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Abstract: The impact phenomena of solid micro-particles have gathered increasing interest across
a wide range of fields, including space debris protection and cold-spray additive manufacturing
of large, complicated structures. Effective motion monitoring is essential to understanding the
impact behaviors of micro-particles. Consequently, a convenient and efficient micro-particle motion
monitoring solution is proposed based on continuous single-frame multiple-exposure imaging
technology. This method adopts a camera with excellent low-light performance coupled with high-
frequency light-emitting diode (LED) flashes to generate short interval illumination. This technology
can, in theory, achieve 1 million effective frames per second (fps) and monitor particles as small as
10 microns with speeds up to 12 km/s. The capabilities of the proposed method were validated by
a series of micro-particle motion monitoring experiments with different particles sizes and materials
under varying camera configurations. The study provides a feasible and economical solution for the
velocity measurement and motion monitoring of high-speed micro-particles.

Keywords: micro-particles’ impact; motion monitoring; single-frame multiple-exposure;
high-frequency light-emitting diode flash

1. Introduction

The impact phenomena of solid particles are of interest to researchers across many
fields, including the biomedicine, aerospace, and materials industries, among others. This
phenomena can be divided into several key categories according to the velocity and size
of the particle under observation: particles’ adhesion [1,2]; shot peening, including tradi-
tional pneumatic shot peening [3] (surface-strengthening phenomenon that occurs when
particle diameters range between 0.1 and 1.0 µm and have an impact velocity less than
100 m/s) and supersonic shot peening (surface-strengthening phenomenon that occurs
when particle diameters range between 0.1 and 1.0 µm and have an impact velocity greater
than that of sound) [4–7]; particles’ surface erosion (dynamic process of surface material
loss caused by the impact of particles with diameters of about 50–300 µm at speeds 10 to
300 m/s from differing impact angles) [8–11]; high-speed impact (impact phenomenon of
particles with diameters ranging between 1 and 100 mm and velocity ranging between
50 and 3000 m/s) [12,13]; hypervelocity impact (impact velocity exceeding the speed of
sound propagates in the two impact bodies, creating a temporary high-density and high-
temperature state at the point of impact, leading to 1 TPa of pressure and vaporization
of the associated materials) [14,15]; particles with super-deep penetration (SDP) (metal
particles accelerated to 1–3 km/s impact the metal surface, resulting in a penetration depth
between 1000 and 10,000 times the particles’ diameters) [16,17]; and cold spraying (particles’
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deposition with a diameter of 5–150 µm at a velocity of 300–1200 m/s) [18–20], as shown
in Figure 1.
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Figure 1. Impact phenomenon of solid particles. 
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Motion monitoring is necessary to investigate and understand the micro-particle
impact behaviors which are observed across the many fields. In the research of space debris
protection [14], the impacts of dust and space debris on large flexible parts like solar panels
in space threaten the operation and safety of spacecraft. By monitoring the motion of micro-
particles, an evaluation of initial impact conditions can be made, providing an important
reference for spacecraft to minimize or avoid critical damage. For the biomedical industry,
different velocities of drug micro-particles may lead to different subcutaneous injection
depths with respect to needle-free injection [19]. On the one hand, different drug micro-
particles have different requirements for the depth of skin invasion due to their different
mechanisms and effects. On the other hand, there is an optimal range of subcutaneous
depth for the same drug, which can be better absorbed by the body. Therefore, accurate
movement monitoring is beneficial for improving drug utilization efficiency. In cold spray
additive manufacturing [18,20], it is of great importance to accurately measure the velocity
of micro-particles in order to understand the corresponding relationship between the state
of micro-particles and the outcomes of cold spraying. Micro-particle sizes in the above
fields may be as small as a few microns, while reaching speeds of up to a few kilometers
per second or more. The extreme characteristics in these fields make monitoring the motion
of micro-particles difficult to achieve.

