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Abstract

Purpose: The Lenke classification system is widely utilized as the preoperative evalu-

ation protocol for adolescent idiopathic scoliosis (AIS). However, manual measure-

ment is susceptible to observer-induced variability, which consequently impacts the

evaluation of progression. The goal of this investigation was to develop an automated

Lenke classification system utilizing innovative deep learning algorithms.

Methods: Using the database from the First Affiliated Hospital of Sun Yat-sen Uni-

versity, the whole spinal x-rays images were retrospectively collected. Specifically,

images collection was divided into AIS and control group. The control group consisted

of individuals who underwent routine health checks and did not have scoliosis. After-

wards, relative features of all images were annotated. Deep learning was implemen-

ted through the utilization of the key-point based detection method to realize the

vertebral detection, and Cobb angle measurement and scoliosis classification were

performed based on relevant standards. Besides, the segmentation method was

employed to achieve the recognition of lumbar vertebral pedicle to determine the

type of lumbar spine modifier. Finally, the model performance was further quantita-

tively analyzed.

Results: In the study, a total of 2082 spinal x-ray images were collected from 407 AIS

patients and 227 individuals in the control group. The model for vertebral detection

achieved an F1-score of 0.809 for curve type evaluation and an F1-score of 0.901 for

thoracic sagittal profile. The intraclass correlation efficient (ICC) of the Cobb angle

measurement was 0.925. In the analysis of performance for vertebra pedicle

Abbreviations: AI, artificial intelligence; AIS, adolescent idiopathic scoliosis; ASPP, atrous spatial pyramid pooling; CSVL, central sacral vertical line; DL, deep learning; DNN, deep neural network;

IOU, intersection over union; SMAPE, symmetric mean absolute percentage error.
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segmentation model, the F1-score of lumbar modification profile was 0.942, the

intersection over union (IOU) of the target pixels was 0.827, and the Hausdorff dis-

tance (HD) was 6.565 ± 2.583 mm. Specifically, the F1-score for ultimate Lenke type

classifier was 0.885.

Conclusions: This study has constructed an automated Lenke classification system

by employing the deep learning networks to achieve the recognition pattern and fea-

ture extraction. Our models require further validation in additional cases in the

future.
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1 | INTRODUCTION

Adolescent idiopathic scoliosis (AIS) is a complex three-dimensional

deformity of the spine, including vertebral misalignment and axial

rotation that typically arise in children at or around puberty.1 The

associated epidemiological researches indicate that the 1%–3% of

children aged 10–16 years will have some degrees of spinal curvature,

although most curves will not require surgical intervention.2 However,

for serious spinal misalignment in AIS with Cobb's angle >45� or rapid

aggravation of scoliosis during the observation stage, corrective sur-

gery becomes an indispensable strategy to alleviate disease progres-

sion. Previous literature has reported distinct clinical evaluative

approaches to aid in the implementation of surgery, such as King clas-

sification standard.3 Among these multiple methodologies, the Lenke

classification system has been accepted as a putative diagnostic

method that can instruct the schematization of surgical plans, includ-

ing determining the appropriate vertebral levels to be considered in

an arthrodesis.3,4

The Lenke classification is a triad classification system comprising:

curve typology (1–6), lumbar spine modifier (a, b, c), and sagittal tho-

racic modifier (�, N, +).3 As shown in Figure 1, three Cobb angles typ-

ically are determined, with the largest angle being considered as the

main Cobb angle. Based on the bending x-rays images, three curves

can be classified as structural or non-structural. A curve is typically

identified as structural if it maintains a measurement of over 25� on

the bending x-ray. Conversely, if the curve measurement is less than

25�, it is considered a non-structural curve. Particularly those distinct

subtypes are based on the different characteristics observed in spinal

x-ray images, and the manual measurement method necessitates con-

siderable technical expertise and is susceptible to both intra- and

inter-observer errors of 2�–8�.3,4 Moreover, due to complexity of clas-

sification, manually evaluating scoliosis in a large number of cases can

be time-consuming and laborious.3,4 Thus, automating the process of

Cobb angle measurement or classification is crucial to eliminate the

subjectivity inherent in manual assessment and significantly enhance

the efficiency.

