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Abstract: Metformin is a first-line drug for treating type 2 diabetes mellitus (T2DM) and one of the
most commonly prescribed drugs in the world. Besides its hypoglycemic effects, metformin also
can improve cognitive or mood functions in some T2DM patients; moreover, it has been reported
that metformin exerts beneficial effects on many neurological disorders, including major depressive
disorder (MDD), Alzheimer’s disease (AD) and Fragile X syndrome (FXS); however, the mechanism
underlying metformin in the brain is not fully understood. Neurotransmission between neurons is
fundamental for brain functions, and its defects have been implicated in many neurological disorders.
Recent studies suggest that metformin appears not only to regulate synaptic transmission or plasticity
in pathological conditions but also to regulate the balance of excitation and inhibition (E/I balance)
in neural networks. In this review, we focused on and reviewed the roles of metformin in brain
functions and related neurological disorders, which would give us a deeper understanding of the
actions of metformin in the brain.
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1. Introduction

Metformin is a first-line drug for type 2 diabetes mellitus (T2DM) therapy with a long
history. As a biguanide derivative, metformin was isolated from the extracts of the plant
French lilac (Galega officinalis) in the 1920s [1]. Then, metformin was approved for diabetes
mellitus treatment in Europe and Canada in 1957 and in the USA in 1995 [2]. Metformin
has been prescribed for more than 60 years, characterized by good safety, high efficiency
of blood glucose control, and clear but not fully understood cardioprotective effect. The
alteration in cellular energy metabolism is the core mechanism of metformin’s action [3].
The best-known hypoglycemic effects of metformin are achieved by multiple mechanisms:
inhibition of liver gluconeogenesis and intestinal glucose uptake, an increase of glucose
uptake in peripheral tissues, and improvement of peripheral insulin sensitivity [4].

T2DM leads to brain structural and functional changes and increases the risk of
neurological disorders’ comorbidities. Alzheimer’s disease (AD), the most common neu-
rodegenerative disorder, has been shown by many studies to be closely associated with
T2DM [5,6]. Compared with healthy individuals, people with T2DM have a significantly
increased risk of developing AD [7,8]. T2DM is also linked to another common neurodegen-
erative disorder, Parkinson’s disease (PD) [9,10]. Epidemiological studies have shown that
patients with T2DM have a higher risk of PD and faster progression of PD symptoms [11,12].
In addition to neurodegenerative disorders, T2DM is associated with psychiatric disorders,
too. The prevalence of schizophrenia and major depressive disorder (MDD) in patients with
T2DM is higher than that in the general population [13,14]. In a large-scale meta-analysis,
people with schizophrenia, bipolar disorder and MDD have a higher risk of developing
T2DM than healthy controls [15].
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Neurological disorders are the second leading cause of death worldwide. Current
therapeutic strategies have not been very successful in treating these disorders: a com-
bination of most central nervous system (CNS) drugs that target symptoms rather than
etiology, a lack of safe and effective drugs, and difficulties in clinical drug development [16].
And diabetes drugs, including metformin, may be potential drugs for treating neurological
disorders, providing new ideas for their treatments [17,18]. Finding new uses for old drugs
is a current hot spot, and metformin has been reported in clinical and animal studies to
exert neuroprotective effects in many neurological disorders [19–22].

Neurons are the principal cells in the brain. Communications between neurons via
synapses are fundamental for brain functions, and their defects have been implicated in
many neurological disorders. Abnormal synaptic transmission, neuronal dysregulation and
neuroinflammation in the brain are common pathological manifestations of neurological
disorders. In this review, we reviewed the studies of metformin in neurological disorders
and focused on the mechanisms underlying the actions of metformin in the brain, which
would provide new insight into the treatments of neurological disorders.

2. General Mechanism Underlying the Hypoglycemic Effects of Metformin

Nowadays, metformin is widely recognized as a 5’-AMP-activated protein kinase
(AMPK) agonist (Figure 1). Metformin induces energy stress by inhibiting the mitochon-
drial respiratory chain complex I, decreasing ATP production, increasing AMP and ADP
production, and thus increasing AMP/ATP ratio [23]. Next, glucagon-induced cyclic AMP
(cAMP) synthesis is inhibited, and AMPK is activated [24]. AMPK is able to sense low ATP
levels through v-ATPase, switch cells from an anabolic to a catabolic state, promote mito-
chondrial biogenesis and regulate autophagy [25,26]. Recently, a study found presenilin
enhancer 2 (PEN2) is a new target of metformin [26]. At a low concentration of metformin,
PEN2 binds to and inhibits v-ATPase activity and finally activates lysosomal AMPK without
increasing AMP [26]. Metformin-mediated AMPK activation leads to the decrease of acetyl
CoA carboxylase (ACC) activity, induces fatty acid oxidation and inhibits the expression
of lipogenic enzymes [27]. In an AMPK-dependent pathway, metformin promotes small
heterodimer partner (SHP) protein production and ameliorates hepatic insulin resistance by
regulating gluconeogenesis and insulin sensitivity [28]. Metformin inhibits the expression
of gluconeogenic genes by stimulating the phosphorylation of cAMP-response element
binding protein (CREB) binding protein [29]. Furthermore, metformin-induced AMPK
activation inhibits the mechanistic target of rapamycin (mTOR) complex 1 (mTORC1)
signaling via directly suppressing Raptor, a key component of mTORC1 [2] or indirectly
activating the tuberous sclerosis complex [30,31]; moreover, in rat models of obesity and
diabetes, metformin activates the duodenal AMPK-dependent pathway to reduce liver
gluconeogenesis and blood glucose levels [32].