In understanding the impact behaviors of micro-particles, effectively measuring the
velocity and monitoring the motion of micro-particles in the high-speed impact process
are two of the primary challenges [21–27]. Currently, expensive imaging systems with
ultra-high fps and resolution are the main solutions for monitoring the high-speed motion
of micro-particles [28,29]. However, the strict requirements of the camera and light source
make the cost and application threshold excessively high. There is also research into using
a laser-delayed light path to obtain a continuous image for a specific time interval. This
method demands a laser with a specific wavelength and complex optical delay paths [30].
The advent of modern complementary metal–oxide semiconductor (CMOS) and charge-
coupled device (CCD) cameras with fast read-out rates has made it possible to record
almost continuous micro-second exposures [31]. Meanwhile, on a nanosecond time scale,
the electronically triggered framing cameras enable the collection of multiple frames in
a single event (usually at nanosecond exposure times). Although these cameras can capture
images at micro-second or even nanosecond intervals, the number of images captured
is often small, which makes the analysis of the particles’ motion difficult. Furthermore,
particle image velocimetry (PIV) is also used as a typical velocity-measurement method
for flow-field analysis [32–34]. Although it is applicable to a wide range of scenarios and
has high measurement accuracy, it is not suitable for typical industrial fields with tight
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budgeting requirements for the imaging system [35–41]. Stroboscopic imaging technology
has been applied previously [42–44]; however, most of them are restricted to low-speed
flow fields that require tracing with a controlled light source, limiting the application
and development of this technology. There is little research on the application of this
technology in the field of high-speed solid micro-particles’ impact. The commonly used
speed-measurement methods mentioned above have stringent requirements for cameras
and light sources that are not conducive to widespread popularization and application.
Therefore, it is necessary to develop a practical yet economical motion monitoring solution
with excellent performance for micro-particles.

Thus, a micro-particle motion monitoring method based on the continuous single-
frame multiple-exposure imaging technology (herein called C-smit for short) is proposed
in this study. The method in this study adopts high-frequency LED flashes to generate
short intervals of illumination together with an excellent low-light performance camera.
The effective fps of the captured images for solid micro-particles at high speed can reach
up to one million fps. The theoretical minimum observable micro-particle size is less than
10 microns, with a maximum monitoring speed of up to 12 km per second.

2. Motion Monitoring Method and Platform Layout
2.1. Motion Monitoring Method

With the aim of obtaining high spatial- and temporal-resolution images using con-
ventional low-cost industrial cameras, the C-smit motion monitoring method adopts high-
frequency LED flashes to cut continuous low-fps images. Generally, the motion of high-
speed micro-particles taken by a camera with low fps will be blurred for a series of trace
points stacked one after another. However, if the flash frequency becomes high enough,
the movement distance of micro-particles in each flash period can be observed clearly in
one frame image. Therefore, the trajectory and velocity of micro-particles can be captured
by the trace points in a single image. The basic implementation principle for the C-smit
motion monitoring method is given in Figure 2, that a camera can achieve n frames in
one second, meaning the fps is n. When the camera fps (n) was low and the duty cycle
(t2/(t2 + ∆t)) was large enough, increasing the frequency (m) of the light source led to
multiple (t2/t1) flash periods within the time (t2) of a single frame. As this occurred, high-
speed micro-particles passing through the field of view were illuminated multiple times
(t2/t1) in a single frame. Thus, multiple track points of micro-particles could be recorded
in the same frame. If the time (∆t) between frames was small enough, the motion tracks of
micro-particles in the field of view could be completely recorded in consecutive images.
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In order to ensure the capture rate was greater than 99.5% (t2/(t2 + ∆t) ≥ 99.5%)
when micro-particles pass through the field of view of the camera, it was suggested that the
product of the actual exposure period (t2) and fps (n) of the camera was close to one. For
the C-smit motion monitoring method, each pulse intensity of the light source is critical,
as this determines the signal-to-noise ratio (SNR) of the imaging system. Moreover, the
light source was optimized to accommodate more flash periods (t + t1) in each exposure
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period (t2) of the camera, which could reduce the influence of background light for effective
micro-particles’ motion capture.