Deep learning (DL), an essential branch of artificial intelligence

(AI), had recently been rapidly developed and widely utilized in the

medical field, tremendously influencing the diagnosis and treatment

of diseases.5,6 For instance, the installation of a DL radiologic-

detection-system had assisted clinicians in detecting suspicious

patients in the COVID-19 pandemic,7 and had helped discover signals

of anemia through retinal fundus images in ophthalmology. Recently,

several studies have investigated the application of deep learning in

measuring Cobb angle. Totally, it can be divided into two categories:

segmentation-based estimation methods8–10 and landmark-based

estimation methods.11–16 The segmentation-based estimation

methods primarily involve the initial segmentation of either the entire

spinal region or each individual vertebra.9 Specifically, the procedure

involved extracting the region of interest (ROI) of the spine, outlining

the spine's edges, and subsequently applying U-Net for spine segmen-

tation to calculate its curvature. A cascaded convolutional neural net-

work is employed to segment both the spine and its centerline.8

Although segmentation methods may achieve higher accuracy, they

often necessitate high-quality images and exhibit poor generalizability.

Additionally, creating precise segmentation labels can be a time-

consuming process.12 For the landmark-based methods, the four cor-

ners of each vertebra are first identified to determine landmarks and

the Cobb angles are subsequently calculated based on these land-

marks.16 Therefore, utilizing landmark-based techniques provides bet-

ter simulation of real-world clinical applications, while also reducing

computational time.12,15 However, previous studies have mainly

focused on the measurement of Cobb angle and there is a lack of

intelligent systems for the classification of spinal curvature.

In this study, we propose to exploit the image data of AIS patients

to construct an automated Lenke classification system. Upon upload-

ing the relevant primitive image data, the system automatically estab-

lishes the vertebral detection and relevant Cobb angle measurement

for each image, as well as generating a classification report.

2 | MATERIALS AND METHODS

Design pipeline: The procedures in systematic construction were illus-

trated in Figure 2, comprising the following major steps: (1) Establish-

ment of image datasets with pre-processing and feature annotation.
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This section is to provide elemental resources for the models; (2) Con-

struction of deep learning frameworks: Based on the Transformer net-

work module, vertebral landmark detection is performed for Cobb

angle measurement and assessment of scoliosis structure. And the

segmentation module is utilized to detect lumbar vertebral pedicle. By

combining the results from both modules, Lenke classification report

is obtained.

2.1 | Establishment of image dataset

2.1.1 | Data collection

The dataset for this study consisted of whole spinal x-rays images

between 2015 and 2021, retrospectively gathered from the First Affil-

iated Hospital of Sun Yat-sen University. In particular, images

(A)

(B)

Type of curve
Type Proximal thoracic Main thoracic Thoracolumbar/lumbar Type of curve

1 Non-structural Structural (main) Non-structural Main thoracic (MT)

2 Structural Structural (main) Non-structural Double thoracic (DT)

3 Non-structural Structural (main) Structural Double main (DM)

4 Structural Structural (main) Structural Triple main (TM)

5 Non-structural Non-structural Structural (main) Thoracolumbar/Lumbar (TL/L)

6 Non-structural Structural Structural (main)
Thoracolumbar/Lumbar-MT(TL/L-MT)

(Lumbar curve>thoracic in ≥10

Structural criteria

             Proximal Thoracic

                   Main Thoracic

Thoracolumbar / Lumbar

- Kyphosis T2-T5  ≥ +20  

- Kyphosis T10-L2 ≥ +20

- Side Bending Cobb  ≥ 25

- 

- 

- Kyphosis T10-L2 ≥ +20

Main : Largest Cobb measurement always structural

LOCATION OF APEX

CURVE

Thoracic

Thoracolumbar

Thoracolumbar/Lumbar

APEX

T2-T11/12 Disc

T12-L1

L1/2 Disc-L4

Lumbar 
Spine 

Modifier
CSVL up to Lumbar Apex

a CSVL between pedicles

b CSVL touches the apical body (or bodies)

