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Abstract: Mistletoe infestation leads to a decrease in the growth of woody plants, their longevity,
and partial or complete drying of the top, as well as premature death. Various environmental
stress factors, both abiotic and biotic, stimulate the formation of reactive oxygen species and the
development of oxidative stress in plant tissues. This study aimed to investigate the effect of mistletoe
(Viscum album L.) infestation on the response of the antioxidative defense system in leaves of small-
leaved linden (Tilia cordata Mill.). Leaves from infested trees were taken from branches (i) without
mistletoe, (ii) with 1–2 mistletoe bushes (low degree of infestation), and (iii) with 5–7 mistletoe
bushes (high degree of infestation). The relative water content and the chlorophyll a and b contents
in leaves from linden branches affected by mistletoe were significantly lower than those in leaves
from non-infested trees and from host-tree branches with no mistletoe. At the same time, leaves
from branches with low and high degrees of infestation had significantly higher electrolyte leakage,
malondialdehyde and hydrogen peroxide content, oxidized forms of ascorbic acid (dehydroascorbic
and 2,3-diketogulonic acids), and oxidized glutathione. The results of principal component analysis
show that the development of oxidative stress was accompanied by an increase in proline content and
in superoxide dismutase, ascorbate peroxidase, glutathione peroxidase, and glutathione reductase
activity. Several biochemical parameters (proline, ascorbic acid, dehydroascorbic acid, glutathione,
glutathione peroxidase, ascorbate peroxidase, and dehydroascorbate reductase) were found to be
altered in leaves from host-tree branches with no mistletoe. This result indicates that the mistletoe
infestation of trees not only causes local changes in the locations of hemiparasite attachment, but also
affects the redox metabolism in leaves from other parts of the infested tree.

Keywords: hemiparasite; small-leaved lime; urban ecology; haustoria; oxidative stress; water defi-
ciency; Foyer–Halliwell–Asada cycle

1. Introduction

European mistletoe (Viscum album L.) is a spherical hemiparasitic evergreen bush that
develops stable haustoria in the host tree. Mistletoe is currently widely distributed in
Europe, Asia, and America. The geographic distribution of mistletoe is limited primarily
by temperature. The low average temperatures of the coldest and warmest months of the
year limit the distribution of European mistletoe [1]. Consequently, the warmer the climate
is, the wider the range mistletoe will have, increasing the area of infested trees [1].

Mistletoe infestation causes a decrease in the growth of trees and their longevity, and
partial or complete drying of the treetop, as well as premature death [2,3]. Mistletoe is
believed to capture water, mineral nutrients, and carbohydrates (glucose, fructose, sucrose)
from their host trees, thereby disrupting the osmotic and carbon balance of the host [4,5].
Urban trees are especially infested by mistletoe, as the conditions of their growth place
them in a vulnerable position [6]. Limited water and nutrients, insufficient space for roots
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and crown, and air pollution weaken urban trees and make them more susceptible to biotic
factors, enhancing the negative consequences of mistletoe infestation [6,7].

Previous studies [8] showed that in the territory of Kaliningrad, the trees of the small-
leaved linden (Tilia cordata Mill.) are more susceptible to mistletoe infestation compared
to other urban trees. The natural ranges of the small-leaved linden are located in the
forests of the temperate zone of Europe and adjacent regions of Asia [9,10]. In addition, the
small-leaved linden is an important species for urban and recreational forestry and open
landscapes. These trees are often planted singly or in groups along roads and in urban
parks [11]. Linden trees are distinguished by several advantages, particularly a compact
leaf crown, shade tolerance, tolerance to various soil conditions, and resistance to wind
and stressful urban conditions, such as smoke, dirt, dust, and air pollution [12]. Despite
this, the soft wood, relatively old age, and inadequate crown care of the trees lead to the
spread of mistletoe.