2.2. Layout of the Platform

The whole layout of the experiment platform consisted of a five-megapixel industrial
camera with excellent low-light performance, a high-powered LED, a signal generator,
a synchronization trigger device, a computer, a micro-particle launching device, and
two convex lenses, as shown in Figure 3. The computer was equipped with programs for
altering camera parameter settings and synchronization parameter settings. At the same
time, the computer could receive and store images from the camera and perform further
image processing. The micro-particle launching device was independently designed and
developed in-house based on the principle of a two-stage light-gas gun, which instantly ac-
celerates and ejects micro-particles by way of high-pressure gas. As the pressure increased,
the accelerated micro-particles reached speeds of hundreds to thousands of meters per
second. The LED light source, including the driving circuit, was designed and manufac-
tured in-house. The lighting cycle could have been as short as 1 microsecond. An industrial
camera with a single-pixel readout noise of fewer than 5, quantum efficiency over 80%, and
a single-pixel width of 3.75 um was chosen. The signal generator used to control the flash
was set with proper pulse width, pulse period, and working current controls. The SNR of
images could be improved by adjusting camera gain, light intensity, and exposure time of
the light source.

Materials 2022, 15, x FOR PEER REVIEW 4 of 12 
 

 

product of the actual exposure period ( 2t ) and fps ( n ) of the camera was close to one. For 

the C-smit motion monitoring method, each pulse intensity of the light source is critical, 

as this determines the signal-to-noise ratio (SNR) of the imaging system. Moreover, the 

light source was optimized to accommodate more flash periods ( 1t t+
) in each exposure 

period ( 2t ) of the camera, which could reduce the influence of background light for 

effective micro-particles’ motion capture. 

2.2. Layout of the Platform 

The whole layout of the experiment platform consisted of a five-megapixel industrial 

camera with excellent low-light performance, a high-powered LED, a signal generator, a 

synchronization trigger device, a computer, a micro-particle launching device, and two 

convex lenses, as shown in Figure 3. The computer was equipped with programs for 

altering camera parameter settings and synchronization parameter settings. At the same 

time, the computer could receive and store images from the camera and perform further 

image processing. The micro-particle launching device was independently designed and 

developed in-house based on the principle of a two-stage light-gas gun, which instantly 

accelerates and ejects micro-particles by way of high-pressure gas. As the pressure 

increased, the accelerated micro-particles reached speeds of hundreds to thousands of 

meters per second. The LED light source, including the driving circuit, was designed and 

manufactured in-house. The lighting cycle could have been as short as 1 microsecond. An 

industrial camera with a single-pixel readout noise of fewer than 5, quantum efficiency 

over 80%, and a single-pixel width of 3.75 um was chosen. The signal generator used to 

control the flash was set with proper pulse width, pulse period, and working current 

controls. The SNR of images could be improved by adjusting camera gain, light intensity, 

and exposure time of the light source. 

T=5 μs

5 million pixels

10 fps,105 μs

High frequency 

flash source

Black background 

(Dark field)

Microparticle 

launching device

Direction of 

particle motion

Scmos camera

Convex lens 1
Convex lens 2

Microparticle

Real-time computer 

monitoring

X

Y

Z

 Signal generator

Imaging direction

 

Figure 3. The velocity-measurement platform based on the C-smit method. 

Using the basic layout shown in Figure 3, the operation process is given herein. First, 

when the platform was operated, the microcontroller triggered the LED to begin high-

frequency flashing. The flashes were then focused by two convex lenses across the path of 

the moving micro-particles. Finally, the focused flashes illuminated the moving micro-

Figure 3. The velocity-measurement platform based on the C-smit method.