c CSVL completely medial

a b c

Sagittal Thoracic Profile T5 –T12 

– Hypo) < 10

N (Normal) 10 - 40

+ (Hyper) > 40

Side Bending Cobb  ≥ 25

Side Bending Cobb  ≥ 25

F IGURE 1 Lenke classification criteria. (A) The section displays the major criteria for determining the type of scoliosis. There are a total of six
types that are identified based on the distribution of structural curves and the location of the main curve. (B) It shows the criteria for determining
the modifier of lumbar spine and sagittal thoracic profile. The lumbar spine modifier can be divided into three categories (a–c) based on the
relationship between CSVL and the lumbar pedicle. The sagittal thoracic profile is classified into three categories (hypo, normal, and hyper) based
on the size of the Cobb angle at T5–T12 on lateral x-rays films.
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collection was divided into AIS and control group. As for AIS group, to

preserve the credibility of the systems, enrolling criteria pertaining

to basic characteristics were stipulated as follows: (1) Diagnosed as

AIS with age 10–18 years old; (2) No gender restriction; (3) Congenital

bony deformity or degenerative scoliosis were excluded. Furthermore,

data collection must possess 4 sorts of images, including anterior-

F IGURE 2 Fundamental architecture of construction for automated Lenke classification system. (A) Overview of development of the
vertebral detection modules. The input to the model is the multi-view full-length spinal images. The Restormer framework is utilized for feature
extraction and analysis and subsequently various modules such as Heatmap, center offset, and corner offset are employed to obtain landmarks of
the vertebral bodies. These landmarks are crucial for further analysis and assessment of the spinal image. (B) The construction of lumbar pedicle
detection modules. The overall approach utilizes the DeepLabV3+ algorithm framework to segment the pedicle of the lumbar vertebrae.
Specifically, the encoder–decoder architecture helps capture both local and global contextual information to achieve accurate and precise
segmentation results. (C) Test for the automated typing system. The relevant Cobb angle measurement in distinct images and the identification of
lumbar pedicle and CSVL are displayed.
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posterior (AP), lateral films, right and left bending films. Images that

did not occupy intact clinical information were excluded prior to the

subsequent image labeling tasks. Finally, the samples were randomly

assigned into training datasets or test datasets at the ratio of 3:1. The

control group comprised individuals who underwent regular health

examinations and did not exhibit scoliosis, and images in the control

group included both AP and lateral films. Specifically, the age and gen-

der composition ratios of the control group remained essentially the

same as those of the AIS group.

2.1.2 | Data preparation

Owing to the necessity to intake local information from interested

regions according to Lenke classification standards, the feature label-

ing procedure did not include the cervical vertebrae. Therefore, for

each x-ray image, the annotation regions included 17 vertebrae from

the thoracic and the lumbar spine, as well as the upper boundary of

sacrum. And each vertebra had 4 corner landmarks (Figure 3A), along

with 2 landmarks from superior extremity of the sacrum. Those key

points abovementioned were labeled by applying the Surgimap

(detailed in Software application), and eventually each image occupied

70 landmarks. Besides, the silhouettes of lumbar pedicle (L1–L5) were

portraited by labelme (detailed in Software application) bilaterally with

different tags, which was an essential portion for the decision of lum-

bar spine modifier (Figure 3A). All images were initially annotated by

residents and then over-read or furtherly validated by professional

spine surgeons with corrections made to the diagnostic labels as

needed. The different types of AIS according to the Lenke classifica-

tion in the training dataset and test dataset would be maintained in a

similar pattern.

2.2 | Construction of the deep learning
architecture

On the ground that the deep learning method possessed a capability

to discriminatory and hierarchical representations from raw data, we

utilized deep neural networks (DNN) as an elementary learning block.

With the processed data and annotation, we trained the deep neural

networks to make automated diagnosis for patients. In details, we

divided the tasks into two parts: (1) initial vertebral landmark detec-

tion for AP, bending and lateral x-rays films; (2) lumbar pedicle

detection for the judgment of lumbar spine modifier.