Plant resistance to pathogens is controlled by the innate immune system, with two
levels of defense. The first level is associated with inducing pattern-triggered immunity
and the second with inducing effector-triggered immunity [13]. In the last decade, the
elements of these systems have been established in some parasitic plant–host plant inter-
actions [13,14]. It is known that products of cell wall decomposition formed under the
action of hydrolases of parasitic plants can participate in damage-associated molecular
patterns (DAMPs) and induce the defense mechanism of the host plant [15]. Although the
genes encoding cell wall-destructing enzymes are expressed in mistletoe haustoria [16], the
mechanisms of signal perception and transduction through DAMP for mistletoe–host plant
interactions have not been established. After haustoria develops in the host plant tissues,
several defense mechanisms in the host plant can be activated. In particular, the release
of cytotoxic compounds, the formation of mechanical barriers through lignification, the
production of reactive oxygen species (ROS), and the initiation of a hypersensitive response
can be observed [14].

A standard characteristic of various environmental stress factors, both abiotic and
biotic, is their ability to stimulate the ROS formation in plant tissues [17]. On the one
hand, the production and accumulation of ROS in plants leads to serious destruction of
cell organelles and causes membrane peroxidation, which leads to damage to the cell
membrane, degradation of biological macromolecules, and ultimately cell death [18,19].
On the other hand, ROS act as signal molecules that activate stress-dependent metabolic
pathways and cellular defense mechanisms [19]. The mechanisms of plant resistance un-
der stress conditions include several physiological and biochemical strategies, and many
enzymatic components, such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT,
EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione peroxidase (GPX, EC 1.11.1.9), glu-
tathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18), ascorbate
peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MDAR, EC 1.6.5.4), and
dehydroascorbate reductase (DHAR, EC 1.8.5.1), as well as non-enzymatic components
such as ascorbic acid, glutathione, phenolic compounds, carotenoids, α-tocopherols, and
free amino acids, including proline [18]. Proline, as an osmoprotectant, plays a crucial role
in the protection of plant cells under stress conditions that cause an osmotic imbalance
in cells (drought, salinity, cold, high temperature, etc.) [20]. It has been also considered
to be a non-enzymatic antioxidant due to its capacity to scavenge ROS (singlet oxygen,
hydroxyl radical) and reduce the effect of ROS by stabilizing the antioxidative enzymes
and protecting the integrity of cell membranes [21,22].

Some studies have demonstrated that the infestation of trees by mistletoe of different
genera (Viscum album, Phoradendron perrottetii) leads to changes in the oxidative status,
the level of some low-molecular-weight antioxidants, and the activity of enzymatic an-
tioxidants in host trees [3,23–26]. It was found that in the case of infestation of Scots
pine (Pinus sylvestris L.) with European mistletoe, the levels of hydrogen peroxide and
glutathione increased in the bark of trees, and the level of the reduced form of ascorbic acid
decreased [25]. One study [26] showed an increase in hydrogen peroxide and malondialde-
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hyde content in the bark of small-leaved linden, Norway maple (Acer platanoides L.), and
black poplar (Populus nigra L.) trees severely infested with European mistletoe. Fir needles
also showed elevated oxidative stress parameters (electrolyte leakage, malondialdehyde,
superoxide anion radical, hydrogen peroxide, and hydroxyl radical) and the activity of
some antioxidative enzymes (CAT, POD) [3]. When Tapirira guianensis trees were infested
by P. perrottetii mistletoe, a higher content of phenolic compounds (tannins and flavonoids)
was observed in the branches of host trees [23].

To the best of our knowledge, there have been no previous studies on the effects of
mistletoe infestation on small-leaved linden trees in terms of the development of oxidative
stress and the response of the antioxidative system in the leaves of host trees. This study
aimed to investigate the effect of mistletoe infestation on (i) the relative water and chloro-
phyll content in linden leaves; (ii) the parameters of oxidative stress (electrolyte leakage,
malondialdehyde, hydrogen peroxide); (iii) the contents of non-enzymatic antioxidants
(proline, reduced and oxidized forms of glutathione, three forms of ascorbic acid, total
phenolic compounds); and (iv) the activity of antioxidative enzymes (SOD, CAT, POD, as
well as enzymes of the ascorbate–glutathione cycle). The results of this study will expand
our knowledge about the mechanisms of the response of host trees to mistletoe infestation
and help to develop strategies for adapting to it.

