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Spectrum of PEX1 and PEX6 variants in Heimler
syndrome

Claire EL Smith1, James A Poulter1, Alex V Levin2,3,4, Jenina E Capasso4, Susan Price5,
Tamar Ben-Yosef6, Reuven Sharony7, William G Newman8,9, Roger C Shore10, Steven J Brookes10,
Alan J Mighell1,11,12 and Chris F Inglehearn*,1,12

Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail

abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6, both
previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial

and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and

PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct

nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the

patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in

PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role

in HS. The PEX6 variant c.1802G4A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD

cases, was found in compound heterozygous state in three HS families. Haplotype analysis suggests a common founder variant. All

families segregated at least one missense variant, consistent with the hypothesis that HS results from genotypes including milder

hypomorphic alleles. The clinical overlap of HS with the more common Usher syndrome and lack of peroxisomal abnormalities on

plasma screening suggest that HS may be under-diagnosed. Recognition of AI is key to the accurate diagnosis of HS.
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INTRODUCTION

Heimler syndrome (HS; #234580, #616617) was first described as a
combination of sensorineural hearing loss, amelogenesis imperfecta
(AI) and nail abnormalities in two siblings.1 Subsequently, three further
families were reported, detailing five patients with similar phenotypes,
all with family histories consistent with recessive inheritance.2–4

Additionally, one of the original cases developed macular dystrophy
at 29 years of age, leading to suspicion that HS may also encompass eye
disease in either its clinical course or phenotypic spectrum.5

A recent study described mutations in Peroxisomal Biogenesis Factor 1
(PEX1; MIM*602136) and Peroxisomal Biogenesis Factor 6 (PEX6;
MIM*601498) as the cause of HS in a patient cohort.6 Four families,
including the index cases, had biallelic mutations in PEX1, while two
families segregated biallelic mutations in PEX6.6 These genes, together
with 12 other PEX genes, are implicated in peroxisome biogenesis
disorders (PBDs; MIM Phenotypic series PS214100), which are
characterised by a wide range of phenotypes, including craniofacial
dysmorphism, neurological abnormalities, sensory defects and liver,
kidney and bone abnormalities.7 The PBDs include the Zellweger
syndrome spectrum disorders (ZSSD): Zellweger syndrome (ZS),
neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease
(IRD), which represent overlapping clinical phenotypes that vary in

severity, with ZS being the most severe. While ZS patients often present
with serious disease at birth and live only a few weeks
or months, patients with IRD and NALD generally present later in
childhood, primarily with sensorineural hearing loss and retinal
dystrophy, but also with multiple organ dysfunction and psychomotor
impairments.7,8 By comparison, HS patients therefore represent the
mildest phenotypic subgroup of the ZSSD.6

Mutations in PEX1 and PEX6 are the most common causes of
ZSSD and result in impaired peroxisomal function.9 Peroxisomes are
ubiquitous cellular organelles that perform numerous diverse vital
functions, including β-oxidation of very long-chain fatty acids,
the synthesis of myelin precursors and detoxification of hydrogen
peroxide. Defective peroxisomal function can result in changes in
neuronal migration, proliferation, differentiation and survival.10–12

PEX1 and PEX6 are type 2 AAA+ ATPases that form a hetero-
hexameric protein complex in vivo.13 The complex is part of the
mechanism that shuttles the peroxisome-targeting signal receptor
protein PEX5 back to the cytosol after release of its protein cargo
within the peroxisomal lumen. PEX1 and PEX6 provide the energy
required to remove PEX5 from the luminal membrane and their
function is dependent upon interaction with the membrane protein
PEX26.14 Peroxisomes are formed primarily by fission following
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import of newly synthesised peroxisomal proteins from the cytoplasm
into the peroxisome. Mutations in the genes encoding these proteins
therefore give rise to a peroxisomal protein import defect, which in
turn leads to a deficiency of peroxisomal biogenesis.
The phenotype variation seen in ZSSD is related to the severity of

the underlying PEX gene mutations. Biallelic loss of function or null
alleles, caused by frameshift and nonsense mutations, often lead to a
total absence of peroxisomes, resulting in ZS, while genotypes that
include an allele with a minor import defect, caused by a missense
mutation, may lead to NALD or IRD.15–17 Similarly HS was also shown
to result from hypomorphic mutations.6 Functional complementation
studies of PEX1 and PEX6 variants in peroxisome-deficient cells
revealed that at least one of the HS alleles in each patient retained
significant activity.6 Therefore the aetiological basis of the HS phenotype
is believed to be a mild peroxisomal protein import defect that is the
result either of biallelic hypomorphic alleles or of compound hetero-
zygosity for a genotype involving at least one hypomorphic allele.6

Here we present six additional families in whom affected individuals
were diagnosed with sensorineural hearing loss, enamel defects and
retinal dystrophy. Whole-exome sequencing revealed biallelic PEX1 or
PEX6 variants in each family. We also present patterns of immuno-
reactivity for the peroxisomal proteins Pex1, Pex6 and Pex14 in adult
mouse retina.

