C for 30 s; denaturation at 95 ◦C for 5 s, annealing at 60 ◦C for
30 s, 40 cycles. Three biological and technical replicates were performed for the qRT-PCR
tests. The relative gene expression levels were quantified by the 2−11Ct method (Livak &
Schmittgen, 2001).

Expression patterns and pathway enrichment analysis of PRR
members
RNA-Seq data of G. hirsutum TM-1were obtained from the SRA database (PRJNA248163)
(Zhang et al., 2015), and the FPKM (fragments per kilobase per million reads) values
were calculated by RNA-seq data downloaded from the database of cottonFGD (Zhu et
al., 2017).The gene expression pattern of PRR genes were displayed by R/pheatmap with
the expression values normalized by log2(FPKM+1). The expression profiles of all 16
GhPRR genes at different time of PEG treatment were further analyzed using R/Mfuzz.
The differentially expressed genes (DEGs) were identified by DEseq2 (Anders & Huber,
2010). All detected genes in each sample were used to identify significantly DEGs (|log2
Foldchange|>1, P < 0.05) and KEGG analyses of DEGs were conducted in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database for enrichment (Kanehisa et al.,
2014), KEGG enrichment of DEGs was evaluated with KOBAS2.0 software (Xie et al., 2011)
and bubble graph was displayed by R/ggplot2.
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RESULTS
Genome-wide identification of PRR family genes in Gossypium spp
Based onmultiple sequence alignment analysis, complete PRR genes were identified in four
Gossypium species, including 16 in G. hirsutum (AD1), 9 in G. arboretum (A2), 10 in G.
raimondii (D5), and 9 in G. barbadense (AD2). Additionally, we proceeded with PRR genes
retrieved from plant genome database, with 5 in Arabidopsis (dicots), 5 in rice (monocots),
and 6 in cocoa (dicot). All of them were renamed based on the homologous genes in
Arabidopsis (Table S2). The number of PRR gene family in G. hirsutum (AtDt) was about
twice as that in G. arboreum (A group) or G. raimondii (D group), it is consistent with
the former one being tetraploid and the latter two being diploid. The basic information of
PRR genes including protein sequence length, isoelectric points, and molecular weight in
cotton were listed in Table S3 . The predicted GhPRR proteins ranged from 552 (GhPRR1a
and GhPRR1b) to 795 (GhPRR3a) amino acids, with isoelectric points changed from 4.97
(GhPRR9a) to 8.42 (GhPRR3d) and molecular weight from 61.87 kDa (GhPRR1a) to 85.93
kDa (GhPRR3a).

Chromosomal locations, duplications, and synteny analysis of PRR
gene members
In order to display the chromosome distribution of PRR genes, mapping them on the
corresponding chromosome. Eight of GhPRR genes were located on chromosomes of
At sub-genome while five of GhPRR genes were on that of Dt sub-genome and three
GhPRR genes were present in different scaffolds (Fig. S1). We further conducted whole
genome collinearity analysis of 44 identified PRR genes in cotton, and explored the locus
relationships between At and Dt sub-genomes as well as with A and D diploid cotton
genomes (Fig. 1A, Table S4). There are 34 orthologous gene pairs were resulted from whole
genome duplication or segmental duplication among Gossypium spp. Whole Genome
duplication or segmental duplication was suggested to be the main causes of PRR gene
family expansion in cotton (Table S5).

Phylogenetic analyses and gene structure organization of the PRR
proteins in Gossypium spp.
To investigate the evolutionary relationship of GhPRR proteins among mentioned seven
species, phylogenetic tree was constructed (Fig. 1B). The PRR family of Gossypium was
divided into five subgroups (clade I–V). There were 13 PRRs in Clade III (three GaPRRs,
GbPRRs and GrPRRs respectively, four GhPRRs) and 11 PRRs (one GrPRR, two GaPRRs,
four GbPRRs and GhPRRs individually) in clade IV. Clade I consisted of 9 PRRs (one
GaPRR, two GbPRRs and GhPRRs singly, four GrPRRs), Clade V contained 7 PRRs
(one GrPRR, two GaPRRs and four GhPRRs) and Clade II had 4 PRRs (one GaPRR and
GrPRR respectively, two GhPRRs). GhPRRs were distributed throughout five subgroups
(clade I–V), clade-I, clade-II and clade-IV containing PRRs from monocots and dicots
simultaneously, illustrating that evolution of GhPRR genes in three clades occurred before
the separation of monocots and dicots.
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Figure 1 Phylogenetic and collinearity analysis of PRR proteins in cotton. (A) Gene duplication and
collinearity analysis among cotton PRR genes (green lines and brown indicates paralogous genes in G. hir-
sutum and G. barbadense, orange lines indicates orthologous genes between G. arboreum and G. hirsutum,
black lines indicates orthologous genes between G. arboreum and G. raimondii, blue lines indicates orthol-
ogous genes between G. barbadense and G. hirsutum, seagreen indicates orthologous genes between G. ar-
boreum and G. barbadense, lightsteelblue indicates orthologous genes between G. barbadense and G. rai-
mondii, yellow indicates orthologous genes between G. raimondii and G. hirsutum). Gene duplication and
collinearity displayed on Circos (http://circos.ca/); (B) Phylogenetic tree of the PRR gene family.