2. Results
2.1. Effect of Mistletoe Infestation on the Relative Water Content and the Content of Chlorophylls
in Linden Leaves

Relative water content in leaves from linden branches infested by mistletoe was
significantly lower compared to control plants and leaves from branches with no mistletoe
(Table 1).

Table 1. Effect of mistletoe infestation on relative water content and chlorophyll content in linden leaves.

Treatment RWC, % Chlorophyll a, mg
g−1 DW

Chlorophyll b, mg
g−1 DW

Total Chlorophyll,
mg g−1 DW

Chlorophyll a/b
Ratio

C 89.2 ± 0.7 a 2.25 ± 0.03 a 1.56 ± 0.02 a 3.80 ± 0.04 a 1.44 ± 0.01 a

NI 89.1 ± 1.0 a 2.52 ± 0.04 a 1.51 ± 0.05 a 3.75 ± 0.05 a 1.51 ± 0.03 a

LI 83.6 ± 0.5 b 1.79 ± 0.06 b 1.23 ± 0.03 b 3.03 ± 0.07 b 1.45 ± 0.02 a

HI 77.8 ± 0.9 c 1.52 ± 0.05 c 1.14 ± 0.03 b 2.66 ± 0.06 c 1.33 ± 0.03 b

RWC, relative water content; DW, dry weight; C, control, non-infested trees; NI, leaves from non-infested branches of infested trees; LI,
leaves from branches with 1–2 mistletoe bushes (low degree of infestation); HI, leaves from branches with 5–7 mistletoe bushes (high
degree of infestation). Different letters in each column indicate significant differences between variants based on Tukey’s post hoc test
(n = 5) at p ≤ 0.05.

The contents of chlorophyll a and chlorophyll b were significantly reduced under
mistletoe infestation (Table 1), and the rate of decrease of chlorophyll a depended on the
intensity of infestation. The content of chlorophyll b in the leaves of mistletoe-infested
branches was lower compared to the control variants but did not differ significantly in the
experimental variants with different degrees of infestation (Table 1). With a high degree of
mistletoe infestation, a decrease in the chlorophyll a/b ratio was also observed (Table 1),
associated with a decrease in the total amount of chlorophyll and a more pronounced
decrease in chlorophyll a compared to chlorophyll b (Table 1).

2.2. Effect of Mistletoe Infestation on Oxidative Stress Parameters in Linden Leaves

Mistletoe infestation of trees resulted in elevated electrolyte leakage compared to
control groups; the larger the infestation, the higher the level of electrolyte leakage (Table 2).
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Table 2. Effect of mistletoe infestation on oxidative stress parameters in linden leaves.

Treatment Electrolyte Leakage, % MDA, nmol g−1 DW H2O2, nmol g−1 DW

C 12.4 ± 0.7 c 93.6 ± 2.0 c 2.24 ± 0.03 a

NI 15.8 ± 0.6 c 99.4 ± 3.1 c 2.25 ± 0.03 a

LI 23.8 ± 1.3 b 137.8 ± 4.4 b 1.79 ± 0.05 b

HI 30.8 ± 1.4 a 183.8 ± 3.6 a 1.52 ± 0.6 c
MDA, malondialdehyde; DW, dry weight; C, control, non-infested trees; NI, leaves from non-infested branches
of infested trees; LI, leaves from branches with 1–2 mistletoe bushes (low degree of infestation); HI, leaves
from branches with 5–7 mistletoe bushes (high degree of infestation). Different letters in each column indicate
significant differences between variants based on Tukey’s post hoc test (n = 5) at p ≤ 0.05.

