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Reconstruction algorithms for circular cone-beam (CB) scans have been extensively studied in the literature. Since insufficient
data are measured, an exact reconstruction is impossible for such a geometry. If the reconstruction algorithm assumes zeros for
the missing data, such as the standard FDK algorithm, a major type of resulting CB artifacts is the intensity drop along the axial
direction. Many algorithms have been proposed to improve image quality when faced with this problem of data missing; however,
development of an effective and computationally efficient algorithm remains a major challenge. In this work, we propose a novel
method for estimating the unmeasured data and reducing the intensity drop artifacts. Each CB projection is analyzed in the Radon
space via Grangeat’s first derivative. Assuming the CB projection is taken from a parallel beam geometry, we extract those data
that reside in the unmeasured region of the Radon space. These data are then used as in a parallel beam geometry to calculate
a correction term, which is added together with Hu’s correction term to the FDK result to form a final reconstruction. More
approximations are then made on the calculation of the additional term, and the final formula is implemented very efficiently. The
algorithm performance is evaluated using computer simulations on analytical phantoms. The reconstruction comparison with
results using other existing algorithms shows that the proposed algorithm achieves a superior performance on the reduction of
axial intensity drop artifacts with a high computation efficiency.

Copyright © 2008 Lei Zhu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

(the first derivative of the Radon transform) are exactly zeros

Circular cone-beam (CB) scans are commonly used in X-ray
CT. However, given Tuy’s data sufficiency condition [1], the
Radon space data of the scanned object cannot be completely
measured in such an imaging geometry, and an exact recon-
struction is possible only in the plane of the source trajectory
(midplane). Many approximate reconstruction algorithms
have been proposed in the literature. The FDK algorithm,
developed by Feldkamp et al. [2], is by far the most popular
mainly due to its structure of one-dimensional (1D) shift-
invariant filtering and backprojection. Although originally
derived as a heuristic extension of the exact fan-beam
reconstruction, the FDK algorithm has been shown to be
equivalent to an exact 3D reconstruction if the unmeasured
Radon space data are assumed zeros 3, 4], except that a small
correction term is also needed [5, 6]. Therefore, the FDK
algorithm is exact for an object with uniform distribution
in the longitudinal direction [2], whose Radon space data

in the unmeasured region of a circular trajectory. However,
in general, zero is not a good approximation of the missing
Radon space data, for the case when the scanned object is
nonuniform and compactly supported, and has nonnegative
attenuation coefficients. Consequently, the reconstructed
images have CB artifacts, such as the well-known intensity
drop in the axial direction [2, 5, 7-10]. The reconstruction
can be improved by using an auxiliary trajectory in addition
to the circular trajectory to measure the missing data [11-
13]. In this work, we focus on using circular trajectories
only, and develop an estimation-based method to reduce the
intensity drop artifacts.

Reduction of artifacts in circular cone-beam CT (CBCT)
can be achieved by estimating the unmeasured data using
interpolation or extrapolation. Using Grangeat’s formula [3],
CB projection data can be analyzed as the first derivative
of the Radon transform of the scanned object, and data
estimation using interpolation can be performed in the
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Radon space to suppress CB artifacts [8]. However, this
method requires three-dimensional (3D) data gridding, and
hence it is computationally intensive; and in addition the
backprojection structure is lost. Estimation methods of the
Radon space data are also proposed in the space of recon-
structed images, using multiple scans with different source-
to-axis distances [7, 14, 15]. Zeng et al. developed improved
algorithms to reduce the intensity drop using iterations [16].
These algorithms require either multiple reconstructions
using different imaging geometric parameters or an iterative
reconstruction that involves several computationally intense
forward and backprojection steps. Other researchers have
developed many improved algorithms in the framework
of filtered-backprojection (FBP), without using Grangeat’s
framework [9, 10, 17, 18]. Since FBP has a compact structure,
it is not easy to implement data interpolation/extrapolation
in the Radon domain to further reduce the intensity drop
artifacts.