SUBJECTS AND METHODS

Patients
HS patients and relatives from six unrelated families were recruited after
obtaining informed consent, in accordance with the principles outlined in the
declaration of Helsinki, with local ethical approval. Genomic DNA was
obtained from venous blood samples using a salt-based extraction protocol
or from Saliva using Oragene DNA Sample Collection kits (DNA Genotek,
Ottawa, ON, Canada) as detailed in the manufacturer’s instructions.

Whole-exome sequencing and analysis
Three micrograms of genomic DNA from single or multiple individuals from
each family (marked with * on pedigrees, Supplementary Figure S1) was
subjected to whole-exome sequencing using the SureSelect All Exon v4 or v5
XT reagent (Agilent Technologies, Santa Clara, CA, USA). Sequencing was
performed on an Illumina Hi-Seq 2500 sequencing platform (Illumina, San
Diego, CA, USA), using a 100 bp paired-end protocol. Fastq files were aligned
to the human reference genome (GRCh37) using Novoalign software (Novo-
craft Technologies, Selangor, Malaysia). The resulting alignment was processed
in the SAM/BAM format using the SAMtools, Picard (http://picard.sourceforge.
net) and GATK programs to correct alignments around indel sites and mark
potential PCR duplicates.18,19

Indel and single-nucleotide variants were called in the VCF format using the
Unified Genotyper function of the GATK program. Using the dbSNP database
at NCBI, any variants present in dbSNP142 with a minor allele frequency
(MAF) ≥ 1% were then excluded and the remaining variants were annotated
using in-house software freely available at http://sourceforge.net/projects/
vcfhacks/.

PCR and Sanger sequencing
Variants were confirmed and segregation was tested in all available family
members. Primer sequences can be found in Supplementary Table S1. PCR
mastermix HotShot Diamond (Clent Life Science, Stourbridge, UK) was used
to amplify sequences. Sanger sequencing was performed using the BigDye
Terminator v3.1 kit (Life Technologies, Carlsbad, CA, USA) according to the
manufacturer’s instructions and resolved on an ABI3130xl sequencer (Life
Technologies). Results were analysed using SeqScape v2.5 (Life Technologies).
All variants confirmed by Sanger sequencing and reported in this study were

submitted to ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/ submission refer-
ences SCV000264800- SCV000264808 inclusive).

Microsatellite marker genotyping
Genotyping of genomic DNA was carried out using fluorescently labelled
primers (Sigma, St Louis, MO, USA). Amplified DNA was diluted between
5 and 20× with Hi-Di Formamide (Applied Biosystems, Foster City, CA, USA)
and 1 μl of the dilution added to 8 μl Hi-Di Formamide and 1 μl 500 ROX size
standard (Applied Biosystems). Fragments were resolved on an ABI3130xl
sequencer using a 36-cm array, POP7 polymer and 3730 buffer with the
FragmentAnalysis36_pop7_1 module (Applied Biosystems). Resulting data were
analysed on GeneMapper v4.0 (Applied Biosystems).