However, in genetic loss-of-function experiments, like liver AMPK-deficient mice,
metformin still lowers blood glucose levels, suggesting AMPK-independent gluconeogene-
sis [33]. In a non-AMPK-dependent manner, metformin antagonized the hyperglycemic
effect of hepatic glucagon signal by reducing cAMP production [24]; moreover, metformin
can inhibit mitochondrial glycerophosphate dehydrogenase, leading to an altered hepa-
tocellular redox state and reduced hepatic gluconeogenesis [34]. Recently, fructose-1,6-
bisphosphatase-1 (FBP1), a rate-controlling enzyme in gluconeogenesis, has been confirmed
to be a direct target of metformin [35]. Metformin, independent of AMPK, inhibits mTORC1
by inhibiting the Rag family of GTPases [36] or upregulating regulated in development and
DNA damage response 1 (REDD1, a negative regulator of mTORC1) [37]. In in vivo experi-
ments in rats, metformin inhibited gluconeogenesis of lactate and glycerol independently
of complex I inhibition and was associated with an increase in the cellular redox state [38].
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Figure 1. The general mechanism underlying the hypoglycemic effects of metformin. Metformin 
activates AMPK through lysosomal or mitochondrial mechanisms. AMPK increases insulin sensi-
tivity by inhibiting ACC, activates CBP to inhibit gluconeogenesis gene expression, inhibits 
mTORC1 to suppress cellular anabolic activity, and inhibits cAMP production to reduce gluconeo-
genesis. In addition, metformin can also achieve glucose reduction in a non-AMPK-dependent man-
ner by inhibiting AMP:ATP ratio and NADH:NAD+ ratio through mitochondrial mechanisms or by 
directly targeting FBP. REDD1, regulated in development and DNA damage response 1; Rag, Rag 
family of GTPases; PEN2, presenilin enhancer 2; AMPK, 5’-AMP-activated protein kinase; 
mTORC1, mechanistic target of rapamycin complex 1; ACC, acetyl CoA carboxylase; FBP, fructose-
1,6-bisphosphatase; CBP, CREB binding protein; OCT, organic cation transporters; ATP, Adenosine 
triphosphate; AMP, adenosine monophosphate; NADH, the reduced form of nicotinamide adenine 
dinucleotide; NAD+, the oxidized form of nicotinamide adenine dinucleotide. 
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Figure 1. The general mechanism underlying the hypoglycemic effects of metformin. Metformin
activates AMPK through lysosomal or mitochondrial mechanisms. AMPK increases insulin sensitiv-
ity by inhibiting ACC, activates CBP to inhibit gluconeogenesis gene expression, inhibits mTORC1
to suppress cellular anabolic activity, and inhibits cAMP production to reduce gluconeogenesis.
In addition, metformin can also achieve glucose reduction in a non-AMPK-dependent manner by
inhibiting AMP:ATP ratio and NADH:NAD+ ratio through mitochondrial mechanisms or by directly
targeting FBP. REDD1, regulated in development and DNA damage response 1; Rag, Rag family of
GTPases; PEN2, presenilin enhancer 2; AMPK, 5’-AMP-activated protein kinase; mTORC1, mechanis-
tic target of rapamycin complex 1; ACC, acetyl CoA carboxylase; FBP, fructose-1,6-bisphosphatase;
CBP, CREB binding protein; OCT, organic cation transporters; ATP, Adenosine triphosphate; AMP,
adenosine monophosphate; NADH, the reduced form of nicotinamide adenine dinucleotide; NAD+,
the oxidized form of nicotinamide adenine dinucleotide.

3. Metformin in Neurological Disorders
3.1. Alzheimer’s Disease (AD)

AD, the most common form of dementia, is characterized by amyloid plaques and
neurofibrillary tangles in the brain, with loss of synapses and neurons, leading to cognitive
dysfunction and ultimately dementia [39]. T2DM is a significant risk factor for the develop-
ment of dementia, including AD. Many clinical randomized controlled trials have found
that metformin monotherapy or combination therapy with sulfonylurea can significantly
reduce the risk of dementia in T2DM patients [40–43]. Two meta-analyses supported the
above conclusions [44,45]. In an observational cohort study of 145,928 older T2DM patients,
metformin users only reduced the dementia risk by 4 percent, compared with 47 percent
for pioglitazone [46]. Furthermore, some studies found that metformin improved cognitive
impairment in diabetes patients [47] and executive function in AD patients [48]. Contrary
to the above findings, several investigations have proved that metformin increased the risk
of AD [49,50] and was associated with worse cognitive performance [51]. Differences in
metformin’s effect on cognitive function may result from individual differences in genetic
composition. In APOE ε4 carriers of AD, metformin use was associated with a faster rate
of delayed memory decline [52]. Taken together, most articles drew a conclusion that
metformin can reduce the risk of dementia or AD in T2DM patients.
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The effect of metformin on cognitive function in preclinical studies is also contro-
versial. Metformin can reduce tau phosphorylation and total tau levels, but its effect
on amyloid-beta (Aβ) production remains inconsistent. In amyloid-beta precursor pro-
tein/presenilin 1 (APP/PS1, an AD mouse model) mice, metformin attenuated spatial
memory deficit, neuronal loss, increased Aβ plaque and chronic inflammation [53]. Met-
formin improved memory in the senescence-accelerated mouse prone 8 (SAMP8) mouse
model of spontaneous onset AD by decreasing APPc99 and p-tau [54]. In a protein phos-
phatase 2A (PP2A)-dependent way, metformin reduces tau phosphorylation in a cellular
model [55]. Metformin increased the production of Aβ peptides by upregulating β-site
amyloid precursor protein cleaving enzyme-1 (BACE1) activity in an AMPK-dependent
manner, which may explain the mechanism of adverse results of metformin in AD [56].
Although metformin enhances Aβ production in vitro, in vivo studies revealed metformin
could alleviate the deposition of Aβ; a different experimental system may contribute to the
opposite results.

3.2. Parkinson’s Disease (PD)

PD is a neurodegenerative disease, the hallmark of which is the death of dopaminergic
neurons in substantia nigra pars compacta, post-translational modification and agglomera-
tion of α-synuclein, mitochondrial dysfunction, and oxidative stress [57]. There is growing
evidence that T2DM patients have a higher risk of PD and share similar dysfunctional
pathways, suggesting a common underlying pathological mechanism [58]. In a clinical
study, compared with no oral anti-hyperglycemic agents, metformin alone did not affect
the risk of PD; however, metformin combined with sulfonylureas reduced the incidence
of PD compared with sulfonylureas alone [59]. Compared with the glitazone user, met-
formin monotherapy was associated with a significantly higher incidence of PD [60]. In a
cohort study, the metformin cohort exhibited a higher risk of PD than the non-metformin
cohort [49]. In sum, most clinical studies suggested that metformin has no effect or even
negative effect on PD.

However, metformin has shown good neuroprotective effects in PD animal mod-
els. In 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice, long-term
metformin treatment significantly improved locomotor and muscular activities [61]. In
the branched-chain amino acid transferase 1 (bcat-1) knockdown worm model of PD,
metformin treatment could correct the abnormal mitochondrial respiration and evidently
rescued dopamine neuron viability [62]. In the 6-hydroxydopamine (6-OHDA)-lesioned
mouse model of PD, metformin suppresses the development of dyskinesia and regulates
Akt and glycogen synthase kinase 3 (GSK3) signaling and astrocyte activation [63,64]. In
the lipopolysaccharide (LPS)-induced rat model of PD, metformin generally inhibited
the activation of microglia and the expression of inflammatory cytokines [65]. In the
haloperidol-induced catalepsy model of PD, metformin significantly attenuated memory
deficit, oxidative stress and lipid peroxidation [66].