Hu discovered that in a circular CB trajectory, the
original object can be written as the summation of three
terms [5]:

f = feox + fu + f, (1)

where f is the original object, fFDK is the FDK recon-

struction, fy is Hu’s correction term which represents
the information contained in a circular CB scan but not
utilized in the FDK reconstruction, and fy represents the
information that is missing in the circular trajectory and
cannot be reconstructed exactly. Hu proposed an algorithm
that includes the first two measured terms, which shows
reduced intensity drop in the reconstruction as compared to
the FDK reconstruction [5]. Based on Grangeat’s formula,
Yang et al. proposed an algorithm that estimates the missing

term fy and effectively reduces the intensity drop artifacts
[19]. However, the formula of the estimated term takes the
form of shift-variant filtering and backprojection, two steps
that both require intense computation.

The work presented in this paper is also based on
Grangeat’s formula and Hu’s theory. However, the derivation

of estimation formula for jA'N is different from that of
Yang, and the resulting implementation of the final formula
is very efficient. We first analyze the CB projection data
in the Radon domain via Grangeat’s formula. Then, the
unmeasured Radon space data are estimated from the CB
projection by assuming that the projection is acquired in a
parallel beam geometry. This approximation is equivalent to
a data interpolation in the Radon domain. The estimated
data are reconstructed as in the parallel beam geometry.
More approximations are made to avoid the expensive
steps of shift-variant filtering and backprojection in the
calculation. The result is then added to the standard FDK
reconstruction together with Hu’s correction term to form
the final reconstruction. Although the derivation assumes
projections on a full scan, it can be readily extended to short-
scan reconstructions using heuristic weighting schemes, such
as Parker’s weighting [20]. The performance of the proposed
algorithm is verified using computer simulations on the 3D
Shepp-Logan phantom, the FORBILD head phantom and
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FIGURE 1: CB data acquisition geometry and coordinate system.

the Defrise disc phantom. To fully evaluate the algorithm,
the reconstructions are also compared with those using other
existing algorithmes.

The rest of this paper is organized as follows. Section 2
reviews the Radon transform and Grangeat’s formula. The
main algorithm is then derived and a reconstruction scheme
is also proposed. Section 3 presents the results of computer
simulations. Finally, Section 4 summarizes the paper.

2. METHOD
2.1. The system geometry

The system geometry is shown in Figure 1. In this paper, we
use an equally spaced flat panel detector with a finite size.
Algorithms when other types of detectors are used can be
derived similarly. During data acquisition, the X-ray source
S rotates about the z axis in the x-y plane, with a fixed
distance D to the center of rotation O. Angle y,, is the full
fan angle determined by the size of the detector and the focal
spot to detector distance. We derive the algorithm assuming
that the range of the view angle f is 360 degrees in a full-

scan mode. The detector is placed perpendicular to SO for
each projection. The object to be reconstructed is described

by a compactly supported nonnegative function f (), where

r= (x, y,2) is the Cartesian coordinate. In the derivation, it
is also assumed that there is no truncation of the projection
data; this condition, however, will be relaxed based on the
final formula.

Denoting the distance from O to detector as D,q, the
relationship between p(u,v,f), the real projection image,
and p,(u, v, 3), the image on a virtual detector that is parallel
to the real detector and passes through O, is as follows:

D+ D, D+ D,
pv(u,v,ﬁ)=p<u D d,v D d,[i).

(2)

For simplicity, we use p, in the reconstruction hereafter, and
the parameter f3 is dropped in the algorithm derivation if it is
not used.

Main variables used in this paper are listed in Table 1 for
clarity.
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TABLE 1: Variable glossary.

D Distance from the X-ray source to the rotation center
Doy Distance from the rotation center to the detector
f Scanned object
ﬁ Estimation of fN
ﬁ«DK Reconstruction using the FDK algorithm
fH Correction term in the Hu-FDK algorithm
fN Missing information in the circular CB trajectory
£ Ramp filtering kernel
o Hilbert transform kernel
p CB projection image
PrF Ramp-filtered image of p,,
)2 Intermediate function defined in (17)
DPm Projection image reconstructed from partial data of §'p,,
Py Parallel-beam projection image
Py Projection image on the virtual detector (see Figure 1)
Rf Radon transform of an object f
Sp Weighted sinogram of a projection image p
Map function defined in (7)
o Angular parameter of Sp
B CB projection angle
Vim Full fan angle
p Displacement parameter of Sp

2.2. The Radon inversion and Grangeat’s formula

Reconstruction of the original object from its projections
can be solved using the 3D Radon inverse formula [3, 21].
However, it is not efficient to directly use the Radon inversion
on the X-ray projection data. To reduce the computational
complexity, Grangeat established a fundamental relationship
between the X-ray projection image and the first derivative
of the Radon transform of the scanned object.