2.2.1 | Vertebral landmark detection

Considering that landmark detection can better simulate the process

of clinical applications, we have continued to follow this approach and

made improvements on the feature extraction module. Specifically,

we firstly introduce the attention block with self-attention to model

the long-range pixel dependencies in the x-ray images, since the

position of the vertebra is closely connected to each other. CNN-

based models have limitations in modeling long-range pixel-level cor-

relations due to their limited perceptual field, which can result in the

insufficient capability to capture global structural information. Instead,

attention-based models are not constrained by the perceptual field

and can perform feature extraction and aggregation at the global

dimension, leading to improved performance in various vision tasks.

Therefore, we adopt the attention blocks from Restormer17 including

multi-dconv head transposed attention (MDTA) and gated dconv

feed-forward network (GDFN). Secondly, we also construct the fea-

ture extractor as a U-Net formation to further extract multi-scale

feature of the image. Given a single image input, encoder captures the

corresponding feature maps and up-convolution is conducted in

decoder. Finally, inspired by,16 we define the regression head with

three branches, which are defined as multi-layer convolutions in the

model. the three branches16 captured three different outputs includ-

ing of the center heatmap, center offset and corner offset. The center

heatmap branch is assigned to localize the vertebrae by detecting

their center points. Furthermore, instead of regressing the center

points directly, we apply keypoint heatmap to define the center,

which is generally used in pose joint localization and object detection.

The center offset branch output center offset resulting from the

down-sampling operation. For the purpose of recognizing the end-

plate, corner offset branch is designed to predict the vectors that start

from the center and point to the vertebra corners. With the output of

the center heatmap branch and center offset branch, we obtain the

correct center points of the vertebra. Afterwards, the vectors cap-

tured by corner offset branch are added to the center points and the

corner points are obtained. With the corner points of each vertebra,

the inclining angles are obtained in order to conduct Lenke classifica-

tion (Figure 2A).

2.2.2 | Cobb angle measurement and curvature
categorization

The specific definition of the Cobb angle involves measuring the angle

between the upper endplate of the highest vertebra and the lower

endplate of the lowest vertebra (Figure 3A). For each individual verte-

bra, the upper endplate is defined by connecting the left-superior cor-

ner with the right-superior corner on the AP films and bending films,

whereas on the lateral films, it is determined by connecting the

posterior-superior corner with the anterior-superior corner. And

the lower endplate is determined by connecting the left-inferior cor-

ner with the right-inferior corner on the AP films and bending films,

while it is determined by connecting the posterior-inferior corner with

the anterior-inferior corner on the lateral films (Figure 3A).

For AP x-ray films, each angle formed by different vertebrae is

recursively computed by sequentially adjusting the upper and lower

end vertebrae from the top to the bottom. Once the Cobb angle of

the main curve is determined, similar methods are used to measure

the Cobb angles in the upper and lower curves (Figure 3B). And after

identifying each segment of the scoliosis, further measurements are
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taken. This includes measuring the Cobb angle of the corresponding

segments in the left and right bending films. Besides, the Cobb angles

are measured between the upper endplate of T2 and the lower

endplate of T5 on lateral films, as well as between the upper endplate

of T10 and the lower endplate of L2. And then the structural curve is

identified according to the degree of side bending Cobb angles in

F IGURE 3 The procedure for determining the Lenke classification. (A) Annotation of vertebral landmarks and pedicle labeling on
anteroposterior and lateral x-ray images. Each vertebral landmark on the anteroposterior image includes left-superior, right-superior, left-inferior,
and right-inferior, while each vertebral landmark on the lateral image includes posterior-superior, anterior-superior, posterior-inferior, and
anterior-inferior. Additionally, the upper border and lower border are formed by connecting the superior landmarks and inferior landmarks
respectively on both anteroposterior and lateral images. (B–D) The criteria for determining the structural section of scoliosis, lumbar spine
modifier and sagittal thoracic profile. Structure = structural curvature. Non_Structure = non-structural curvature. Y = the result of judgment is
true. N = the result of judgment is false.
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bending film and the degree of kyphosis in the corresponding segment

of lateral films (Figure 3B). In addition, the sagittal thoracic modifier is

classified by measuring the Cobb angle between the upper endplate

of T5 and the lower endplate of T12 on lateral films (Figure 3C). Ulti-

mately, by utilizing the aforementioned measurements of Cobb angles

in each segment and the determination of structural scoliosis, a pri-

mary evaluation of the scoliotic type can be achieved.