3.3. Huntington’s Disease (HD)

HD is a progressive neurodegenerative disease characterized by expanded CAG repeat
in the gene encoding huntingtin, resulting in abnormally long polyglutamine (polyQ) re-
peat in the huntingtin protein [67]. HD patients with T2DM receiving metformin had better
cognitive test results than those without diabetes not taking metformin [68]. In Hdh150
knock-in mice of the premanifest HD model, metformin can reduce the aberrant huntingtin
load and completely restore the early network activity pattern and abnormal behavior [21].
In two other HD animal models, metformin improved motor and neuropsychiatric pheno-
types in zQ175 mice, reduced polyglutamine aggregation, and restored neuronal function
through mechanisms via AMPK in worm models of polyglutamine toxicity [69,70].
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3.4. Major Depressive Disorder (MDD)

MDD is a heterogeneous disorder whose pathophysiology is not fully understood,
and effective biomarkers are lacking [71]. In a large-scale metformin study of adolescents
with severe mental illness (schizophrenia spectrum disorder, bipolar spectrum disorder or
psychotic depression), metformin add-on was associated with significantly fewer reports
of aggressive/hostile and impulsive problems than the control group [22]. The addition
of metformin had no significant difference compared to the control group, but both al-
leviated the weight gain caused by antipsychotics in children and had no undesirable
adverse effects [22]. In a nationwide population-based study, continued use of metformin
and combination therapy is associated with a lower incidence rate of depression, while
pioglitazone was not [72]. In a double-blind placebo-controlled trial, MDD patients who
take metformin as an adjunct to fluoxetine have a better Hamilton Depression Rating Scale
(HDRS) score, and the response and remission rates have been increased compared to the
placebo group [73]. In a clinical study, all subjects were post-stroke depression combined
with T2DM and took fluoxetine [74]. Compared with before taking the drug, the metformin
subgroup had a slight improvement in the symptoms of depression, but pioglitazone had a
more significant antidepressant effect [74]. In a six-week double-blind study of 50 patients
with polycystic ovary syndrome (PCOS) and MDD, pioglitazone was superior to metformin
in reducing HDRS scores at the end of the study [75]. In a randomized controlled trial of
overweight adults, metformin showed a slight but statistically significant improvement in
the Quality of Well-being Scale and the Beck Depression Inventory (BDI) [76]. In a clinical
study, chronic metformin treatment significantly improved cognitive function in female
diabetic or prediabetic patients with MDD [77]. After the 12-week metformin interven-
tion, PCOS subjects slightly improved their BDI score [78]. Taken together, most clinical
studies of depression-related disorders support that metformin is beneficial for alleviating
depressive symptoms.

In animal experiments, metformin alleviated depressive-like symptoms caused by
external stimuli. In the chronic social defeat stress (CSDS)-induced depression mice
model, metformin alleviates depression-like behavior, improves CSDS-induced synaptic
defects, and upregulates brain-derived neurotrophic factor (BDNF) expression by activating
AMPK/CREB signaling pathways [79]. In LPS-treated mice, metformin administration
ameliorated depressive-like behaviors and corrected abnormal glutamatergic transmis-
sion [80]. Metformin in high-fat diet (HFD) induced insulin-resistant mice stimulated
5-hydroxytryptamine (5-HT) neurons excitability and 5-HT neurotransmission while hin-
dering HFD-induced anxiety by decreasing circulating branched-chain amino acids [81].
Metformin can also attenuate depression-like behaviors in corticosterone-induced mice
with metabolic disturbance [82]; therefore, metformin has antidepressant effects.

3.5. Fragile X Syndrome (FXS)

In seven FXS patients who received metformin, consistent improvements in irritability,
social responsiveness, hyperactivity and social avoidance were observed [83]. Metformin in
a drosophila FXS model rescued long-term memory defects and improved olfactory learn-
ing [84]. In Fmr1 knockout (KO) mouse model of FXS, metformin reverses the increased
grooming and social behavior deficits, rescues long-term depression and impaired spine
morphology and selectively normalizes extracellular regulated kinase (ERK) signaling and
the expression of matrix metalloproteinase-9 (MMP-9) [85].

4. Potential Mechanisms for Actions of Metformin in the Brain
4.1. Blood–Brain Barrier (BBB)

BBB is a selective barrier, sheathed by mural vascular cells and perivascular astrocyte
end-feet and formed by continuous endothelial cells that line cerebral microvessels [86].
The destruction of the BBB is related to neuroinflammation, neuronal injury and synaptic
dysfunction, which leads to various neurodegenerative pathways [87]. BBB is a complex,
dynamic interface, and achieving sufficient BBB penetration is a great challenge for treating
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CNS diseases [88]. Oral metformin can quickly cross the BBB and accumulate in the struc-
ture of the CNS [89]. Metformin concentration in the cerebrospinal fluid reached the peak
of 29 µM 30 min after metformin (200 mg/kg i.p.) was administered to C57Bl6 mice [90].

In rat brain microvascular endothelial cells, metformin induces upregulation of BBB
functions by AMPK activation [91]. Metformin treatment can protect the tight junction of en-
dothelial cells, prevent the BBB damage caused by hypoxia or vascular endothelial growth
factor exposure, and reduce the expression of aquaporin-4 protein (AQP4) in vitro [92]. In
the db/db mouse model of diabetes, metformin significantly decreased Aβ influx on BBB
and neuronal apoptosis and increased intracerebral perfusion of Aβ as well as the expres-
sion of the low-density lipoprotein receptor-related protein 1 involved in Aβ efflux [93]. In
rats’ traumatic brain injury (TBI) model, metformin inhibits TBI-mediated secondary injury
through AMPK phosphorylation and improves BBB and neurobehavioral function [94].
Metformin significantly counteracts cigarette smoking-induced downregulation of tight
junction protein and loss of BBB integrity by regulating Nrf2 expression [95]. In the cecal
ligation and puncture (CLP) model of sepsis, metformin inhibits inflammation, increases
tight junction protein expression, improves BBB function, and alleviates CLP-induced brain
damage [96]. On the contrary, metformin can restore the cognitive function of mice fed
with high fat and high fructose, but its protective effect on BBB is insignificant [97].

4.2. Transport of Metformin

Metformin is a biguanide derivative and exists as the hydrophilic cationic species at
physiological pH values. Metformin is not bound to plasma proteins [98] and is excreted
unchanged in the urine. The absorption, metabolism, distribution and renal excretions
of metformin are mainly mediated by solute carrier transporters, a family of more than
300 membrane-bound proteins [99]. Among metformin transporters, organic cation trans-
porters (OCTs) occur in the enterocyte, hepatocyte and renal tubule cells [99]. In addi-
tion to OCT, there are also multidrug and toxin compound extrusion-1 and -2 (MATE-1
and -2), plasma membrane monoamine transporter (PMAT), and thiamine transporter
2 (THTR-2) [100]. In humans, three OCT subtypes (OCT1, OCT2 and OCT3) have been
isolated by cloning from diverse organs, including the brain. In the brain, OCT2 and
OCT3 are mainly located in central neurons, and OCT3 is more widely distributed and
also exists in astrocytes [101,102]. Furthermore, in previous studies, OCT1 and OCT2 are
believed to exist in the BBB to help metformin enter the brain, while OCT2 and OCT3
regulate the concentration of metformin in the brain interstitium [103–105]; however, a
recent study improved the separation and enrichment of cerebral microvessels, reducing
the pollution of neurons and astrocytes by 31 and 7 times [106]. It was found that OCT1 and
OCT2 were not expressed in mouse, rat or human cerebral microvessels [106]. In addition,
functional studies conducted in the models of these three species further proved that there
was no active OCTs vector in BBB [106]. Therefore, metformin does not seem to rely on
OCT to achieve BBB penetration [106]. It is well established that metformin can rapidly
cross BBB, but the transport mechanism of BBB osmosis is still controversial and needs
further verification.