Similar changes were found for the content of malondialdehyde, a product of lipid
peroxidation, and hydrogen peroxide; these components in leaves from branches infested
by mistletoe showed significantly higher content compared to control variants (C and NI)
(Table 2). The levels of hydrogen peroxide and malondialdehyde were 1.4 and 2 times
higher, respectively, in the presence of heavy mistletoe infestation than in the leaves of
non-infested trees (Table 2). This indicates that during mistletoe infestation, along with
hydrogen peroxide, other peroxide compounds that oxidize the lipophilic components of
cell membranes are generated in leaves.

2.3. Effect of Mistletoe Infestation on Non-Enzymatic Antioxidants in Linden Leaves

In comparison with non-infested trees, significantly higher proline content was found
in the leaves collected from branches on which mistletoe was present (LI and HI) and
host-tree branches with no mistletoe (NI) (Table 3).

Table 3. Effect of mistletoe infestation on contents of non-enzymatic antioxidants in linden leaves.

Treatment Proline,
µmol g−1 DW

GSH,
µmol g−1 DW

GSSG,
µmol g−1 DW

AsA,
µg g−1 DW

DHA,
µg g−1 DW

DKGA,
µg g−1 DW

TPC,
mg g−1 DW

C 155.2 ± 5.1 c 53.8 ± 1.6 a 4.10 ± 0.11 b 111.6 ± 3.0 c 44.2 ± 1.4 c 36.8 ± 2.0 c 9.48 ± 0.39 b

NI 219.0 ± 5.5 b 45.6 ± 1.2 b 4.12 ± 0.14 b 218.6 ± 5.8 a 63.8 ± 2.7 b 38.4 ± 1.5 c 9.20 ± 0.41 b

LI 239.8 ±5.4 b 32.8 ± 1.4 c 5.70 ± 0.10 a 230.6 ± 3.7 a 79.4 ± 1.5 a 61.4 ± 2.3 b 12.92 ± 0.86 a

HI 321.4 ± 4.7 a 23.0 ± 1.5 d 5.84 ± 0.12 a 178.2 ± 5.2 b 84.6 ± 1.5 a 110.1 ± 4.2 a 5.44 ± 0.29 c

DW, dry weight; GSH, reduced glutathione; GSSG, oxidized glutathione; AsA, ascorbic acid; DHA, dehydroascorbic acid; DKGA, 2,3-
diketogulonic acid; TPC, total phenolic compounds. C, control, non-infested trees; NI, leaves from non-infested branches of infested trees;
LI, leaves from branches with 1–2 mistletoe bushes (low degree of infestation); HI, leaves from branches with 5–7 mistletoe bushes (high
degree of infestation). Different letters in each column indicate significant differences between variants based on Tukey’s post hoc test
(n = 5) at p ≤ 0.05.

The content of reduced glutathione significantly decreased when the tree was infested
with mistletoe; the greater the intensity of the infestation, the lower the content in leaves of
the studied trees (Table 3). The content of oxidized glutathione was significantly higher
in linden leaves from branches with mistletoe infestation compared to control variants
(Table 3).

This work aimed at studying the content of three forms of ascorbic acid in the leaves
of linden trees infested by mistletoe, particularly the reduced form of ascorbic acid, dehy-
droascorbic acid, and 2,3-diketogulonic acid. The content of the reduced form of ascorbic
acid was 1.5–2 times higher in infested trees than in the leaves of non-infested trees (Table 3).
The maximum content of ascorbic acid was determined in leaves from the control branches
of host-trees under a low degree of mistletoe infestation. With greater infestation, the level
of ascorbic acid decreased slightly (Table 3). The content of dehydroascorbic acid was also
higher in the leaves of infested trees, including leaves collected from branches with no
mistletoe bushes (Table 3); its maximum level was observed at low and high degrees of
infestation (LI). The maximum content of 2,3-diketogulonic acid was observed in leaves
with severe mistletoe infestation (HI) (Table 3).
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The highest total content of phenolic compounds was found in leaves harvested from
linden branches with a low degree of mistletoe infestation (LI) (Table 3). With a high
degree of infestation (HI), the content of phenolic compounds sharply decreased and was
significantly lower compared to the control variants (C and NI).