2.2.3 | Lumbar pedicle detection

For lumbar pedicle detection, we employed the commonly used

Deeplabv3+,18,19 a distinguished image segmentation learning frame-

work, to produce semantically accurate predictions and detailed seg-

mentation maps along interested object boundaries. Briefly, the

overall architecture of this model still inherited the encoder–decoder

frameworks. Among the encoder section, the elemental module con-

sisted of DCNN (dilated convolution neural network) to implement

feature extraction and ASPP (atrous spatial pyramid pooling) to com-

plete the multiscale integration of contextual information.18 And in

the decoder section, both low-level semantic feature and high-level

one were coalesced to accomplish the multiple space representation

integration and transform the feature vector to produce the segmen-

tation maps. Specifically, for further refinement, open operation with

circular structure was applied to filter the noise in the segmentation

map. With combination of the segmentation map and the predicted

CSVL, the spatial relationship between the pedicle of apical vertebra

and CSVL was evaluated and the type of lumbar spine modifier was

inferred according to Lenke classification standards (Figure 3D).

2.3 | Evaluation of the deep learning model

In the assessment of performance on the model, we used a new panel

of radiologic test dataset with inclusion of the coronal, sagittal and

bidirectional (left and right) bending films, which were input into

model interface. And the consequences of output were compared

with the professional clinical interpretation by senior spine surgeons

and radiologists. First of all, we built the confusion matrix and evalu-

ated the performance of different categorial tasks in terms of recall,

specificality, precision and accuracy for the diagnosis. Particularly, we

calculated the F1-score (the harmonic mean of sensitivity and speci-

ficity) to serve as overall evaluators in the performance of the models

and implemented consistency test analysis of measurements in Cobb's

angle of frontal scoliosis and corresponding sagittal kyphosis with sta-

tistics of intraclass correlation efficient (ICC) where the value ranged

from 0 to 1, with 0 indicating no reliability among raters and 1 indicat-

ing perfect reliability among raters.20 Moreover, we stratified the test

dataset into different groups based on age and sex to perform the

subgroup analysis. And in regard to evaluate the accuracy of object

detection in lumbar pedicle segmentation model, we analyzed the

intersection over union (IOU) of the target pixels and calculated dice

coefficient (a spatial overlap index to assess the similarity between

predictive results and ground truth in segmentation model). Besides,

the Hausdorff distance (HD) was used to evaluate the distance

between the segmented surface and the ground truth surface. And a

smaller HD indicates better segmentation accuracy. This metric was

defined as:

HD¼ max h S,GTð Þ,h GT,Sð Þð Þ

with

h S,GTð Þ¼ maxa � Sminb � GT a�bk k:

Among that, S represent the segmentation result while GT represent

the ground truth.

2.4 | Software application

The images annotation tools in this study were included of Surgimap

(Surgimap®, a Nemaris Inc.™ innovation) and labelme (open annotation

tool, http://labelme.csail.mit.edu). The whole model construction pro-

cedures and training process were executed in a Linux server with an

NVIDIA P100 GPU. The data preprocessing and model training and

testing were constructed with Torch, version 1.9.0. The relevant sta-

tistical analyses including demographic characteristics' statistics, calcu-

lation of sensitivity, specificity, F1 scores and ICC coefficient were

carried out in Python 3.9.5.