4.3. Metformin in Neuron

The CNS is undoubtedly the most elusive and delicate entity in our body. Neurons
are the most important cell type in the CNS and have unique functions. Unlike skin, liver
or muscle cells, neurons are highly differentiated cells in the CNS that cannot regenerate
after disease, ischemia or brain injury. After decades of research, neuropathologists have
found that in some neurological disorders, discrete groups of neurons are lost or damaged
and characteristic protein aggregates in neurons, such as dopaminergic neuron loss in PD
and amyloid plaques in AD [107,108]. The discovery of target neurons and pathological
protein aggregation in these diseases provides a necessary theoretical basis for developing
related drugs. As mentioned above, metformin has some effects on several neurological
disorders, such as AD, PD, HD, MDD and FXS.
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Metformin has been reported to regulate the expression of abnormal proteins in the
brain by autophagy. Autophagy is a lysosomal degradation process to recover obsolete
cellular components and eliminate damaged organelles and protein aggregates. Neu-
rons are more vulnerable to autophagy-related gene mutations because of their broad
axon cytoplasm and lack of mitosis. Without effective autophagy, neurons accumulate
ubiquitinated protein aggregates and eventually become degenerated [109,110]. Most
neurodegenerative diseases are characterized by intracellular or extracellular aggregation
of misfolded proteins, such as Aβ and tau in AD, α-synuclein in PD, huntingtin in HD and
transactive response DNA-binding protein-43 (TDP-43) in amyotrophic lateral sclerosis
(ALS) [111]. In the complex network of autophagy regulatory pathways, mTORC and
AMPK signaling pathways serve as central nodes, integrating the metabolic signals and
energy states of cells [112,113]. mTORC1 prevents autophagy mainly through suppressing
phosphorylation of unc-51-like autophagy-activating kinase 1/2 (ULK1/2) and class III
phosphatidylinositol 3-kinase (class III PtdIns3K complexes) [112]. The phosphorylation
of its substrate RPS6KB1/S6K at Thr389 is a common marker for mTORC1 activity [112].
AMPK not only acts on the ULK1/2 and class III PtdIns3K complexes but also inhibits
mTORC1 activity [114,115]. Phosphorylation on Thr172 of the AMPK catalytic subunit
alpha and ACC on Ser79 are two common indicators of AMPK activity [113]. As mentioned
above, metformin mainly influences neurodegenerative diseases such as AD. In a recent
study, using double-transgenic APP/PS1 mice, metformin increased AMPK activity and
decreased Aβ secretion, but did not increase the autophagic flux as rapamycin did [116]. It
is worth noting that basal AMPK activity is necessary for normal autophagy activity [116].
These results suggest that metformin has a potentially complex regulatory mechanism
that affects the production of abnormal proteins [116]. In a mouse model of tauopathy,
chronic metformin treatment-induced PP2A expression through the AMPK/mTOR path-
way reduced tau phosphorylation in the cortex and hippocampus of tau-P301S mice [117];
however, metformin also increased the number of insoluble tau species and the number
of inclusions with β-sheet secondary structure in the cortex of P301S mice, and promoted
the aggregation of recombinant tau protein in vitro [117]. Metformin also induces cas-
pase 3 activation to enhance tau cleavage and damage synaptic structures [117]. In the
APP/PS1 mouse, metformin effectively reduces brain Aβ plaque accumulation levels by
stimulating transforming growth factor beta-activated kinase 1 (TAK1)—inhibitory kappa
B kinase α/β (IKKα/β)—heat shock cognate protein 70 (Hsc70) signaling pathway to
induce chaperone-mediated autophagy (CMA) activation, which is a lysosomal-dependent
selective degradation pathway involved in the pathogenesis of cancer and neurodegen-
erative diseases [118]. In the db/db mouse model of diabetes, metformin inhibited the
increase of total tau, phosphorylated tau and activated c-jun N-terminal kinase (a tau
kinase), and mitigated the decrease of synaptophysin in the hippocampus [119]. In the
SAMP8 mice of the AD model, metformin reduces the level of tau hyperphosphorylation
possibly through inhibiting protein kinase R-like endoplasmic reticulum (ER) kinase (PERK)
pathway, calpain 1, GSK3β and cyclin-dependent kinase 5 (Cdk5) activities [120].

In animal models of PD, metformin treatment substantially protects dopaminergic
neurons from MPTP [121,122], rotenone [123], or 3, 4-methylenedioxymethamphetamine
(MDMA) toxicity [124]. In PD, α-synuclein becomes insoluble and accumulates in the
soma (Lewy bodies) and processes (Lewy neurites) of neurons to form intracellular in-
clusions in the wrong fold state. The key event in the formation of Lewy bodies is the
phosphorylation of α-synuclein at Ser 129 [125]. Although metformin is a potent activator
of AMPK, metformin significantly reduces the level of phospho-ser129 α-synuclein via
mTOR-dependent PP2A activation [126]. PP2A is considered to be the primary α-synuclein
phosphorylase [127]. Studies have reported that metformin enhances PP2A activity by
increasing the C subunit’s methylation and reducing α-synuclein phosphorylation [128].
In addition, in the brains of PD patients, a study found that the ratio of methylation
and demethylation of PP2A was significantly reduced, highlighting the important role of
PP2A in α-synuclein hyperphosphorylation and aggregation [129]. Notably, Bayliss et al.
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found that the neuroprotective effect of metformin against MPTP neurotoxicity also oc-
curred in AMPK knockout mice, supporting that AMPK activation was not associated with
metformin neuroprotection [122]. In neurons with persistent prion infection, metformin
significantly reduced cellular prion protein load and inhibited prion transforming activ-
ity, which may be explained by higher levels of autophagy [130]. Metformin improved
propofol-induced HT-22 cell apoptosis and downregulated caveolin-1, a class of membrane
proteins involved in the activation of autophagy [131]. Metformin reduced the abnormal
HD protein load and fully restored the early network activity patterns characterized by
increased activity, enhanced synchronicity, and hyperactive neurons [21].