Using the basic layout shown in Figure 3, the operation process is given herein. First,
when the platform was operated, the microcontroller triggered the LED to begin high-
frequency flashing. The flashes were then focused by two convex lenses across the path
of the moving micro-particles. Finally, the focused flashes illuminated the moving micro-
particles, allowing the camera to capture their motion. In this way, multiple trace points
within a single camera exposure were captured in one image. According to the calibrated
motion and set flash period, the velocity of the micro-particles was obtained; the detailed
calculation process will be given in Section 3.3.

In this study, the parameters of the equipment adopted are given in Table 1.
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Table 1. Parameter settings of experimental platform.

Equipment Parameter Settings Objective

Camera
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3. Results and Discussion
3.1. Motion Monitoring Experiments of Micro-Particles

A series of micro-particles’ motion monitoring experiments for different micro-particles
as given in Table 2 were conducted. The transparent and opaque micro-particles were
specially selected to test the platform’s performance in a range of circumstances. Note that
due to the inevitable size error in the manufacturing process of micro-particles, the sizes in
this study fluctuated within a reasonable range but did not affect the analytical process.

Table 2. Properties and parameters of micro-particles.

Material Characteristic Size (µm)

304 stainless steel Metal/opaque/spherical 500
Polystyrene Polymer/transparent/spherical 100

Silica Inorganic/transparent/spherical 30~40
10

Typical motion monitoring images using the C-smit method and processed by image-
enhancement technology [45–47] are given in Figures 4–7. It should be noted that the ejected
micro-particles may deviate from the set focal length, and thus unfocused micro-particles
of the same size may appear to be differently sized. Aiming to validate the monitoring
capability of the C-smit method, the number of micro-particles was gradually reduced from
a group to just several, and the corresponding parameter settings of camera and light source
parameters were adjusted accordingly. It should be noted that only contrast parameters
such as gain and aperture of the camera needed to be adjusted, keeping the camera field of
view unchanged. In Figure 4, opaque stainless steel balls with a diameter of 0.5 mm were
used. From Figure 4a,b, it is found that the high-speed micro-particles’ trace points could
be observed with a clear shape in an upward movement. Similarly, for the transparent
polystyrene balls of 0.1 mm diameter as shown in Figure 5, the micro-particles trace points
were still easy to discriminate, with their outline and movement direction easily observable.
Furthermore, smaller transparent micro-particles with diameters of 30–40 µm and 10 µm
were tested, and the corresponding motion-trace points in every flash period were still
clearly observable, as shown in Figures 6 and 7, respectively.

In summary, the images taken demonstrated that the method can achieve motion
monitoring for micro-particles as small as 10 µm in diameter, regardless of the transparency
of the micro-particles.
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Figure 8. The luminance values of the particle trajectory grayscale. 
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/pulse width 800 ns for many micro-particles. (b) Parameters are set to be camera: 10 fps /cycle:50 us
/pulse width 800 ns for several micro-particles.

3.2. Velocity Measurement

The velocities of micro-particles in the impact process can be obtained by measuring
the distances between trace points. For the velocity-measurement process, the width of the
camera’s field of view is first determined using calibration targets. Then, the motion time
between the trace points is determined by the pulse period of the light source. Finally, the
peak values of the luminance curve plotted by the calculated trajectory gray map determine
the movement distance between every two micro-particles’ trace points.

As an example of the velocity-measurement process of high-speed micro-particles, the
last trajectory image in Figure 4b was sampled. First, the actual width of the view field (d)
was calculated as 23.437 mm through dimension calibration. Next, the luminance values
curve of the particle trajectory as shown in Figure 8 was derived from the grayscale image.
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Finally, the luminance values curve in Figure 8 indicates that the dimensionless pixel
distances among the luminance peaks are 213, 212, 211, and 209 respectively. Since the
dimensionless pixel length d1 of the whole image is 2448.002, and the actual field width of
view is 23.437 mm, we computed the true distances of each peak as 2.039 mm, 2.029 mm,
2.020 mm, and 2.001 mm respectively based on the scalar relationship. Since the flash
period was 10 µs, the ratio of each adjacent peak distance to the flash period was used
to calculate the velocity value at each interval. Thus, the velocities in each interval were
209.9 m/s, 203.9 m/s, 202 m/s, and 200.1 m/s, respectively.