3 | RESULTS

3.1 | Basic characteristics of the datasets

Initially, for the construction of model dataset, we searched the radio-

graphic datasets of the hospital and collected 600 patients of AIS

totally. After exclusion of the ineligible objects, we obtained 407 cases

in which the training dataset included 1470 images (from 300 patients

and 135 normal objects) while the test dataset consisted of

612 images (from 107 patients and 92 normal objects). The relevant

clinical characteristics are described in Table 1. The median age in the

AIS group was 14 years (IQR 11–15) in the training dataset and

15 years (IQR 10–16) in the test dataset; 62% of patients in training

datasets are women while 63% in test datasets. In addition, as illus-

trated in the table, the associated feature distribution of Lenke classi-

fication in both datasets which was approximately in accord with

epidemiologic investigation in the adolescents.

3.2 | Performance of automated classification
system for different cases

After a broad array of convolution transfer and subtle calibration of

model parameters in our deep learning model, the results pertaining
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to vertebral-detection were displayed visually in Figure 4. Specifically,

the ranges and Cobb angles of each segment for scoliosis on different

x-ray images were shown. As established in Table 2, the classification

evaluation indexes (F1-score) of different Lenke types in the vertebral

detection model were 0.907, 0.653, 0.737, 0.857, 0.900 and 0.800

separately; the F1-score of the thoracic sagittal profile were 0.954,

0.948 and 0.800, respectively; and the results of the consistent test

analysis showed the intraclass correlation efficient (ICC) of the Cobb

angle measurement were 0.873–0.982, which indicated a high mea-

surement consistency of the model (Table 3). Therefore, it was shown

that as for the performance on multi-view detection such as AP and

sagittal films, the model exhibited considerably great position-

matching accuracy compared to ground truth.

The result for recognition of lumbar pedicle was shown in

Figure 5. As expected, each vertebral pedicle in lumbar segment was

discerned sequentially. In the analysis of performance for vertebra

pedicle segmentation model, the intersection over union (IOU) of the

target pixels was 0.827, the dice coefficient was 0.905 and Haus-

dorff distance (HD) was 6.565 ± 2.583 mm (Table 4). The F1-score in

the lumbar modification judgment model was 0.942 on average, indi-

cating considerable high accuracy in the performance. But in some

conditions, the occurrence of abnormal spine rotation spatially

engendered obvious disappearance of the pedicle shadow in the AP

films, impeding the targeted area recognition. Furthermore, the

TABLE 1 Baseline characteristics of datasets.

Training dataset Test dataset

Total number of images 1470 612

Total number of objects 435 199

AIS 300 (69%) 107 (54%)

Control group 135 (31%) 92 (46%)

Age, years

AIS 14 (11–15) 15 (10–16)

Control group 15 (11–17) 13 (12–14)

Sex (in AIS)

Male 115 (38%) 40 (37%)

Female 185 (62%) 67 (63%)

Lenke curve type in AIS

Type 1 (MT) 162 (54%) 66 (62%)

Type 2 (DT) 60 (20%) 17 (16%)

Type 3 (DM) 30 (10%) 9 (8%)

Type 4 (TM) 9 (3%) 3 (3%)

Type 5 (TL/L) 33 (11%) 11 (9%)

Type 6 (TL/L-MT) 6 (2%) 4 (4%)

Abbreviations: DM, double major; DT, double thoracic; MT, main thoracic;

TL/L, thoracolumbar/lumbar; TL/L-MT, thoracolumbar/lumbar-main

thoracic; TM, triple major.

F IGURE 4 Representative examples for automated Lenke classification system in different radiologic images with exhibition of vertebral
segmentation and automated measurement of Cobb's angle. As represented in the graphic, in the leftmost image, the corner landmarks of each

vertebra are annotated with yellow point sequentially. And the spinal segment in scoliosis is partitioned spatially into three types: proximal
thoracic (PT) curve, main thoracic (MT) curve and thoracolumbar/lumbar (TL/L) curve in which the Cobb's angles are depicted correspondingly
(PT: green marker, MT: yellow marker, TL/L: brown marker). The measurement of Cobb's angles in bidirectional bending films and relevant sagittal
sectional outputs are displayed in middle part of the plot. The rightmost image establishes the angle relative to sagittal modification profile.
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spatial relationship between the paired pedicle on the lumbar apical

vertebra with central sacral vertical line (CSVL) was evaluated via

image detection technique (Figure 5). The subgroup analyses in per-

formance of both training models were elucidated in Tables 5 and 6,

in which there were no distinctive discrepancies among sex and age

group.