Figure 2 shows the geometric parameters of Grangeat’s
formula. One line L on the projection image p, can be
specified by two parameters, its distance to the origin

I OM || = p, and the vector m in the image plane and

perpendicular to L. The line L and the focal spot S determine
a plane P, which can also be specified by two parameters, its

normal vector 7 and its displacement to the origin, || ON
I = Dp/\/[D? + p2. Define an intermediate function Sp as a

weighted sinogram of the 2D projection image on the virtual
detector p,:

- D - =
P00 = |,y BrrETar O O

where t= (u,v) is a vector in the plane of the projection
image, and D/~/D? + u? + v? is the cosine weighting for an
oblique incident angle.

Denote Rf as the Radon transform of the scanned object

f> which is specified by a unit vector ﬁo and a scalar py:

Rf (po, 1) = f(r)dr, (4)

‘[;EPO(PO;;H))

N

FiGure 2: Illustration of the geometry of Grangeat’s formula.

where Py is a 2D plane, with a normal vector ;10 and a
displacement py from the origin.

The relationship between the first derivative of Sp and
the first derivative of Rf can be found:

WOSTE s 0 m) = R p (1 ON .7
INs|
(5)
P2 +D2 DP -

g

D2 SP(P;m)zRf<W,n),

where both of the first derivatives are with regard to the first
parameter.

Based on Grangeat’s formula (5), Figure 3 shows the data
supports in the domain of R’ f for a circular CB trajectory.
For simplicity, hereafter we refer to the domain of the first
derivative of the Radon transform as the Radon domain, and
the data in this domain as the Radon space data. For one CB
projection, the surface of a sphere is measured in the Radon
domain; as the projection rotates, the sphere rotates as well,
and after a full scan, a torus of data are measured. It can be
seen that not all of the Radon space is measured, and the
missing data problem is clear. The diameter of the sphere of
one projection is D, the distance from the focal spot to the
center of rotation. As this distance increases, the region of
missing data gets smaller. In a parallel beam geometry (with
an infinite D), this sphere surface becomes a plane, and the
missing data problem disappears.

This formalism provides a clearer understanding of the
three terms in (1), which is consistent with Hu’s original
arguments [5]. The FDK reconstruction ]?FDK represents all
the information inside the torus of measured data and partial
inforrgation on the surface of the torus; Hu’s correction
term fy compensates for the unused data on the surface of
the torus; the term fN represents the missing information
outside the torus, and it is our goal to estimate these data.

2.3. The algorithm derivation

The missing data represented by the term fN result in
CB artifacts in the reconstructed images. One solution to
this problem is estimating this term using interpolation
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FiGure 3: Data supports in the Radon domain.

Estimated data point
Measured data point
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Measured sphere surface

Measured sphere surface /
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FiGure 4: Illustration of the concept of implicit data interpola-
tion/extrapolation. Data point C on the approximated plane is a
weighted summation of measured data points A and B.

in the Radon domain. Inspired by the fact that a parallel
beam geometry is free of the missing data problem, the
missing data are estimated from measured CB projections,
assuming that they are acquired in a parallel geometry. Then
reconstruction is carried out using only these estimated data
as though acquired in a parallel beam geometry, and the
result is added to the standard FDK term and Hu’s term as a
correction to form a final reconstruction. Using this method,
partial data on the spherical surface of one CB projection
as shown in Figure 3 are filled in the region of missing
data, and a data interpolation/extrapolation is carried out
implicitly.