Metformin may also play a neuroprotective role by improving mitochondrial home-
ostasis. RNAi-mediated knockdown of Caenorhabditis elegans (C. elegans) bcat-1 increases
mitochondrial respiration and induces neuronal oxidative damage through an mTOR-
independent mechanism, while metformin administration can correct abnormal mito-
chondrial respiration and reduce neurodegeneration of dopaminergic cell bodies and neu-
rites [62]. In the Aβ-induced model of mitochondrial dysfunction in transgenic C. elegans,
metformin reverses metabolic deficits associated with mitochondrial dysfunction and
reduces protein aggregation [132]. In mice with insulin resistance induced by a HFD,
metformin enhances insulin action by reversing the reduced ATP production and ox-
idative stress in an AMPK-independent way [133]. Metformin significantly improved
H2O2-induced cell death by restoring abnormal intracellular reactive oxygen species (ROS),
lactate dehydrogenase and mitochondrial membrane potential through activation of AMPK
in neuronal PC12 cells and primary hippocampal neurons [134]. In a neuron-specific
Ndufs3 conditional KO (cKO) mouse model, deletion of Ndufs3 in forebrain neurons
reduced complex I activity, altered brain energy metabolism, and impaired motor perfor-
mance [135]. Chronic metformin treatment did not significantly alter the metabolic status
of AMPK and mTOR pathways and oxidative phosphorylation function in Ndufs3 cKO
mice, but delayed the onset of neurological symptoms observed in Ndufs3 cKO mice [135].
Metformin reverses chemotherapeutic resistance by slightly inhibiting mitochondrial respi-
ration [136] and is associated with tumor necrosis factor type 1 receptor-associated protein
(TRAP1)-related pathways [137]. Metformin rescues mitochondrial phenotypic changes
caused by TRAP1 loss, including recovery of mitochondrial membrane potential, mitochon-
drial nuclear protein imbalance, and mitochondrial unfolded protein response (mtUPR)
upregulation [137]. Mitochondrial nuclear protein imbalance can activate stress signals
through mtUPR and thus affect mitochondrial function and control longevity [138,139].
Metformin improves mitochondrial function through upregulation of chaperone protein
and reduces carbonylation and oxidation of whole-brain proteins, which are markers of
neuronal oxidative stress [140]. In summary, metformin plays a neuroprotective role by
correcting mitochondrial respiration and improving oxidative stress through a variety of
complex mechanisms.

4.4. Metformin in Astrocytes

Astrocytes account for about 30% of mammalian CNS cells and are the most abun-
dant CNS cells. The functions of astrocytes mainly include regulating cerebral blood
flow, maintaining neurotransmitter homeostasis, and regulating synaptic metabolism and
neurotrophic support [141–144]. Reactive astrocytes undergo morphological, molecular,
and functional remodeling in response to injury, disease, or infection of the CNS [145].
Metformin has been shown to inhibit reactive astrogliosis in many CNS injury models. In
late middle aging mice, metformin treatment improved cognitive function, reduced hip-
pocampal microglial activation and astrocyte hypertrophy, and reduced proinflammatory
factor levels, along with AMPK activation and mTORC inhibition [146]. In hypoxia and
glucose-deprived rats, metformin restricted cortical astrocyte apoptosis and increased cell
viability, along with AMPK activation [147]. Metformin reduces ER stress and inflammation
induced by high glucose in rat astrocytes by inhibiting caveolin1/AMPKα complex [148].
Metformin decreased the expression of AQP4 protein in cultured astrocytes, involved in
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AMPK activation and nuclear factor-κB (NF-κB) inhibition [92]. Taken together, inhibition
of reactive astrogliosis by metformin is at least partially AMPK dependent.

Reactive gliosis is an essential part of the neuroinflammatory process, which is also
considered an important event in the pathogenesis of AD [149]. There is a close relationship
between glial activation, proinflammatory factor release and neuronal injury. In human
neural stem cells, metformin inhibited advanced glycosylation end product-induced in-
flammation and rescued the transcript and protein expression levels of ACC and IKK [150].
Metformin decreased glial activation induced by status epilepticus, downregulated mRNA
levels of proinflammatory cytokines and chemokines, and improved BBB permeability and
hippocampal neuron density, partly mediated by the mTOR pathway [151]. Metformin
inhibits microglial activation in general, and immune reactivity of proinflammatory marker
and anti-inflammatory marker [65]. In addition, metformin reduces the phosphorylated
form of mitogen-activated protein kinases (pMAPKs) and ROS production by inhibiting
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase [65]. Metformin signif-
icantly reduced neuroinflammation and hippocampal neuron loss in diabetic animals,
improving spatial memory [152]. Metformin downregulates the levels of apoptotic and
proinflammatory factors, and reduces oxidative stress to protect the survival of striatum
neurons after intracerebral hemorrhage [153]. Metformin significantly reduced neuroin-
flammation, reactive gliosis, and loss of hippocampal neurons in diabetic animals, resulting
in improved spatial memory [152]. Metformin reduces brain damage in pneumococcal
meningitis by reducing excessive neuroinflammatory responses and protects spiral gan-
glion neurons in the inner ear [154]. After permanent middle cerebral artery occlusion,
chronic metformin preconditioning significantly reduced infarct volume, improved neuro-
logical deficits, reduced levels of inhibitory proinflammatory cytokines, and induced nitric
oxide synthase in the periinfarct area [155]. In conclusion, metformin’s neuroprotective
effects depend at least in part on inhibition of neuroinflammation and reactive gliosis.

In astrocytes treated with metformin, the rate of tricarboxylic acid (TCA) cycle and TCA
cycle intermediates and derivatives were significantly reduced, and complex I-mediated mi-
tochondrial respiration was impaired [156]. In diabetic rats after ischemic stroke, metformin
therapy inhibited the reduction of sensorimotor deficits and prevented swelling and astro-
cyte protuberance around the infarct area [157]. In the astrocytoma model, metformin inhib-
ited not only the NaN3-induced glycolysis, but also the migration of glycolytic cells [158].
Metformin can prevent oxaliplatin-induced intraepidermal fiber degeneration, gliosis and
sensitivity changes in rats [159]. Metformin can also improve astrocyte and microglia
proliferation in sporadic AD model rats [160]. Metformin reversed chronic corticosteroid-
induced depression-like behavior changes and downregulation of glucocorticoid receptors
in cultured rat prefrontal cortical astrocytes [161]. Metformin significantly increased the
number of nuclear positive neurons in the CA1 region of ischemia/reperfusion rats, and
decreased the number of glial fibrillary acidic protein-positive astrocytes [162]. One study
showed that metformin enhanced astrocyte Ca2+ signaling and astroglia-driven regulation
of synaptic plasticity [163]. In conclusion, metformin’s neuroprotective effect is closely
associated with improved reactive astrogliosis.

PEN2, recently identified as a metformin target, is thought to play an important role in
AD pathology as an essential component of the γ-secretase complex that generates Aβ pep-
tide [164]. In an oligodendrocyte-specific PEN2 cKO mouse model, loss of PEN-2 inhibits
the Notch signaling pathway to upregulate signal transducers and transcriptional activators
3, thereby triggering the activation of GFAP and promoting differentiation of oligoden-
drocyte precursor cells to astrocytes [165]. In N2a cells overexpressing the mutant human
APP gene, the downregulation of PEN2 decreased APP expression, while angiotensin-1
increased the secretion of Aβ42 through the FOXA2/PEN2/APP pathway [166].