4 | DISCUSSION

Building on recent advancements in deep learning, we had con-

structed an automated-AIS-classification diagnostic system, which

was capable of aiding clinicians to evaluate the severity of spine cur-

vature and guiding the associated formulation of corrective surgery.

Generally, the object detection can be divided into anchor-based

and anchor-free methods.21 Compared to conventional anchor-based-

approaches, the landmark based object detection, as a branch of

anchor-free methods, had simplified the model structure and elimi-

nated the manual adjustment of parameters for anchor

configuration.22–24 And relevant researches had demonstrated that

this method had established great performance in vertebral landmarks

detection for x-ray films in comparison with other models such as

regression or segmentation based approaches.16 Given that recogni-

tion patterns were similar in vertebral morphologic analysis for lateral

x-rays film, we firstly deployed this approach in sagittal films detection

and achieved an excellent performance in target recognition.

Additionally, in previous deep learning models for measuring

Cobb angles, CNN modules were commonly used for feature

extraction and fusion.9,11–16 However, in recent times, Transformer

modules have shown remarkable performance in various object detec-

tion tasks.17 Specifically, CNN-based models have limitations in cap-

turing long-range pixel-level correlations due to their restricted

receptive field. This can lead to insufficient representation of global

structural information. Instead, the Transformer model utilizes self-

attention operations to achieve input adaptability, capture long-range

dependencies, and facilitate high-order spatial interactions.12,17 By

establishing interaction mechanisms between different modules of

the network, such as the encoder, decoder, and self-attention fusion

TABLE 2 Performance for distinct categorization of automated Lenke classification system.

Type Recall Precision Accuracy F1-score

Lenke classification

Lenke1 0.857 0.964 0.897 0.907

Lenke2 0.941 0.500 0.935 0.653

Lenke3 0.778 0.700 0.953 0.737

Lenke4 1 0.750 0.972 0.857

Lenke5 0.818 1 0.981 0.900

Lenke6 1 0.667 0.981 0.800

Overall performance 0.899 0.7635 0.953 0.809

Sagittal modification

Hypo 0.933 0.977 0.963 0.954

Normal 0.948 0.948 0.944 0.948

Hyper 1 0.667 0.981 0.800

Overall performance 0.960 0.864 0.963 0.901

Lumbar modification

A 0.941 0.960 0.953 0.950

B 0.913 0.955 0.972 0.934

C 0.970 0.914 0.963 0.941

Overall performance 0.941 0.943 0.963 0.942

Ultimate performance 0.934 0.847 0.938 0.885

TABLE 3 The consistent test analysis of Cobb's angle
measurement.

Category ICC coefficient (95% CI)

Proximal thoracic AP 0.973 (0.961–0.982)

Bend-L 0.965 (0.950–0.976)

Bend-R 0.982 (0.974–0.988)

Main thoracic AP 0.976 (0.964–0.983)

Bend-L 0.978 (0.969–0.985)

Bend-R 0.977 (0.966–0.984)

TL/L AP 0.966 (0.951–0.977)

Bend-L 0.982 (0.974–0.988)

Bend-R 0.950 (0.927–0.966)

PT kyphosis (T2–T5) 0.903 (0.860–0.932)

MT/L kyphosis (T10–L2) 0.873 (0.819–0.911)

Abbreviation: AP, anterior-posterior.
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TABLE 4 Performance for vertebral pedicle segmentation model.

Model Index Recall Accuracy IOU Dice coefficient HD (mm)

Pedicle segmentation Background 0.985 0.981 0.980 0.990 6.565 ± 2.583

Target area 0.912 0.870 0.827 0.905

Mean 0.949 0.926 0.904 0.948

Abbreviation: HD, Hausdorff distance.

TABLE 5 Subgroup analysis: Performance for distinct categorization of automated Lenke classification system by gender.