The concept of implicit data interpolation/extrapolation
is illustrated in the Radon space in Figure 4. As similar

Measured region in
the circular scan

Data support of
the scanned object

FIGURE 5: A vertical plane in the Radon domain.

to Figure 3, the sphere surfaces in the figure are measured
using CB projections. If we assume the CB projections are
acquired in a parallel beam geometry and reconstruct the
object using a parallel beam geometry as well, the measured
sphere surfaces become planes, that is, data points on the
measured sphere surfaces are relocated onto the planes. Note
that measured sphere surfaces associated with CB projections
from the opposite projection angles are approximated as
the same plane in the Radon space. As shown in Figure 4,
data point C on the plane maps to two points A and B
associated with two different CB projections. After the CB
to parallel approximation, both data points A and B are
“moved” to data point C; equivalently, the approximated
data point C is a weighted summation of data points A
and B. Therefore, this process can be considered as a linear
interpolation of data point C from measured data points A
and B.

Using the idea of implicit interpolation/extrapolation,
we can estimate Radon space data on a plane from two
CB projections. As the projection angle changes, all the
Radon space data can be estimated. However, we only need
to estimate the data in the missing region of the Radon
space in a CB geometry, and use them in the correction of
the artifacts. Figure 5 is a 2D plot of the vertical plane in
the Radon domain in Figure 3. If a parallel beam geometry
is used in the data acquisition, the data of this plane can
be measured completely using one projection from the
direction of the normal of the plane. In a CB geometry,
however, the measured data in the plane consists of two
discs (shown as shaded regions), and the data outside are
missing. If the CB projection from the direction of the
normal of the plane is assumed to be a parallel projection,
the measured data can be calculated in the whole plane;
then only the data outside the shaded region are used in the

reconstruction of the correction term fN. The data of R'f
in the missing region can be separated from the measured
data by multiplying by w(s, t), a map function that is zero in
the shaded region of Figure 5, and one outside. Denote p,
as the projection image in a parallel beam geometry from
the direction of the normal of the plane, and Sp, as its
sinogram. The relationship between R’ f and §'p, can be
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found using Grangeat’s formula, by letting D go to infinity in
(5):

S'pp(p,m) = R f(p,n). (6)

From Figure 2, it is also seen that the unit vector m
becomes identical to 7 in a parallel geometry. Let m or
n= (cosa, sina). For simplicity, the functions § pp(p,r;l)
and R’ f(p,n) are rewritten as S'pp(p,a) and R f(p,a) in
the polar coordinate system. Based on Figure 5, the map

function w in the (p,«) coordinate system can be found
as

|pl > |Dcosel,

1>
w(p,a) = <| (7)

0, otherwise.

Now the multiplication of w(p,a) on R’ f(p,«) can be
done directly on §'pj,, according to (6):

S'pp(p,)w(p,a) = R f(p,a)w(p, ). (8)

We then approximate the parallel projection data S p,
using the CB projection data S'p. Mathematically, the
following approximation is made:

p2 + DZ
D2

S'plp, )w(p,a) = S pplp, ) w(p, ). 9)

Note that D goes to infinity in a parallel beam geometry, and
the weight (p? + D?)/D? equals one on the right-hand side.
Equations (8) and (9) show that the missing Radon space
data are approximated using the measured CB projection
data.

We first derive the correction term that compensates
for the missing data in terms of §'p,, and then apply the
approximation shown in (9). To calculate the correction
term, reconstruction must be carried out using only par-
tial projection data in the domain of §'p,. This can be
done by using a 2D reconstruction of the projection data,
followed by a 3D parallel reconstruction. Note that these
intermediate steps are used only in the derivation, and the
derived final formula is implemented efficiently without
these steps.

Since Sp, is the sinogram of the projection image, we can
compute the parallel projection image p, using FBP in a 2D
parallel geometry:

2 oo
ppu,v) = %J J Spp(p, a)go(ucosa + vsina — p)dp da
0 — o0
(10)

21 oo
= i J S'ppp, @)gn(ucosa+vsina—p)dp da,
0 — o0
(11)

where go(u) is the ramp-filter kernel and g (u) = 1/7u is the
Hilbert kernel. In (11), we use a Hilbert transform after a
first derivative operation to substitute for the ramp-filtering,
so that the calculation can be directly applied on §' p,,.