4.5. Metformin in Synaptic Transmission

Synapses are the special structure between neurons, making communication between
neurons possible. It is the fundamental component of neural network function. Neuro-
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transmitters are released from the presynaptic axons into the synaptic cleft, binding to
and activating receptors on postsynaptic membranes to transmit signals [167]. Activity-
dependent regulation of the efficiency of synaptic transmission between neurons, often
called synaptic plasticity, plays an essential role in brain development and function, pri-
marily learning and memory [168]. Synaptic dysfunction has recently been recognized
as the basis of some neurological disorders. Metformin, as a potential drug for treating
some neurological disorders, is gradually recognized for its role in regulating synaptic
transmission and plasticity.

In patients with MDD or bipolar disorder, abnormalities in the balance of excitation
and inhibition (E/I balance) may contribute to abnormal functional connectivity patterns in
brain networks. Neural network dysfunction is associated with altered levels of glutamate
and gamma-aminobutyric acid (GABA) in the brain, and has been identified in studies of
depression in animals and humans [169]. Metformin can promote the membrane insertion
of GABAA receptor and enhance the inhibitory synaptic neurotransmitter function and
micro-inhibitory postsynaptic currents (mIPSCs) in cultured rat hippocampal neurons by
activating AMPK-FOXO3A signaling pathway and increasing the expression of GABAA
receptor-associated protein [170]. In a rat model of diabetic epilepsy, metformin corrected
the abnormal level of glutamate and GABA values in the hippocampus [171]. In an
open-label study, increased corticospinal inhibition mediated by the GABAA and GABAB
mechanisms was observed by transcranial magnetic stimulation in 15 FXS patients with
metformin treatment, suggesting the potential of metformin in modifying GABA-mediated
inhibition [172]. Glutamate excitatory toxicity in nutrient-deficient cells was mitigated
after metformin treatment, mediated partly by downregulation of AMPK and subsequent
reduction in autophagy [173]. Similarly, metformin directly inhibits glutamate-induced
neuronal excitotoxicity by regulating autophagy and MAPK phosphorylation [174]. In the
LPS-induced depression mouse model, metformin administration reduced presynaptic
glutamate release and decreased the miniature excitatory postsynaptic currents (mEPSCs)
frequency of hippocampal pyramidal neurons [80]. Metformin treatment restored excita-
tory synaptic activity in hippocampal sections to normal levels and rescued exaggerated
metabolic glutamate receptor-dependent long-term depression (LTD) of synaptic transmis-
sion in Fmr1 −/Y mice of FXS mouse models [85]. In one of our previous in vitro studies,
we treated hippocampal slices with metformin and found that metformin treatment has
no effect on GABAergic transmission onto CA1 pyramidal neurons [175]. Metformin treat-
ment significantly increased the frequency, but not the amplitude, of mEPSCs, while the
frequency and amplitude of mIPSCs were not changed [175]. Paired-pulse ratio analysis
showed that presynaptic glutamate release was enhanced, but the excitability of CA1 pyra-
midal neurons was not changed [175]. In conclusion, metformin may affect glutamatergic
and GABAergic synapses by directly regulating the number of neurotransmitters released
and changing the expression level of receptors on the postsynaptic membrane.

In addition to these two important neurotransmitters, other neurotransmitters play an
indispensable role in the central nervous system, such as acetylcholine (Ach), 5-HT and
dopamine. When the local injection of metformin by retrodialysis, Ach has a short-term
increase in the hypothalamus [90]; however, both doses of metformin did not increase acetyl-
cholinesterase (AchE) activity in the hippocampus and cortex of mice; however, metformin
normalized Ach cleavage in the hippocampus, and inhibited AchE activity in vitro [160].
Metformin can reverse the learning and memory impairment induced by scopolamine,
but do not affect the inhibition of scopolamine-induced changes in Ach levels [176]. In
C. elegans expressing human Aβ42, metformin can reduce the hypersensitivity to 5-HT
induced by Aβ expression in neurons [177]. Metformin may have antidepressant effects by
decreasing circulating branched-chain amino acids level and promoting serotonergic neuro-
transmission in the hippocampus [178]. In HFD-induced insulin-resistant mice, metformin
stimulated 5-HT neurons excitability and 5-HT neurotransmission [81]. Metformin can
induce the release of 5-HT in human duodenal mucosa biopsy specimens [179]. In some
animal models of PD, metformin upregulated dopamine in the mouse brain [128,180]. In
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addition, metformin saved the MDMA-induced dopamine transporter decline [124]. In
summary, metformin appears not only to improve synaptic transmission in pathological
conditions broadly, but also to regulate E/I balance in neural networks.

Besides, metformin also helps the morphological improvement of neurons under cer-
tain pathological conditions. In a rat model of metabolic syndrome (MS), the morphology
of hippocampal neurons in MS rats was improved by metformin administration [181].
In detail, metformin restored the decline of dendritic length and dendritic spine density
induced by a high-calorie diet in the hippocampus [181]. Metformin treatment prevented
transcriptional changes in the medial prefrontal cortex and contributed to morphological
changes in the neurite plasticity of CA1 pyramidal neurons [79]. Metformin significantly up-
regulated BDNF expression by increasing histone acetylation of the BDNF promoter, which
is attributed to the activation of AMPK and CREB [79]. Metformin preconditioning partially
restored sevoflurane exposure-induced significant reductions in hippocampal synaptic
density and integrity through AMPK-ULK1-dependent autophagy in aged mice [182]. Met-
formin prevented the cisplatin-induced reduction in the number of dendritic spines and
branches of neurons [183]. Metformin administration for 10 d corrected the dendritic abnor-
malities in Fmr1−/y mice of FXS model [85]. In the AlCl3-induced mouse neurodegenera-
tion model, metformin normalized synaptic protein expression and significantly increased
post-mitotic NeuN-positive neurons in the hippocampus [184]. In cultured primary cortical
neurons, metformin treatment reduced postsynaptic density-95 (PSD-95), and significantly
reduced the number of overlapping immunoreactive clusters of presynaptic synapsin I and
postsynaptic PSD-95 proteins, suggesting an overall loss of synaptic buttons. In tau-P301S
mice, synapsin I and PSD-95 levels did not change after chronic metformin treatment,
but synaptophysin expression was significantly reduced [117]. Metformin ameliorates
synaptic defects by suppressing Cdk5 hyperactivation in the hippocampus of APP/PS1
mice, and rescues various synaptic abnormalities, including spine loss, suppression of sur-
face GluA1 trafficking and reduced basal synaptic transmission [185]. Thrombospondin-1
(TSP-1) is a protein secreted by astrocytes and a key factor regulating the development
of dendritic spines and synaptogenesis [186]. In a clinical trial, metformin treatment can
correct lower TSP-1 levels in patients with PCOS through the NF-κB and ERK1/2/ERK5
pathways [187]. In astrocytes exposed to ammonia, metformin increased synaptophysin
levels and alleviated ammonia-induced reduction in intra- and extracellular levels of TSP-1
in astrocytes [188]. In conclusion, metformin alleviates synaptic morphological defects in
various pathological conditions.