Full-size DOI: 10.7717/peerj.9936/fig-1

PRRs protein in G. hirsutum was also divided into five subgroups (Fig. 2A), consistent
with phylogenetic analyses. The motif distribution indicated that the order, size, and
location of the motifs in the same subgroup were similar, but there were significant variety
between different subgroups. Among them, 37.5% of the family members have the same
sequence of motif structure: motif 4_9_3_1_7_5_6_10_8_2, while Clade-I contains the
least number of motifs with only 5 motifs. All members of the PRR gene family contain
motif1, motif2, motif3, motif4 and motif6, which are the conserved motifs of PRR family.
In addition, the gene structure analysis exhibited that the distribution of introns and exons
were similar among different subgroups, and the functional elements PR and CCT were
distributed in both end side of each gene (Fig. 2B). All of member contained three PR
structure elements, andmost member contain two CCT domains, except that twomembers
of the Clade-I subgroup contain one CCT domain.

To further analyze the transcriptional regulation and potential function of the PRR genes,
the cis-elements in the promoter region were predicted (Fig. 2C). The results displayed
that there are abundant regulatory elements existing in the promoter region, mainly
focused on light response elements (G-Box, GT1-motif and TCT-motif, etc.), hormone
responsive elements: abscisic acid response (ABRE), MeJA-response (CGTCA-motif and
TGACG-motif), gibberellin-responsive element (TATC-box, P-box and GARE-motif),
and stress responsive elements: drought-inducibility (MBS), low-temperature response
(LTR), etc. There are 16, 14 and 6 PRR genes containing response elements to light,
abscisic acid and drought stress, respectively. Motif sequences are often the binding sites of
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some sequence-specific proteins (such as transcription factors), have important biological
significance for important biological processes, such as RNA initiation, RNA termination,
RNA cleavage, etc.

The expression pattern of PRR members under diurnal changes
A feature shared by many clock gene transcripts is that their abundance is subject to diurnal
oscillation. To analyze the peak transcripts of GhPRR s under diurnal cycle, the relative
expression levels of GhPRRs together with its related genes (GhFT (FLOWERING LOCUS
T ), GhCO (CONSTANS LIKE -2), GhLHY (LATE ELONGATED HYPOCOTYL) and
GhCCA1 (CIRCADIAN CLOCK-ASSOCIATED 1)) during 24 h was detected by qRT-PCR
(Fig. 3 and Table S6). The results showed that GhLHY -mRNA began to accumulate after
dawn, and then mRNA of GhPRR genes began to reach the peak sequentially within a
24-hour period with multiple members at each peak. GhFT, GhCO, and GhLHY had
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the peak expression at 3 h after light. Subsequently, members inclade-II (GhPRR9a and
GhPRR9b) and clade-IV (GhPRR7a, GhPRR7b, GhPRR7c and GhPRR7d) reached the
expression peak after 6 h of light condition, and then members in clade III (GhPRR5a,
GhPRR5b, GhPRR5c and GhPRR5d) and clade-V (GhPRR3a and GhPRR3c) at 9 h, another
two members of clade-V (GhPRR3b and GhPRR3d) at 12 h. Finally, members (GhPRR1a
and GhPRR1b) in clade-I reached expression peak after 3 h of dark. Additionally, the
expression of GhLHY and GhPRR1b always showed an opposite trend during 24 h, it can
be speculated that a mutual inhibition maybe exist between the two genes. These results
indicated that expression of GhPRR genes has obvious rhythmic expression trend waves
during 24 h.