2.4. Effect of Mistletoe Infestation on Antioxidative Enzyme Activity in Linden Leaves

The response of antioxidative enzymes to mistletoe infestation was assessed through
the activity of SOD, CAT, enzymes involved in the Foyer–Halliwell–Asada cycle, and
POD (Table 4). SOD activity was significantly higher in linden leaves from branches with
mistletoe infestation (LI and HI) compared to control variants (C and NI) (Table 4). No
significant differences were found in variants with different degrees of infestation.

Table 4. Effect of mistletoe infestation on activities of antioxidative enzymes in linden leaves.

Treatment
SOD,

U mg−1

Protein

CAT,
nmol H2O2

mg−1 Protein
min−1

APX,
µmol AsA

mg−1 Protein
min−1

MDAR,
µmol

NADPH mg−1

Protein min−1

DHAR,
µmol AsA

mg−1 Protein
min−1

GPX,
µmol GSH

mg−1 Protein
min−1

GR,
µmol

NADPH mg−1

Protein min−1

POD,
µmol Guaiacol
mg−1 Protein

min−1

C 4.46 ± 0.05 c 131.1 ± 2.9 c 14.1 ± 1.0 d 3.47 ± 0.06 c 1.96 ± 0.03 b 1.33 ± 0.03 d 2.22 ± 0.04 b 0.58 ± 0.04 c

NI 4.44 ± 0.04 c 134.2 ± 2.8 c 24.1 ± 1.3 c 3.49 ± 0.04 c 2.77 ± 0.06 a 2.18 ± 0.03 c 2.21 ± 0.03 b 0.68 ± 0.01 bc

LI 7.57 ± 0.06 a 227.8 ± 3.9 a 36.6 ± 1.4 b 4.50 ± 0.05 a 2.87 ± 0.04 a 3.30 ± 0.05 b 2.29 ± 0.02 b 1.48 ± 0.05 a

HI 7.46 ± 0.11 b 174.0 ± 2.7 b 48.5 ± 1.8 a 3.97 ± 0.04 b 1.49 ± 0.05 c 3.53 ±0.04 a 2.68 ± 0.04 a 0.80 ± 0.02 b

SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; MDAR, monodehydroascorbate reductase; DHAR, dehydroascorbate
reductase; GPX, glutathione peroxidase; GR, glutathione reductase; POD, peroxidase. C, control, non-infested trees; NI, leaves from
non-infested branches of infested trees; LI, leaves from branches with 1–2 mistletoe bushes (low degree of infestation); HI, leaves from
branches with 5–7 mistletoe bushes (high degree of infestation). Different letters in each column indicate significant differences between
variants based on Tukey’s post hoc test (n = 5) at p ≤ 0.05.

CAT activity was also significantly higher in leaves from branches infested with
mistletoe (Table 4); by comparison, at high infestation intensity, there was a decrease in
CAT activity.

The Foyer–Halliwell–Asada cycle includes the enzymes APX, MDAR, DHAR, GPX,
and GR. A similar reaction of enzymes to mistletoe infestation was observed for those di-
rectly involved in the utilization of hydrogen peroxide, specifically APX and GPX (Table 4).
Thus, APX and GPX activity was significantly higher in the case of mistletoe infestation,
both in leaves from branches with no mistletoe (NI) and with low and high degrees of infes-
tation (LI and HI) (Table 4). Maximum MDAR activity was observed in linden leaves from
branches with low infestation (Table 4). High levels of DHAR activity were found in linden
leaves from branches with a low degree of infestation (LI), as well as leaves from branches
with no mistletoe but the tree was infested (NI) (Table 4). Significantly higher GR activity
was observed only in leaves from branches with a high degree of infestation (Table 4). In
the leaves of other variants, no significant differences in GR activity were found.

The activity of POD, the substrates of which are phenolic compounds and hydrogen
peroxide, increased sharply in the leaves from branches with a low degree of mistletoe
infestation (approximately 2.5 times compared to non-infested trees) (Table 4).