In HFD-fed prediabetic rats, metformin treatment restored the normalized field ex-
citatory postsynaptic potential (fEPSP) slope and increment of the fEPSP slope of high-
frequency stimulated long-term potentiation (LTP), suggesting the improved hippocampal
synaptic plasticity by metformin [189]. Metformin also mitigated the effect of Aβmediated-
LTP in rats fed a high-fat diet, including significantly reduced population spike amplitude
and EPSP slope [190]. Taken together, metformin not only resists the changes in synap-
tic morphology and synaptic number induced by external stressors, but also enhances
synaptic plasticity.

5. Conclusions

In conclusion, we summarized the clinical application and efficacy of metformin
in various neurological disorders, and analyzed the effect of mainstream animal model
experiments (Table 1). It has been found that metformin has a broad neuroprotective effect,
but further validation in some animal models and exploration of its underlying mechanisms
are needed. We focused on metformin’s role in neuron, astrocyte and synaptic transmission.
Metformin can improve synaptic transmission, affecting neural circuits and regulating E/I
balance in neural networks (Figure 2). Finally, further studies are needed to investigate the
exact mechanism of metformin’s neuroprotective effects and the heterogeneous sources of
side effects. Metformin may be an attractive drug for preventing neurological disorders in
the future because of its few clinical side effects.
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Table 1. Effects of metformin on neurological disorders.

Neurological
Disorders Clinical Trials

Animal or Cellular Studies

Model Effects Potential Mechanisms

Alzheimer’s
disease (AD)

In a double-blinded,
placebo-controlled crossover pilot
study, non-diabetic subjects with AD
showed improvement in executive
function after taking metformin for 8
weeks, with trends indicating
improved learning/memory and
attention [48]. Oral metformin (mean
average dosage of 500 mg per day)
reduced the risk of developing AD in
T2DM patients to 0.76 [40]. In
patients with T2DM, metformin
users performed better on immediate
and delayed memory over time [52].
In a meta-analysis, the incidence of
cognitive impairment was
significantly reduced in metformin
diabetic patients (Odds ratio = 0.55,
95%CI 0.38–0.78), and dementia was
also significantly reduced (Hazard
ratio = 0.76, 95%CI 0.39–0.88) [191].
Among diabetic patients, metformin
users have a lower risk of developing
AD than other hypoglycemic drug
users [41,192]. Conversely, long-term
use of metformin has been associated
with a higher risk of AD in some
studies [49,50,193].

APP/PS1 mice

Metformin (200 mg/kg, i.p. for
14 days) attenuated spatial
memory deficit, neuronal loss,
increased Aβ plaque and chronic
inflammation [53].

Metformin activates
AMPK/mTOR/S6K/BACE1
and AMPK/P65 NF-κB.

Metformin (drinking water
containing metformin for 12
weeks) effectively reduces
accumulated Aβ plaque levels
and reverses the molecular and
behavioral phenotypes
of AD [118].

Metformin activates
chaperone-mediated
autophagy by TAK1-
IKKα/β-Hsc70-CMA.

Metformin (200 mg/kg/day,
oral administration for 8 weeks)
improve learning and memory
ability, neurological dysfunction
and oxidative stress, and
reduced Aβ levels and increased
the expression of
synaptic-related genes [194].

Metformin activates
AMPK signaling pathway
and upregulates the
insulin-degrading enzyme.

Metformin treatment (200
mg/kg, i.p. for 10 days)
restoring spinal density, surface
GluA1 transport, LTP expression,
and spatial memory [185].

Metformin inhibits
cyclin-dependent kinase 5
hyperactivation by
inhibiting Calpain,
leading to inhibition of tau
hyperphosphorylation.

APP/PS1 mice
injected with tau

aggregates

Metformin (drinking water
containing metformin for 2
months) reduced Aβ load and
tau pathological changes and
increased the number of
microglia around Aβ
plaques [195].

Metformin improves Aβ
pathology and limits tau
transmission by
enhancing autophagy.

SAMP8 mice

Metformin (20 mg/kg/sc or 200
mg/kg/sc, i.p. for 8 weeks)
improved memory of
spontaneous onset AD by
decreasing APPc99 and p-tau at
both concentrations [54].

Metformin may reduce
tau phosphorylation by
regulating the protein
kinase C and GSK3β.

Primary cortical
neurons from
wild-type and

human tau
transgenic mice

Metformin (2.5 mM) induces
PP2A activity and decreases tau
phosphorylation at
PP2A-dependent epitopes
in vitro and in vivo [55].

Metformin induces tau
dephosphorylation
through direct activation
of PP2A, and this pathway
is independent of
AMPK activation.

Primary cortical
neurons and

N2a cells

Metformin (1~10 µM) increased
the production and secretion of
Aβ by upregulating BACE1
promoter activity [56].

Metformin affects Aβ
levels and BACE1
transcription in an
AMPK—dependent
manner.

Parkinson’s
disease (PD)

Compared with untreated diabetic
patients, there is no difference (HR
0.95) in PD risk when metformin is
used alone, but sulfonylurea-alone
increases the risk (HR 1.57), while
the combination of the two can
reduce the risk (HR 0.78) [18]. In
patients with T2DM, metformin
users were at higher risk of PD (HR:
2.27, 95% CI 1.68–3.07) [7].
Compared with metformin alone,
glitazone was associated with a
significantly lower incidence of PD
(HR 0.72; 95%CI 0.55–0.94) [19].

MPTP-induced
PD mice

Long-term metformin treatment
(500 mg/kg, oral administration
for 21 days) significantly
ameliorates MPTP-induced
motor injury and dopaminergic
neuron death [61].

Metformin improved
oxidative stress and
upregulated BDNF levels.

6-OHDA-lesioned
mouse model of PD

Metformin (100 and 200 mg/kg,
oral administration for 10 days)
co-treatment with L-DOPA
suppresses the development
of dyskinesia [63].

Metformin induced
enhancement of mTORC,
dopamine D1 receptor and
ERK1/2 signaling, and
normalized the
Ak/GSK3β signaling.

Metformin (100 mg/kg and 200
mg/kg, oral administration for 4
weeks) treatment can effectively
improve the motor symptoms of
PD mice [64].

Metformin induces the
activation of AMPK and
BDNF signaling, and
regulates the
astrocyte activation.
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Table 1. Cont.