Identification of drought-stress related PRR genes in G. hirsutum
To investigate the roles for PRR genes in response to drought, we investigated the expression
profile of GhPRRs under polyethylene glycol (PEG) treatment at 1, 3 and 6 h from the
published transcriptome data sets. All detected genes in each sample were used to identify
significantly DEGs (|log2 Foldchange|>1, P < 0.05) among PEG_1 h vs CK, PEG_3 h
vs CK, PEG_6 h vs CK groups, and the PEG_6 h group contains the most number of
DEGs (Table S7), so we selected the group data at 6 h treated with PEG for KEGG (Kyoto
Encyclopedia of Genes and Genomes) analysis (Fig. 4A).The results revealed that the DEGs
are mainly involved in circadian rhythm, photosynthesis, starch and sucrose metabolism,
etc. (Fig. 4B). Six of GhPRR genes including three members in clade III (GhPRR5a, b, d)
and two in clade-V (GhPRR3a and GhPRR3c) were involved in circadian rhythm pathway.
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The expression patterns of these GhPRR genes have high expression level at 6 h with
PEG treatment (Fig. 4C and Table S8), further analyzed and divided into 3 clusters, three
members of clade III (GhPRR5a-d) and two of clade-V (GhPRR3a and GhPRR3c) in
Cluster1 exhibited the same expression trend (Fig. S2 and Table S9), suggesting these PRR
genes are significantly induced by PEG treatment. .

To further prove the expression changes of these genes at different time of PEG treatment
(0 h, 1 h, 3 h and 6 h), the expression level of all member of PRR family were detected
by qRT-PCR (Figs. 5A–5P and Table S10). The expression of genes (GhPRR3a, c and
GhPRR5a, b, d) at the sixth hour after PEG6000 treatment was significantly higher than
that of the blank control. All PRR genes displayed almost the similar expression changes
compared with transcriptome data sets (CK, 1 h, 3 h, 6 h), and the correlation analysis
between the transcriptome and qRT-PCR of GhPRR genes displayed by scatter plots, the
result showed that the Pearson correlation coefficient log2 expression ratios calculated
from qRT-PCR and RNA-seq of GhPRR genes was 0.78 (Fig. S3), suggesting the results are
credible. It can be considered that genes mentioned above (GhPRR3a, c and GhPRR5a, b,
d) maybe respond to drought stress.
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DISCUSSION
Light, one of the vital environmental factors, plays a significant role in promoting plant
growth and development. Especially, with the alternating of sunrise and sunset, plants
form a unique biological clock to regulate the growth and metabolic activities, like
regulation of flowering time (Hayama et al., 2017; Song et al., 2015), hypocotyl elongation
(Seaton, Smith & Song, 2015; Soy et al., 2016; Zhu et al., 2016), biotic (Bhardwaj et al., 2011;
Korneli, Danisman & Staiger, 2014; Zhang et al., 2013; Zhang et al., 2013b) and abiotic
stress response (Keily et al., 2013; Nakamichi et al., 2009), and so on.

Advances in cotton genomics and genetics recent years allowed us to perform a systematic
study on PRR genes and to probe their potential functions in circadian clock. Here, sixteen
GhPRR genes were identified totally inG. hirsutum, and phylogenetic tree were constructed
to show the evolutionary relationship of PRR proteins in G. hirsutum and other plant
species (Fig. 1B). The PRR family of Gossypium was divided into five subgroups (Clade
I–V), which consistent that of in Arabidopsis (PRR1 (TOC1), PRR3, PRR5, PRR7, PRR9).
Orthologue genes always share identical biological functions over evolutionary stages
(Altenhoff & Dessimoz, 2009), the exon-intron structure and the motif distribution of
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GhPRR genes in the same subgroup were similar. According to chromosomal localization
and genomic collinearity analysis, it can be speculated that due to the hybridization of A and
D subgenome in the G. hirsutum, the gene amplification is carried out by tandem repeat
and fragment replication (Jackson & Chen, 2010). There is a high degree of collinearity
between the PRR genes of the At and the Dt subgenome of the tetraploid G. hirsutum (Li et
al., 2015). In this study, 14 (7 pairs) of 16 PRR members are orthologous genes, indicating
thatG. hirsutum has undergone large-scale gene rearrangement at the genomic level during
species formation, which is consistent with the results of the allotetraploid G. hirsutum
genome (Wang et al., 2018; Li et al., 2015; Zhang et al., 2015).

A large number of experimental studies have been carried out about circadian clock
in Arabidopsis (Alabadí et al., 2001; Más et al., 2003; Legnaioli, Cuevas & Mas, 2009). PRRs
proteins interact with CCA1 and LHY through complex mechanisms, playing a vital role
in the growth and development, flowering induction and metabolic regulation of plants
(Harmer, 2009; Legnaioli, Cuevas & Mas, 2009; Mizuno & Nakamichi, 2005). The function
of some circadian clock-related genes has been cloned and verified based on gene homology
in major crops, such as rice, soybean (Gome et al., 2014; Xue et al., 2012; Yang et al., 2013).
So far, circadian clock regulation mechanism in cotton is still a mystery, only one study
has identified Gh_D03G0885 (GhPRR1b) as a candidate gene for cotton early maturity
traits using genotyping-by-sequencing (Li et al., 2017). TOC1 (known as Pseudo Response
Regulator, PRR1) is an important component of the core oscillator and closed positive
and negative feedback loop with LHY (Late Elongated Hypocotyl) and CCA1 (Circadian
Clock Associated 1), formulating the basic framework of the Arabidopsis circadian clock
core oscillator (Alabadí et al., 2001; Gendron et al., 2012; Huang et al., 2012).