5
TaBLE 2: Simulation parameters.

Source to detector distance (D + D,y) 700 mm
Source to axis distance (D) 350 mm
Detector size 512 x 512
Detector element pitch 0.781 mm
Full cone angle in the z direction 32deg
Full fan angle in the x-y plane 32deg
Projection number of a full scan 800
Reconstructed volume 256 X 256 X 256
Reconstructed voxel size 0.781 mm

Denote p,, as the projection image reconstructed from
partial data of §’p,. Using (11), we have

Pm(u,v)

2m oo
= ﬁ I S ppp, )w(p, a) xgn(ucosa+vsina—p)dp da
0 —00
(12)

Denote f, as an estimate of the missing data fy in

(1). We can compute the correction term ﬁ using the 3D
parallel reconstruction of p,,. This computation can be
done as slices of 2D parallel reconstructions. The FBP-based
reconstruction is

fc(x, ¥,2) = % znpp(xcosﬁ+ysinﬁ,z,ﬁ)dﬁ, (13)

where pr is the ramp-filtered parallel projection at view
angle f3:

pr(u,v) = Jo_ooopm(ﬁ, v)go(u —u,v)du (14)

1 )
= E‘[iwp;n(ﬁav)gh(u—ﬁ’y)dﬁ_ (15)

Calculation of ﬁ using (12), (13), and (15) can be
simplified. Based on the two-step method developed by Noo
et al. [22], 2D parallel reconstruction can be carried out
using a derivative backprojection followed by a 1D Hilbert
transform on the reconstructed image. Therefore, the Hilbert
transform is taken out of the integral:

pm(u,v)
1 © - 2
= EJ:oogh(u)Jo sgn(cosa)
xS pp((u —)cosa + vsina, «)

Xw((u—1u)cosa+vsina, a)da du,

(16)
where sgn is the signum function.
Define the function pj, as
2
pr(u,v) = J sgn(cosa)S’ pp(ucosa + v sin a, o)
0 (17)

X w(ucosa + vsina, a)da.
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Then, we have

Pl = 1| g@pu—wvda (8)

Both first derivatives are with regard to the first parameter.

Insert (18) into (15), and the two Hilbert transforms
become —1 since the Hilbert transform of a Hilbert trans-
form of a function equals the negative of the function:

pe(yv) = —#p;,(u, W, (19)

The problem is simplified to the calculation of p;.
Applying the approximation in (9), we have

pp(u,v)

0 2 (ucosa + vsina)® + D?
~ 5, sgn(cosa) D2

x 8 p(ucosa+v sin a, o) w(ucosa+vsin a, (x)d(x)

(ucosa + vsina)® + D2
D2

2
= J sgn(cosa)
0

X a%{ (S p(ucosa+vsin a, a)) w(ucosa+vsin o, a)da

+J2’TS n(cosoc)f (ucosa + vsina)? + D?
0 & ou D?

x 8§’ p(ucosa + vsin o, ) w(ucosa + v sin a, a)da
(20)

(ucosa + vsin a)? + D?
D2

2
= J sgn(cosa) cosa
0
x 8" p(ucosa + vsin a, ) w(ucosa + vsin o, a)dor

2(ucosa + v sin )
——————cos«a

2
+
Jo sgn(cosa) D2

x 8§ p(ucosa + vsin a, a)w(ucosa + v sin a, a)da

2
= J |cosa|w(ucosa + vsin a, &)
0

(ucosa + vsina)? + D? ,
X D2 S" p(ucosa + vsina, «)

2 +vsi i
n w&mucosa +vsina, a))d“-

(21)

The discontinuous positions of the function w correspond
to the points on the surface of the torus of measured data in
Figure 3, which are compensated for by Hu’s correction term.
Therefore, in (20), the derivatives on the discontinuities of w
are not included.

Equation (21) has a structure of shift-variant filter-
ing (due to the shift-variance of the multplication by
the weighting function) and backprojection, therefore the
implementation is not very efficient. Furthermore, since a
weighted sinogram of each 2D projection image is needed in
the calculation, it is required that no truncation is present
in the projection. In particular, the method suffers from
projection truncation in the longitudinal direction, so-called
long object problem.