Neurological
Disorders Clinical Trials

Animal or Cellular Studies

Model Effects Potential Mechanisms

Bcat-1 knockdown
worm model of PD

Metformin (50 µM) treatment
could correct the abnormal
mitochondrial respiration and
evidently rescued dopamine
neuron viability [62].

Metformin can activate
AMPK and upregulate
BDNF, and inhibit
reactive astrocytes.

LPS-induced rat
model of PD

Metformin (150 mg/kg, oral
administration for 7 days)
generally inhibited the activation
of microglia and the expression
of inflammatory cytokines [65].

Metformin reduces
mitochondrial respiration
through the mTORC-
independent mechanism

Haloperidol-
induced catalepsy

model of PD

Metformin (20~100mg/kg, oral
administration for 21 days)
significantly attenuated memory
deficit, oxidative stress and
lipid peroxidation [66].

Metformin inhibits the
pMAPKs and ROS
production by inhibiting
NADPH oxidase

Huntington’s
disease (HD)

HD patients with T2DM receiving
metformin had better cognitive test
results than those without diabetes
not taking metformin [25].

Hdh150 knock-in
mouse model of HD

Metformin (drinking water
containing metformin 5mg/mL
for 16–24 days) can reduce the
aberrant huntingtin load and
completely restore the early
network activity pattern and
abnormal behavior [21].

Metformin at low doses
did not activate AMPK,
but instead activated the
mTOR/PP2A pathway

zQ175 mouse model
of Huntington’s

disease

Metformin (drinking water
containing metformin 2mg/mL
for 3 months) improved motor.
upregulated the expression level
of BDNF, and reduced reactive
astrocytes and microglia [69].

Metformin treatment
reduces pERK1/2
expression

Worm models of
polyglutamine

toxicity

Metformin (2 mM) prevents
aggregation of abnormal
aberrant huntingtin and
neuronal impairment [70].

Metformin improves
neuronal toxicity in an
AMPK- and
lysosome-dependent
mechanism

HEKT cells
overexpressing

huntingtin

Metformin (1 mM or 2.5 mM)
reduces mutant huntingtin
translation rate and S6
phosphorylation [21].

Metformin regulates
huntingtin by
mTOR/PP2A pathway

Major
depressive

disorder (MDD)

In a large-scale study of adolescents
with severe mental illness,
metformin add-on was associated
with significantly fewer aggressive
and impulsive problems [22].
Metformin has been associated with
a lower incidence rate of depression
and improve symptoms of
depression in several other
clinical studies [72–78].

LPS-induced mice
model of MDD

Metformin (200 mg/kg, i.p. for
10 days) administration
ameliorated
depressive-like behaviors [80].

Metformin reduces
increased mEPSC
frequency and presynaptic
glutamate release.

HFD-induced
insulin-resistant

mice

Metformin (drinking water
containing metformin 300
mg/kg/day for 7 weeks)
alleviates HFD-induced anxiety-
/depressive-like behaviors [81].

Metformin promotes 5-HT
neurotransmission by
reducing circulating
branched-chain amino
acids.

CSDS mouse model
of MDD

Metformin (200 mg/kg/day,
oral administration for 21 days)
alone relieved depression-like
behaviors and improved
CSDS-induced synaptic defects
in mice [79].

Metformin upregulates
BDNF expression by
activating AMPK/CREB
signaling.

Fragile X
syndrome (FXS)

In seven FXS patients, metformin
treatment was associated with
improvement in irritability, social
reactivity, hyperactivity, and social
avoidance [83].

Fmr1-KO mouse
model of FXS

Metformin reverses the social
behavior defects, rescues
long-term depression and
impaired spine morphology [85].

Metformin selectively
normalizes ERK signaling,
and the expression of
MMP-9.
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Figure 2. Potential mechanisms underlying the actions of metformin in the brain. In neurons, met-
formin regulates autophagy by AMPK/mTORC1 signaling pathway to alleviate abnormal protein 
aggregation. In addition, metformin decreases oxidative stress by regulating mitochondrial home-
ostasis. In astrocytes, metformin suppresses neuroinflammation by inhibiting reactive astrocyte pro-
liferation and proinflammatory factors. In synaptic transmission, metformin may regulate E/I bal-
ance by directly regulating the amount of presynaptic neurotransmitter release or altering the ex-
pression level of receptors on the postsynaptic membrane. Metformin significantly ameliorates syn-
aptic morphological defects and enhances synaptic plasticity in a variety of pathological conditions. 
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sity protein 95; BDNF, brain-derived neurotrophic factor; FoxO3a, forkhead box O3a; GABA, 
gamma-aminobutyric acid; GABAAR, GABA type A receptor. 

Author Contributions: Conceptualization, E.F. and T.Z.; writing—original draft preparation, N.L.; 
writing—review and editing, N.L. and E.F.; supervision, E.F.; project administration, E.F.; funding 
acquisition, E.F. and T.Z. All authors have read and agreed to the published version of the manu-
script. 

Funding: This work was supported by grants from the National Natural Science Foundation of 
China (31771142 to E.F. and 31860268 to T.Z.). 

Institutional Review Board Statement: Not applicable 

Informed Consent Statement: Not applicable 

Conflicts of Interests: The authors declare no competing financial interests. 

References 
1. Bailey, C.J.; Day, C. Traditional plant medicines as treatments for diabetes. Diabetes Care 1989, 12, 553–564. 

https://doi.org/10.2337/diacare.12.8.553. 
2. Pernicova, I.; Korbonits, M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 

2014, 10, 143–156. https://doi.org/10.1038/nrendo.2013.256. 
3. Foretz, M.; Guigas, B.; Bertrand, L.; Pollak, M.; Viollet, B. Metformin: From mechanisms of action to therapies. Cell Metab. 2014, 

20, 953–966. https://doi.org/10.1016/j.cmet.2014.09.018. 

Figure 2. Potential mechanisms underlying the actions of metformin in the brain. In neurons,
metformin regulates autophagy by AMPK/mTORC1 signaling pathway to alleviate abnormal pro-
tein aggregation. In addition, metformin decreases oxidative stress by regulating mitochondrial
homeostasis. In astrocytes, metformin suppresses neuroinflammation by inhibiting reactive astro-
cyte proliferation and proinflammatory factors. In synaptic transmission, metformin may regulate
E/I balance by directly regulating the amount of presynaptic neurotransmitter release or altering
the expression level of receptors on the postsynaptic membrane. Metformin significantly amelio-
rates synaptic morphological defects and enhances synaptic plasticity in a variety of pathological
conditions. AMPK, 5’-AMP-activated protein kinase; mTORC1, mechanistic target of rapamycin com-
plex 1; AMPAR, AMPA-type glutamate receptor; NMDAR, NMDA receptors; PSD-95, postsynaptic
density protein 95; BDNF, brain-derived neurotrophic factor; FoxO3a, forkhead box O3a; GABA,
gamma-aminobutyric acid; GABAAR, GABA type A receptor.
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