Lenke classification model Lumbar modification Sagittal modification

Sensitivity Specificity F1 Sensitivity Specificity F1 Sensitivity Specificity F1

Female 0.92 0.95 0.93 0.95 0.97 0.96 0.81 0.97 0.88

Male 0.81 0.97 0.84 0.93 0.97 0.95 0.88 0.95 0.91

Note: F1 = an indicator for the harmonic mean of sensitivity and specificity.

TABLE 6 Subgroup analysis: Performance for distinct categorization of automated Lenke classification system by age.

Lenke classification model Lumbar modification Sagittal modification

Sensitivity Specificity F1 Sensitivity Specificity F1 Sensitivity Specificity F1

[10, 15) 0.89 0.94 0.88 0.91 0.96 0.93 0.80 0.95 0.87

Age ≥15 years 0.88 0.97 0.81 0.95 0.98 0.96 0.90 0.97 0.93

Note: F1 = an indicator for the harmonic mean of sensitivity and specificity.

F IGURE 5 The identification for lumbar pedicle and CSVL. Each lumbar pedicle is labeled with green circle bilaterally while the upper sacral
boundary and CSVL are drawn with yellow line. As established in image, the pedicle of apical vertebra does not touch the CSVL, therefore this
situation belongs to A type in lumbar modification profile.
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module, it enables the fusion of feature maps at different levels. This

helps in capturing both intra-object and inter-object long-range con-

textual information.17 Therefore, in this study, we utilized a feature

capturing structure based on the Transformer model, combined with

landmark extraction, for vertebral detection.

As for semantic segmentation architecture, we used the

DeepLabV3+ to accomplish the lumbar pedicle recognition. Previous

literature had demonstrated several models for pedicle detection via

traditional image descriptors including support vector regression

(SVR) and histograms of oriented gradients (HOG)25,26; However,

those approaches required complex tuning of hyperparameters and

computational costs, which limited the upgradation of segmentation

efficiency. DeepLabV3+ was a novel visual segmentation architecture

via the atrous convolution to extract multiple features and ASSP

structure to capture information at different scales.27–30 And it had

been used in medical image region and achieved a better performance

in segmentation of radiologic images than other frameworks like FCN,

SegNet, and U-Net.31–34 Therefore, we tried this model in pedicle

detection task and ultimate high-quality consequences for the first

time revealed the potential of DeepLabV3+ to be useful for image

segmentation in x-ray films.

In brief, this study shows the power of leveraging modern com-

puting technology to potentially facilitate the diagnosis and treat-

ments of AIS. Particularly, it is an integrated modality with object

detection and semantic segmentation. When the raw images are input

into the automated typing systems, it will automatically recognize the

vertebral margin to realize the rapid spinal detection and calculate

Cobb's angles in distinct spinal segments. Meanwhile, it demarcates

lumbar pedicle to assess the extent of lumbar deviation and possesses

high accuracy with a level of competence comparable to relevant

experts.

The limitations in our works are demonstrated as follow. The

scale of training samples should be expanded as far as possible, and

larger datasets from diverse populations are able to improve the

effectiveness and generalizability of learning models35,36 and achieve

greater progress in abatement of fuzzy judgment for object identifica-

tion. The amount in different types of Lenke classification do not pos-

sess the balanced distributions which predispose the excellent

performance in some cases owning more samples.37 And this study

lacks validation on external datasets, so it is considered as preliminary

research.

Future work could involve extensive augmentation in sample

sizes for further optimization in performance stability and recognition

accuracy38 while multi-center datasets from different regions are

indispensable sample sources for a deep learning model. In addition,

the classification framework can be deployed in radiologic browser

devices with enhancement in the convenience and feasibility for gen-

eral application.

5 | CONCLUSION

Overall, we had built up an automated Lenke classification system

by integrating the ability of images segmentation and feature

analysis of the deep neural networks. This approach can provide

valuable guidance for the early diagnosis of scoliosis and assist in

the formulation of surgical plans. However, the test set in our

study had a small number of images, and therefore, the results of

this experimental study need to be further validated in a larger

sample size in the future.
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