We simplify (21) using further approximations. Since the
weighting of §” p is usually much larger than that of §’ p, that
is, (p? + D?)/D? versus 2p/D?, the second term associated
with §’p is ignored. For a circular trajectory with a not very
large cone angle, we have D > p. The weighting function
w is nonzero only when |cosa| < [p/D], that is, in small
neighborhoods of « at 77/2 and 371/2. In these neighborhoods,
the following approximations can be made:

vsina =~ sgn(sina)v,

ucosa = 0,
(22)

S"p(sgn(sina)v,a) =~ S"p (v, %)

Now the calculation of pj, can be simplified as

2
D S"p(v,a)da

m
pnu,v) = ZJ [cosa|w(v, oc)
0

2 2 7/2+arccos(|v|/D)

v-+ D=, T

~2 > S p(v,f>‘[ |cosa|da
D 2 n/2—arccos(|v|/D)

_41/2+D2 1_\/D2—V2 % (v E)

YT D P\»3
v2 + D? D2 — 12

=4 <1_ D )

T
o\ Jm P
(23)

The correction term fc can be calculated by combining (13),
(19), and (23).

Note that the approximate p; (or pp) is a function
independent of parameter u. Backprojection of pr shown
in (13) can be implemented efficiently by simply changing
variable v in the projection space to z in the reconstruction
space.

2.4. Practical reconstruction scheme

The final reconstruction is the summation of the FDK
reconstruction fFDK, Hu’s term fH, and the correction term

for
f = J?FDK + fH + fc (24)
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Hu’s method

T-FDK

Yang’s method Proposed method

FIGURE 6: Reconstructions of the Shepp-Logan phantom. Top row: x-z views; bottom row: y-z views. Display window: [0.98 1.05].

Hu’s term

Proposed term

FIGURE 7: Images of the second term (Hu’s term) and the third term
(the proposed correction term) of (24), using the projection data
on the Shepp-Logan phantom. Top row: x-z views; bottom row: y-z
views. Display window: [0 0.08].

The practical implementation of this formula is summarized
below. The derivations of the FDK reconstruction and Hu’s
term can be found in [2, 5], respectively, and the formulae
are presented here as a reference:

;er(x-ll—)D);qF ((x?—yD)ﬁ’ (x?—ZD)[;’ﬁ>dﬁ’

arwnf) = | @ p)s (1~ W)
(25)

f/;DK(x$ L) Z) =

where the subscript 8 stands for the coordinate transforma-
tion of rotation about the z axis by f8; and

A 1 (%" z Dz
S = =5, (mw)ﬁ%((xw)ﬁ’ﬁ)dﬁ’

WO = 35| e B
(26)
fc is calculated by using (13), (19), and (23):
A 1 22+ D2 D2 - 22
S r2) = = (“‘ b )
2 9?2
azz (J /72+ZZ+D2 pv(u Z, )du) dﬂ
(27)

This estimation formula of the missing term fN in (1)
is the main result of the paper. The equation shows a
simple structure of calculation. Note that, since the second
derivative operation is very sensitive to high-frequency errors
and the intensity drop artifacts are mostly low-frequency
signals in the longitudinal direction, filtering techniques are
used to suppress the errors in the calculation. A practical
implementation can be divided into the following steps.

Step 1. Take each projection p,(u,v,f3)
direction of u.

, integrate along the

Step 2. Take the second derivative with respect to variable v.

Step 3. Filter the 1D profile obtained from Step 2 using a
median filter and a window filter.

Step 4. Integrate the processed 1D profile along the
projection angle f.
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Fi1GURE 8: 1D central vertical profile comparison of Figure 6. (a) The reduction of the axial intensity drop. (b) The reconstructed object edge

using different algorithms.

FDK

Hu’s method

T-FDK

Yang’s method Proposed method

FIGURE 9: Reconstructions of the FORBILD head phantom. Top row: x-z views; bottom row: y-z views. Display window: [1.02 1.08].

Step 5. Change coordinate variable from the projection space
to the reconstruction space (from v to z).

Step 6. Weight by (—1/47?)((z* + D*)/D?)(1 — +/D* — z%/D).

Step 7. Replicate the 1D profile of z in the directions of x and
y to generate a 3D volume.

As discussed earlier, Step 3 is important to suppress high-
frequency misestimation and remove the streak artifacts that
are otherwise present in fAC The median filter is able to
remove high spikes caused by object boundaries, and the
window filter is able to smooth out small fluctuations. In
all the implementations presented in this paper, we used
a median filter with a width of 10 pixels and a Hamming
window filter. It is worth mentioning that since the filtering

is applied only on f; to enforce low-frequency estimation,

it will not affect the resolution of the reconstructed images
obtained by the first two terms in (24).