Based on the current performance parameters as given in Table 1, the velocity mon-
itoring capability (maximum observable velocity) was roughly deduced by the above
calculation process. For the previously analyzed image, there were four periods among
five points, and the flight distance was about 2/3 of the total image height. As it only took
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two trace points to measure the micro-particle velocity and the minimum flash period was
set to 1 microsecond, the ratio of the maximum measurable speed (vmax) to the current
measurement speed was computed as:

n =
vmax

v
=

1
2
3
· t

Tmin
· d

d
4

=
3
2
· 10µs

1µs
· 4

1
= 60⇒ vmax ≈ 12 km/s (1)

Thus, it was concluded that the theoretical maximum detectable speed was about
12 km/s for 0.5 mm micro-particles with the current equipment.

According to the above calculations, several influencing factors were confirmed to
affect the velocity monitoring capability, including the size of the camera view (d) affecting
the observable flight distances of micro-particles, the pixel size determining the minimum
size of the observable micro-particles, and the flash period (t) affecting the time interval
between micro-particle trace points.

It is necessary to point out that the main purpose of this study was to validate the
feasibility of the C-smit motion monitoring method, and that the corresponding fps, the
monitoring micro-particles sizes, and the motion velocities in this study do not represent
the maximum capability of the method. The performance can be effectively improved by
improving the resolution of the camera or by reducing the period between flashes.

3.3. Discussions

For different micro-particles’ sizes and velocities, the parameters of the camera and
flash source needed to be adjusted to obtain clear images. For micro-particles moving at
high speed, a light source with high-frequency flashing was necessary to capture more
trace points in a limited field of view. On the contrary, for low-speed micro-particles, the
flash frequency was limited so that the distances among trace points were large enough to
ensure that trace points did not overlap each other. For micro-particles of relatively large
size, the trajectory was easily observed even if the flash pulse width was short. However,
for smaller micro-particles, flash pulse width needed to be sufficiently long to provide
higher luminance, which made the micro-particles’ trajectory more visible.

Through the adjustment and analysis of every influencing factor by a series of micro-
particles motion monitoring experiments, the sensitivity for every factor to the image
quality of micro-particles’ trajectory in different cases are evaluated using normaliza-
tion [48,49]. It should be noted that normalized sensitivity coefficients ranged from −1 to
1, where 1 was the maximum value in the positive correlation and −1 was the maximum
value of negative correlation. The micro-particle states were divided into four categories:
small-sized micro-particles at low speed, large-sized micro-particles at low speed, large-
sized micro-particles at high speed, and small-sized micro-particles at high speed. The
influencing factors of camera imaging mainly included: aperture and gain of camera, cycle
period and pulse width of light source, and the background dark field. Thus, normalized
sensitivity coefficients were obtained through analyzing these five influencing factors under
four micro-particles states, as illustrated in Figure 9.

When the micro-particles’ state was small-sized/low-speed, the dark field and aper-
ture had a great influence on the imaging effect, and the sensitivity coefficients of gain,
period, light source, and pulse width were small due to the low micro-particle speed.
When the micro-particle state was large-sized/low-speed, the situation was similar to
the previous state, and the sensitivity coefficients of camera and light source factors were
smaller than that of the large micro-particles’ sizes. When the micro-particle state was
large-sized/high-speed, the sensitivity coefficient of the light source period was negative
(−0.6), because the high-speed state required a smaller light source period to illuminate
the moving micro-particles at high frequency. At the same time, improved aperture and
gain of camera in this micro-particles’ state were critical. Due to the large micro-particles’
size, images of moving trace points were easily captured, and the sensitivity coefficient
of the dark field was small. For the small-sized/high-speed situation, the requirements
of all the influencing factors on the motion monitoring imaging were most stringent. The
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light source period was required to be the smallest to ensure a higher frequency of the
flashes, and the corresponding sensitivity coefficient was −0.79. The sensitivity coefficients
of aperture, gain, pulse width of light source, and the dark field were 0.85, 0.8, 0.6, and
0.6 respectively. Therefore, according to the normalized sensitivity coefficients in Figure 9,
camera parameters, light source parameters, and the dark field conditions were adjusted
accordingly for specific micro-particles’ conditions to obtain clear motion trajectories.
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Figure 9. The normalized sensitivity analysis of the imaging results.