Immunohistochemistry
Eye sections were obtained by dissection from killed adult C57Bl/6 mice. After
fixation in neutral-buffered formalin for 24 h, eyes were embedded in paraffin
wax and sectioned at a thickness of 5 μm. Sections were mounted on
SuperFrost Plus slides (Menzel-Glaser, Braunschweig, Germany). Immunohis-
tochemistry was carried out by microwave treatment with 10 mM citrate buffer
pH 6.0. Blocking of endogenous peroxidases was achieved by incubating slides
with 0.3% hydrogen peroxide in methanol for 10 min. The primary antibodies
and the dilutions used were rabbit anti-human PEX14 polyclonal (10594-1-AP;
Proteintech, Chicago, IL, USA) at 1:750, rabbit anti-human PEX1 polyclonal
antibody (13669-1-AP; Proteintech) at 1:450 and goat anti-rat Pex6 polyclonal
antibody (ab175064; Abcam, Cambridge, UK) at 1:50. The anti-PEX14, anti-
PEX1 and anti-Pex6 antibodies had been raised against human and rat antigens,
respectively, but all were predicted to crossreact with the corresponding murine
antigen. The secondary antibody used for sections treated with the anti-PEX14
or the anti-PEX1 antibodies was the labelled polymer-HRP anti-rabbit reagent
from the EnVision+ System-HRP (DAB), for use with rabbit primary
antibodies (Dako, Ely, UK) and was used as described in the manufacturer’s
instructions. Slides were washed twice with Tris-buffered saline pH 7.5 with
0.0125% Tween 20 added and once without after each reagent. Staining was
achieved with DAB+ reagent from the EnVision+ System-HRP (DAB) for use
with rabbit primary antibodies (Dako) as described in the manufacturer’s
instructions. Counter staining was with haematoxylin (Solmedia, Shrewsbury,
UK). Use of the anti-Pex6 antibody raised in goat required some modification
to this standard method. Avidin and biotin blocking (Vector Laboratories,
Burlingame, CA, USA) was used prior to primary antibody application for the
sections treated with the antibody raised in goat. In addition, the secondary
antibody and dilution used for these sections was rabbit polyclonal anti-goat
immunoglobulins/biotinylated (E0466; Dako) at 1:200. These sections were
then treated with the Vectastain Elite ABC Kit (Vector Laboratories) prior to
staining with DAB reagent as described above.

RESULTS

Whole-exome sequencing
Six unrelated families segregating autosomal recessive syndromes with
phenotypes overlapping HS were recruited to the study. The majority
(cases in Families 1, 3, 4, 5 and 6) had been clinically diagnosed with
a combination of Usher syndrome (MIM Phenotypic series PS276900)
and AI, while only the proband in Family 2 had been diagnosed with
HS (Supplementary Figure S2). The phenotype of II:2 of Family 4 has
been reported previously.20 Affected individuals presented with sensor-
ineural hearing loss, retinal dystrophy and enamel hypoplasia (Figure 1
and Supplementary Table S2). In addition, II:1 of Family 6 presented
with schizophrenia, mild learning disability and skin abnormalities over
his hands and lower legs (Supplementary Figure S3). Families were of
US (Families 1, 2 and 3), UK (Family 4), Israeli (Family 5) and Chinese
(Family 6) origins and none reported consanguinity.
Following post-processing and duplicate removal, mean depth of

coverage for targeted exons ranged from 37.8 to 89.8 reads. Bases
covered by at least five reads ranged from a minimum of 98.5% to
a maximum of 99.4% for each of the eight exomes examined. Further
alignment statistics can be found in Supplementary Table S3.
The variant files were filtered to remove synonymous, non-coding,

intronic and intergenic variants other than those affecting splice donor
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and acceptor sites. The remaining list was then further filtered to
identify biallelic variants. In each family this revealed either PEX1 or
PEX6 variants that are predicted to be pathogenic by various muta-
tion prediction software packages (Supplementary Table S4) and are
rare (MAFo0.01) or absent in human variant databases, including
dbSNP142, the Exon Variant Server (EVS; http://evs.gs.washington.
edu/EVS/) and the Exome Aggregation Consortium (ExAC; http://
exac.broadinstitute.org/) (Table 1 and Figure 2). These included four
novel and two known missense variants and an 8 bp deletion in PEX6,
together accounting for HS in five families, and a known missense and
novel frameshift variants in PEX1 in the remaining family. Previously
unreported missense variants, c.654C4G, p.(F218L) and c.2714G4T,
p.(C905F), were found to affect residues that are conserved in 12 other
mammalian species analysed and in zebrafish (Supplementary
Figure S4). Variants c.275T4G, p.(V92G) and c.296G4T, p.(R99L)
affect a region of the PEX6 protein that is absent in three mammalian
species analysed and is not conserved in zebrafish, but is conserved
in the remaining nine mammalian species assessed.
HS patients in three of the families, all from the USA, were compound

heterozygotes for the known PEX6 missense variant c.1802G4A,
p.(R601Q) (rs34324426). In each case, this was observed in
combination with a novel PEX6 missense variant; c.[1802G4A];
[654C4G], p.[(R601Q)];[(F218L)] in Family 1, c.[1802G4A];
[275T4G], p.[(R601Q)];[(V92G)] in Family 2 and c.
[1802G4A];[296G4T], p.[(R601Q)];[(R99L)] in Family 3. The
c.1802G4A p.(R601Q) variant has been reported previously in
seven ZSSD patients8,21 and one HS patient6 always in a compound
heterozygous state. Ethnicities were not given for the individuals with
ZSSD but they were identified in US studies and the HS patient was
from the UK, which together with our own findings suggest that this