In (27), we take the second derivative of the projec-
tion images along the vertical direction, and therefore the
proposed algorithm can survive the long object problem.
The calculation of (27) is also very efficient, since neither
a shift-variant filtering step nor a backprojection step is
used. This feature makes the proposed algorithm distinct
from other existing algorithms, such as Yang’s method [19].
As will be shown in the section of numerical results, in
our implementations, the proposed method is typically 7-
8 times more efficient than Yang’s method. Note that the
calculation of Hu’s term (26) has the same FBP structure as
the FDK reconstruction, and the cone-beam backprojection
steps of these two calculations can be combined to reduce the
computation cost. Since in FBP reconstructions, the back-
projection step takes the majority of the computation time,
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FDK

Hu’s method

T-FDK

Yang’s method Proposed method

FIGURE 10: Reconstructions of the Defrise phantom, x-z views. Display window: [0.7 1.1].

Reconstructed value
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—— FDK --- Yang’s method
--- Hu’s method -—-— Proposed method
— T-FDK Ideal

FIGURE 11: 1D central vertical profile comparison of Figure 10.

the computation complexity of the proposed reconstruction
(24) is close to that of the FDK reconstruction only.

3. NUMERICAL RESULTS
3.1. Simulation details

The algorithm performance was evaluated using computer
simulations. Table 2 summarizes the system parameters
used in the simulations. Three computer phantoms were
used in this study. The first was the 3D Shepp-Logan
phantom as defined in [23], which contains low-contrast
objects. The second was the FORBILD head phantom
(http://www.imp.uni-erlangen.de/forbild/). This phantom
contains high-contrast objects, and therefore it results in
more missing data in circular CBCT geometry. To further
verify the algorithm, the Defrise disc phantom was also
used. The Defrise phantom consists of seven ellipsoidal
discs stacked in the z direction. Each disc has a uniform
attenuation coefficient of 1 mm™!, and the ellipsoid has
a diameter of 140 mm and a thickness of 14 mm, with
a distance of 25mm between discs. This phantom has
strong high-frequency components in the z direction, and
therefore has high values in its first derivative of the Radon
transform in the region where the data are unmeasured in a
circular CB scan. It represents the most challenging case of
reconstruction using the circular CB data.

Simulations were carried out on full-scan data. To test
the stability of the algorithm, reconstructions on noisy data
of the Shepp-Logan phantom were also investigated. In
the simulation, we used 300000 photons per ray, and the
base material of the Shepp-Logan phantom is modeled as
water at 80keV, with a linear attenuation coefficient of
0.01837 mm™!.

To demonstrate the merit of the proposed algorithm, we
compared the reconstructions using five different algorithms:
the FDK algorithm [2], Hu’s algorithm (only the first two
terms of (24) are included) [5], the T-FDK algorithm [10],
Yang’s algorithm [19], and the proposed algorithm (24).
All the five algorithms are in the category of analytical
reconstruction algorithms for circular CBCT. As discussed
earlier in the introduction section, the T-FDK algorithm was
developed heuristically with a structure of shift-invariant
FBP, and Yang’s algorithm was based on interpolation in the
Radon space, with a structure of shift-variant FBP.

3.2. Reconstruction results

Figures 6, 9, and 10 show the reconstructed images on
a full scan of the Shepp-Logan phantom, the FORBILD
head phantom and the Defrise disc phantom, respectively.
Comparisons of 1D vertical profiles of these images are also
shown in Figures 8 and 11. The algorithm performances
on the FORBILD head phantom are close to those on the
Shepp-Logan phantom, and the 1D profile comparison of the
reconstructions of the FORBILD head phantom is omitted
here.

From the comparison, it is seen that the CB artifacts of
axial intensity drop are apparent in the reconstructions using
the FDK algorithm or Hu’s algorithm, and these artifacts are
effectively suppressed using the proposed method.