Further, qRT-PCR analysis revealed that the relative expression of PRR members
had apparent rhythmic expression trend among 24 h, which similar with that of PRR
members (PRR1/TOC1, PRR3, PRR5, PRR7, PRR9) in Arabidopsis. Transcript expression
peaks appear in the order of PRR9, PRR7, PRR5, PRR3 and TOC1 (PRR1) in Arabidopsis
(Matsushika et al., 2000), while four expression peaks appeared in this study and there were
multiple members at each peak, speculating that it is related to chromosome doubling in
the process of forming allotetraploid in G. hirsutum (Jackson & Chen, 2010). The PRR1a
gene had the last peak of expression and highly expressed at night, which consistent with
that of APRR1 in Arabidopsis (De Caluwé et al., 2016), while GhPRR1b has two peak of
expression at night in this study. Therefore, detailed study should be carried out about this
the gene in cotton.

In cotton, GhLHY -mRNA began to accumulate after dawn, and then members of the
GhPRR gene family began to reach the peak sequentially within a 24-hour period, which
is consistent with the results in Arabidopsis. The GhPRR1b gene has high homology with
PRR1 in Arabidopsis thaliana by alignment, so it is speculated that GhPRR1b is the core
component of the circadian clock in G. hirsutum. GhPRR1b and GhLHY have opposite
expression trends among 24 h, and there may be a mutual inhibition between GhPRR1 and
GhLHY, the expression trends of which consistent with PRR1 gene in Arabidopsis thaliana.
As an inhibitor of circadian clock gene expression, TOC1 gene can inhibit the expression
of most circadian clock core genes, and affect flowering pathway of photoperiod regulation
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by controlling the function of circadian clock (Strayer et al., 2000; Pokhilko et al., 2012). As
an important factor in the export pathway of the circadian clock, CO protein has been
proved in Arabidopsis to confirm the stability of PRRs protein-mediated CO expression,
and can enhance the binding of CO to FT promoter, then FT start transcribe and promote
flowering (Jang et al., 2008). The pathway of PRRs family members mediate the stability of
CO expression still needs further experiments in cotton.

In addition, there are many studies focus on the response of circadian clock to abiotic
stress in crops (Flowers, 2004; Lu et al., 2017; Zhang et al., 2020). TOC1 can bind to the
ABAR promoter of ABA-related genes and regulate its circadian rhythm expression, and
can be thought to act as molecular switches between drought stress signaling pathways
and circadian clocks in Arabidopsis (Legnaioli, Cuevas & Mas, 2009). In soybeans, studies
have also shown that drought stress affects the expression of circadian clock genes, and
the expression of drought-responsive genes also has circadian rhythm (Gome et al., 2014).
Based on these researches, this study identified 16 PRRmembers in cotton and analyzed the
expression pattern of PRR genes during 24 h and in response to drought stress. The result
showed that PRR members expression display obvious rhythmic expression trend and six
of them may be involved in responding to drought stress, which is helpful to understand
the evolution and function of the PRRs gene family, and provide thoughts and clues for
further study the function of the PRR gene family in cotton.

CONCLUSIONS
In this study, we identified 44 PRR genes in cotton (Gossypium spp.) and classified them
into five subgroups based on the phylogenetic tree. Then we systematically analyzed PRRs
in cotton (Gossypium spp.), including the domains, the gene structure, promoter cis-acting
element, chromosome localization distribution and collinearity analysis. In addition, we
also investigated the evolutionary relationship of PRRs among G. hirsutum, G. barbadense,
G. arboreum and G. raimondii, Arabidopsis thaliana, Theobroma cacao and Oryza sativa.
Moreover, qRT-PCR results showed that the expression of members of PRRs family has
obvious rhythmic expression trend, and gene differential expression and KEGG enrichment
analysis of the transcriptome data with PEG treatment, along with qRT-PCR verification
altogether demonstrated members of clade III (GhPRR5a, b, d) and two members of
clade-V (GhPRR3a and GhPRR3c) are significantly induced by PEG treatment, so it is
speculated that these GhPRR genes may be involved in drought response. This study will
provide a theoretical basis for studying the function of PRRs in cotton.
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