may be a common allele in the US/UK. We therefore carried out
haplotype analyses on Families 1, 2 and 3 to determine whether
these families carried the allele on a common founder haplotype.
By genotyping nearby microsatellite markers and examining the
zygosity of known SNPs in WES data from patients, we noted that
the c.1802G4A, p.(R601Q) variant is consistently associated with
a haplotype of two SNPs and one microsatellite spanning a region
of 779 kb (Supplementary Tables S5 and Supplementary Figure S5).
This suggests that the c.1802G4A, p.(R601Q) change is a founder
variant, though the relatively short range over which the conserved
haplotype extends makes this difficult to prove unequivocally, and
may imply that it arose many generations ago.
In UK Family 4, a known heterozygous frameshift variant in

PEX6,21,22 was identified, together with a novel missense variant
c.[1314_1321delGGAGGCCT];[2714G4T], p.[(E439Gfs*3)];[(C905F)].
For Family 5, of Yemenite Jewish Israeli origin and not known to
be consanguineous, a known homozygous variant, c.[1715C4T];
[1715C4T], p.[(T572I)];[(T572I)], in PEX6 was identified.21,23 This
variant was previously reported in an individual of mixed Yemenite and
Ashkenazi Jewish origin, initially diagnosed with Usher syndrome and
subsequently diagnosed with ZS.23

In Family 6, of Chinese origin, a novel PEX1 frameshift variant
was identified, in combination with a known missense variant,24

c.[1792delA]; [2966T4C], p.[(Q598Tfs*11)];[(I989T)]. Plasma from
Individual II:1 underwent analysis for a variety of peroxisomal
parameters (Supplementary Table S8). All results were within the
reference range except hexacosanoate (C26:0) concentration, which
may have been elevated due to dietary factors or the conditions
of sample ascertainment. At the time of writing, no other individual

Figure 1 Clinical detail of the phenotype of individual II:1 from Family 3. (a and b) AI affecting the primary and secondary dentitions with a generalised
reduced enamel volume (hypoplasia) and variable hypomineralisation, which is a feature particularly evident in the lower left permanent first molar tooth
(white arrow). (c–e) The figures detail the phenotype of the right eye. (c) Fundus image showing pigmentary maculopathy and mild retina vascular
attenuation. (d) Optical coherence tomography showing depletion of photoreceptors in the perifovea and disruption of the outer nuclear layer. (e) Fundus
autofluorescence showing hyperfluorescence at the perifovea.
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from this study has been tested in this way, although individuals from
Families 2 and 3 will undergo such testing in future.

Pex1, Pex6 and Pex14 immunoreactivity in the adult mouse retina
The pathology associated with the retina of individuals with HS and
other ZSSD suggests that peroxisomes are crucial to the development
and/or maintenance of a functional retina. Therefore, we utilised
immunohistochemical staining to determine the locations of Pex1 and
Pex6 within the retina. Pex14 expression was also analysed since it has
been shown to be an optimal marker for identification and localisation
of peroxisomes in a variety of cell types.25

Although peroxisomes are known to be ubiquitous cellular orga-
nelles, staining of peroxisomal membrane proteins in the retina has
only recently been described for Pex6 and PEX6 in murine and human
retina, respectively. The study found that Pex6 was detected in nearly
all of the layers of the neuronal retina but that staining
was most intense in the ciliary region of the photoreceptors and the
inner segment.26 Therefore, we utilised antibodies raised against PEX1,
Pex6 and PEX14 and similarly found staining throughout
the retina with the exception of the photoreceptor outer segment in
all cases (Figure 3a–e). The ganglion cell layer (GCL) and the
photoreceptor inner segment showed the most intense Pex14 immu-
noreactivity (Figure 3a). For Pex1, the outer plexiform layer (OPL)
stained intensely, with strong staining also present in the GCL and the
inner plexiform layer (Figure 3c). For Pex6, the most intense staining
was present in the GCL and the external limiting membrane (ELM)
(Figure 3e). In all cases, retinal sections incubated without the primary
antibody but with the same secondary antibodies did not reveal
nonspecific staining (Figure 3b and d).