The performance of the T-FDK algorithm on the reduc-
tion of intensity drop artifacts is also inferior to that of
the proposed algorithm, as shown in the comparison of
reconstructions. It is worth mentioning that the T-FDK
algorithm is slightly more efficient than the FDK algorithm
[10], although it causes resolution loss [18]. Recall that
the proposed algorithm requires computation close to that
of the FDK algorithm. Therefore, the T-FDK algorithm
is more efficient than the proposed algorithm. Note that
the reconstruction results using Hu’s algorithm and the T-
FDK algorithm are very similar. This similarity holds under
certain conditions, and readers can refer to [24] for detailed
discussion.
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FDK Hu’s method

Proposed method

FIGURE 12: Reconstructions of the Shepp-Logan phantom, using noisy projection data, x-z views. Display window: [0.98 1.05]. Based on
the noise-free reconstructions as shown in Figure 6, from left to right, the noise variances in the images are measured as 5.872 x 1073,

5.872 x 107>, and 5.874 x 107°.

Compared to Yang’s algorithm, our proposed algorithm
has an advantage of high computation efficiency. As dis-
cussed in Section 2.4, the correction term in our algorithm
only involves integration and derivative operations, and it
is computed very efficiently. Yang’s correction term has a
structure of shift-variant filtering and backprojection; both
steps require intense computation. In our implementations,
Yang’s algorithm is typically 7-8 times slower than our
proposed algorithm.

Both the proposed algorithm and Yang’s algorithm
achieve similar reduction of the intensity drop away from
the object edge. Nonetheless, estimation of high-frequency
data in Yang’s algorithm causes relatively large errors. The
resulting artifacts are around the object edges in the axial
direction, typically streaks with negative magnitudes. This
problem can be seen in Figure 8(b), and is more obvious
in Figure 11, where data estimation is more challenging due
to the high-frequency missing data along the axial direction.
Our algorithm does not estimate the high-frequency missing
data, and the negative streaks do not appear around the
object edges.

Reconstructions on noisy projection data are shown in
Figure 12 to demonstrate the stability of the proposed algo-
rithm in the presence of noise. The algorithm performance is
similar to that in previous comparisons. Based on the noise-
free reconstructions as shown in Figure 6, the noise variances
in the images are also measured. The noise in the image using
the proposed algorithm remains in the same level as that in
the image using the FDK algorithm or Hu’s algorithm.

4. CONCLUSIONS AND DISCUSSION

In this work, we propose an efficient estimation method
to reduce the intensity drop in the CB reconstruction on
circular scans. The algorithms are derived using data analysis
in the Radon domain via Grangeat’s formula. Assuming the
CB projections are measured in a parallel beam geometry,
we estimate the unmeasured data from the CB projections.
These data are then reconstructed to form a correction term
to improve the FDK reconstruction with Hu’s term included.
Equivalently, an implicit data interpolation/extrapolation is
carried out in the Radon domain. It is interesting to note
that Hu’s term takes the first derivative of the projection data
along the axial direction, while our correction term takes

the second derivative. Although our algorithm is derived for
circular CBCT on a full scan, it can be easily extended to
short-scan reconstructions using weighting schemes, such as
Parker’s weighting.

The algorithm performances are evaluated using com-
puter simulations on the 3D Shepp-Logan phantom, the
FORBILD head phantom, and the Defrise disc phantom. The
results show that the proposed method greatly suppresses
the axial intensity drop in the FDK reconstructions and
its performance improves on Hu’s algorithm. Residual
artifacts are mainly due to the high-frequency Radon space
data missing in a circular CB geometry, which cannot be
estimated accurately using interpolation or extrapolation in
general. As demonstrated in the results of the Defrise disc
phantom, relatively large reconstruction errors are expected
around high intensity objects, such as bones in a clinical case,
in the longitudinal direction.

Our algorithm also outperforms the T-FDK algorithm
on the reduction of intensity drop artifacts. As compared to
other existing algorithms, such as Yang’s algorithm, that are
based on interpolation in the Radon space, our algorithm has
an advantage of high efficiency. The calculation of the correc-
tion term requires only simple integration, 1D derivative and
multiplication operations, and the total computation of the
proposed algorithm is close to that of the FDK algorithm.
In our implementations, the proposed algorithm is 7-8 times
faster than Yang’s algorithm.
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