Consequently, suggestions for setting the camera and light source of the proposed
method are listed in Table 3, based on the sensitivity analysis in Figure 9.

Table 3. The C-smit method settings for different micro-particles’ states.

Micro-Particles States Camera Settings Light Source Settings

Small size/Low speed Large aperture/Large gain Low frequency/Big pulse width
Large size/Low speed Large aperture/Small gain Low frequency/Small pulse width
Large size/High speed Large aperture/Small gain High frequency/Small pulse width
Small size/High speed Large aperture/Large gain High frequency/Big pulse width

Theoretically, when the micro-particles’ size is smaller than the camera pixel size, its
size profile may not be definitively captured by the camera even with the light source and
camera parameters adjusted to their optimal states. However, the C-smit method enabled
the monitoring of micro-particles smaller than camera-pixel-size due to its insensitivity
to focus.

As illustrated in Figure 10, incident light reflecting on the micro-particles’ surface
(golden circle with solid line) had a corresponding spherical outline (blue circle with dotted
line and red circle with dot–dash line) on different focal planes. The brightness value of
the actual contour was the largest, and the farther out the image was, the more blurred
and less bright it was. As shown in Figure 10b, if the micro-particle size was smaller than
the pixel size (black box with solid line), the actual contour of the micro-particle could not
be captured and displayed by the pixel. If there was a reflection contour (red circle with
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dot–dash line) larger than the pixel size within the depth of field (yellow box with double
dot–dash line), then the camera pixel captured the reflection contour. Since the circular
contours generated by the reflection of micro-particles were concentric spheres, the motion
monitoring of micro-particles could be accurately accomplished no matter whether or not
the imaging contour was consistent with the actual contour. Therefore, the actual limit of
the size for a detectable micro-particle was determined by the pixel size and depth of field
of the camera.
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4. Conclusions

A motion monitoring method based on the continuous single-frame multiple-exposure
imaging technology has been proposed. The C-smit method can monitor the motion of
high-speed micro-particles using a camera with low fps and a high-frequency LED light
source. The study showed that the method can clearly capture the trace points of micro-
particles as small as 10 µm in size at high speed, regardless of whether the particles are
transparent or not. Based on the current equipment adopted in this study, the effective fps
can reach up to one million fps, with a corresponding minimum observable micro-particle
size of smaller than 10 µm, up to a maximum theoretical observable monitoring velocity
of 12 km/s. Moreover, it was demonstrated that the micro-particles’ motion monitoring
capability can be effectively improved by changing the resolution of the camera and the
minimum period between flashes without specialized equipment.

Through the normalized sensitivity analysis of the influence factors, it was found that
effective motion monitoring for high-speed micro-particles in a specific scene state can
be realized by rapid and simple adjustments, according to the sensitivity analysis results.
Furthermore, the C-smit method enables the monitoring of micro-particles smaller than
the camera-pixel-size due to its insensitivity to focus. Even as the micro-particles’ state
changes, high-frequency imaging can be conduct by adjusting only the frequency of the
light source. In contrast, other methods require complex adjustment for the magnification
and resolution parameters of high-speed camera equipment.

This study provides a convenient and efficient solution with excellent performance
for the motion monitoring of micro-particles at high speed, which is realized by using
ordinary equipment and basic tuning operations. It is believed that this method will
effectively contribute to the development of micro-particles impact research in potential
applications, such as transdermal drug delivery in biomedicine, space debris protection,
and additive manufacturing.
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