DISCUSSION

This study confirms the report by Ratbi and co-workers6 that HS is
caused by variants in PEX1 and PEX6 and highlights PEX6 variants as
the more common cause of the HS phenotype. Here we report one
further HS family with a combination of a known missense and novel
frameshift variant in PEX1, together with five HS families in which
HS is due to four novel and two known missense variants and an 8 bp
deletion in PEX6. We also report the detection and distribution of
Pex1, Pex6 and Pex14 immunoreactivity within the mouse retina.
Analysis of the 14 PEX genes implicated in ZSSD in over 600

patients with the more severe ZD, NALD or IRD has shown that 58%
of mutations are in PEX1, with PEX6 accounting for a further 16%,
PEX12 for 9% and the remaining 11 genes each accounting for 4%
or less.9 By comparison, Ratbi and co-workers6 found four HS cases
with PEX1 mutations and two with PEX6 mutations, mirroring
the frequency observed for ZSSD. In this case series however, PEX6
variants predominate, bringing the total across both studies to seven
families/cases with PEX6 variants and five with PEX1 variants in HS
families. This may imply that variants in PEX6 have less severe
consequences and are therefore found more commonly in the milder
HS than in the more severe ZSSD.
Previous studies of ZSSD have reported evidence of genotype–

phenotype correlation with respect to mutation type in both PEX1 and
PEX6. The more severe cases, those diagnosed as ZS, have more
deleterious genotypes, including homozygous stop and frameshift
variants, while NALD and IRD cases, at the milder end of the ZSSD
spectrum, include missense variants, splicing defects and late truncat-
ing stops that may leave a partially functional protein.15–17 Ratbi and
co-workers6 extended this observation to HS, now shown to be
the mildest form of ZSSD, by proving that HS is caused by genotypes
that include hypomorphic alleles. The hypomorphic nature of at leastT
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one variant in each HS genotype was confirmed using a cDNA
transfection complementation assay, including the c.1802G4A,
p.(R601Q) variant identified here in Families 1, 2 and 3.6 The
remaining HS variants identified in this study have not been tested
in this way, but each HS genotype documented includes at least one
missense variant.
The presence of AI and the absence of abnormal brain findings or

impaired liver function represent the phenotypic features that
delineate HS from the other ZSSDs. Despite this, there have been
reports of IRD patients with AI,27–29 with one suggesting that AI is
a common finding in IRD patients.27 A recent study described a family
with a homozygous missense variant in PEX6 with a combination of

microcephaly, developmental delay, white matter changes, AI as well
as sensory defects.26 Therefore it is difficult to assign individuals to
HS or IRD diagnoses as it is becoming increasingly clear that their
phenotypes appear to overlap.
Many of the variants identified in the HS patients reported here are

previously unreported in the very substantial previous literature on
ZSSD. This may reflect the relatively mild ZSSD phenotype seen in HS
patients, which may have led to misdiagnosis as Usher syndrome,
or simply the private nature of many mutations in ZSSD.30 By
contrast, the missense variant c.1802G4A, p.(R601Q) (rs34324426)
has been identified in three of the families detailed here and
therefore in four out of the seven HS families with PEX6 mutations

Figure 2 Sanger sequencing and genomic locations of the mutations identified in this study. (a) A schematic diagram of PEX6 genomic structure and
transcript shows the location and sequence traces of seven mutations identified in this study. (b) A schematic diagram of PEX1 genomic structure and
transcript shows the location and sequence traces of two mutations identified in this study. aThe reverse sequence trace is shown for the PEX1 c.1792delA
variant.
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reported to date. This variant is reported in ExAC at an allele
frequency of 0.003192 (316 alleles out of 98 988), including four
homozygotes, and has been found in seven compound heterozygous
ZSSD patients with PEX6 mutations, although no description of the
phenotype of these patients is given.8,21 The apparent common origin
of many of these cases led us to test the hypothesis that they derive from
a common ancestor. Our findings showed that the c.1802G4A,
p.(R601Q) variant is consistently associated with a haplotype spanning
778 kb adjacent to PEX6, suggesting that this is indeed a founder variant.
The homozygous c.1715C4T, p.(T572I) variant identified in Family

5 has also been reported previously.21,23 In one report, a patient with
the same homozygous genotype and same Yemenite Jewish ethnic
origin had initially been diagnosed with Usher syndrome.23 Biochem-
ical analysis of the patient, undertaken only after their child exhibited
an intermediate NALD/ZS phenotype, revealed mild peroxisomal
biochemical dysfunction. Interestingly, the patient was not reported
to have enamel hypoplasia, a consistent finding in all HS patients so
far, so the connection with HS was not made at the time. This may be
due to the influence of additional genetic or environmental modifiers,
or the tooth abnormality may have been present but assumed to
be unconnected at the time of reporting. The c.1715C4T, p.(T572I)
variant may therefore represent a founder mutation within the
Yemenite Jewish population, and patients from that population
diagnosed with Usher syndrome or isolated sensorineural hearing loss
should be reevaluated and examined for AI.
Staining of mouse retina showed that peroxisomal membrane

proteins are expressed in many compartments of the tissue. A previous
study of the mouse neuronal retina detected Pex6 in nearly all of the
layers but showed intense staining in the ciliary region and inner
segment of the photoreceptors.26 The staining pattern seen for Pex6
in this study is similar in that expression was detected throughout the
retina, including strong staining of the IS and OPL, although the most
intense staining was seen at the GCL and ELM. The differences in the
staining pattern between this and the previous study could be due to
the use of different detection methods, antibodies or to differences in
the age of the mice studied. The staining here for all three Pex proteins
suggests that peroxisomes are particularly abundant within the OPL
and GCL. Such layers contain features likely to provoke metabolic
stress, such as synapses, and therefore may require higher numbers of
peroxisomes in order to provide efficient means of detoxification for

cell survival. Previous immunohistochemical analysis of developing
mouse molar teeth has shown that peroxisomes are present at a high
level at the secretory stage of amelogenesis, where they appear in be
transported into the Tomes’ processes, the structures responsible for
the secretion of the enamel matrix.31 Pex6 immunoreactivity has also
been reported in the Tomes’ processes of secretory stage ameloblasts
of developing molar teeth. Therefore in HS patients, a reduction in the
number or efficient function of peroxisomes may compromise the
function or survival of the ameloblasts, ganglion cells and the cells of
the OPL.
For the majority of the patients described in this report, the

diagnosis was of Usher syndrome and AI. All reports of HS to date
suggest that only the secondary dentition is affected by AI. However, a
diagnosis of AI, whether syndromic as in HS or occurring in isolation,
is often delayed until the appearance of the permanent dentition since
it is more difficult to recognise in the primary dentition. In HS, it
appears that peroxisomal dysfunction has a more significant effect
upon amelogenesis of the secondary dentition compared with the
primary dentition. Thus at the time of an Usher syndrome diagnosis,
any accompanying AI in the primary dentition may not be recognised.
Furthermore, since the treatment of AI is administered by different
health professionals, it may not be recognised as an aspect of
a syndromic disease. We therefore suggest that paediatric patients
presenting with sensorineural hearing loss, either in isolation or in
combination with vision defects, should be checked for AI, with
particular consideration of the radiographic appearances of unerupted
teeth. Where there is a suspicion of AI, this should prompt considera-
tion of the alternative diagnosis of HS. Diagnostic testing should utilise
sequencing of PEX1 and PEX6 rather than the biochemical analyses
traditionally used to confirm a ZSSD diagnosis, since results from
patients with HS may still reside within the reference ranges.6

In summary, we present six further HS families, five with biallelic
PEX6 variants and one with biallelic PEX1 variants. We also determine
the location of peroxisomal membrane proteins in the mature retina
of the mouse. Our study brings the total reported HS genotypes
to date to seven with biallelic PEX6 variants and five with PEX1
variants, suggesting that PEX6 variants are more common in HS than
in other ZSSD phenotypes. All families segregated at least one missense
variant, consistent with the hypothesis that HS results from genotypes
that include milder hypomorphic alleles. The clinical overlap of HS

Figure 3 Immunohistochemical staining of murine retina. (a) anti-PEX14 antibody followed by labelled polymer-HRP anti-rabbit reagent. (b) No primary
antibody control: secondary antibody (labelled polymer-HRP anti-rabbit reagent) only. (c) anti-PEX1 antibody followed by labelled polymer-HRP anti-rabbit
reagent. (d) No primary antibody control: control secondary antibody (rabbit anti-goat antibody) only. (e) Anti-Pex6 antibody followed by rabbit anti-goat
antibody. Scale bars represent 100 μm. Abbreviations: GCL, ganglion cells layer; INL, inner nuclear layer; IPL, inner plexiform layer; IS, inner segment; NP,
no primary antibody control; ONL, outer nuclear layer; OPL, outer plexiform layer; OS, outer segment.
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with the more common Usher syndrome and lack of peroxisomal
abnormalities on plasma screening suggests that HS may be under-
diagnosed. Recognition of AI is key for the accurate diagnosis of HS.
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