2.5. Interaction between Relative Water Content, Chlorophyll Content, Oxidative Stress, and
Antioxidative Response of Linden Trees to Mistletoe Infestation

A multivariate statistical analysis (principal component analysis (PCA)) was con-
structed to study the interactions among variables in terms of the response to the mistletoe
infestation of linden trees. The results of PCA are presented as a two-dimensional biplot
(Figure 1). About 97.9% of the total variance can be explained by the first six principal
components. Among all principal components, the first one (PC1) contributed 68.5% and
the second (PC2) contributed 20.1% of the variance. The 95% bootstrapped confidence
intervals were 62.2–74.3% and 14.9–27.8% for PC1 and PC2, respectively (n = 999). The
loadings on the biplot indicated that oxidative stress parameters (electrolyte leakage, mal-
ondialdehyde, hydrogen peroxide), oxidized forms of ascorbic acid and glutathione, and
some antioxidants (proline, SOD, GPX, APX, GR) were positively correlated with each
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other and negatively with relative water, chlorophyll, and glutathione content. The score
plot represents the authenticated grouping of various variants. The only exceptions were
the control groups (C and NI), with some overlap of 95% confidence ellipses.

1 
 

 
Figure 1. Principal component analysis (PCA) biplot of studied parameters grouped by variants
of experiment. C, control, non-infested trees; NI, leaves from non-infested branches of infested
trees; LI, leaves from branches with 1–2 mistletoe bushes (low degree of infestation); HI, leaves
from branches with 5–7 mistletoe bushes (high degree of infestation). RWC, relative water content;
Chl a, chlorophyll a; Chl b, chlorophyll b; Chl a/b, chlorophyll a/b ratio; EL, electrolyte leakage;
MDA, malondialdehyde; Pro, proline; GSH, glutathione; GSSG, oxidized glutathione; AsA, ascorbic
acid; DHA, dehydroascorbic acid; DKGA, 2,3-diketogulonic acid; TPC, total phenolic compounds;
SOD, superoxide dismutase; CAT, catalase; APX, ascorbate peroxidase; MDAR, monodehydroascor-
bate reductase; DHAR, dehydroascorbate reductase; GPX, glutathione peroxidase; GR, glutathione
reductase; POD, peroxidase.

3. Discussion

European mistletoe is a hemiparasitic plant capable of photosynthesis but completely
dependent on the water and mineral nutrients of the host tree. One of the most important
consequences of mistletoe infestation of trees is the occurrence of water scarcity, which is
especially exacerbated in arid regions and/or dry years [3,27]. In this study, it was shown
that the relative water content in the leaves of small-leaved linden infested by mistletoe
was lower than in leaves from non-infested trees (Table 1). This result is consistent with
previous data obtained in the study of Scots pine infested with mistletoe (V. album subsp.
Austriacum) [3,25]. The increased water deficiency in the host tree is also related to the
fact that, as shown earlier, the stomata of mistletoe leaves remain open in an almost
unregulated manner and maintain a high transpiration rate under various environmental
conditions [28]. As a rule, water deficit leads to decreased chlorophyll content in the leaves
due to their destruction [29]. In this work, it was shown that the levels of chlorophyll a
and b were lower in leaves of trees infested by mistletoe (Table 1). In addition, a positive
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correlation was found between relative water content and the level of pigments (Figure 1
and Supplementary Table S1). This result also indirectly confirms the development of
stress in infested trees due to water imbalance. However, for more accurate conclusions, it
is necessary to conduct additional research aimed at studying physiological parameters
associated with water exchange such as the water potential of leaves, transpiration, and
efficient use of water.

It is now well known that the main plant defense responses to biotic stress are the
rapid production of ROS (ROS-burst) and an increase in the level of the stress-related
phytohormone ethylene and the contents of secondary metabolites (callose, phytoalexins,
lignins, etc.), as well as the activation of marker genes and signaling pathways controlled
by the phytohormones salicylic acid (SA) and jasmonic acid (JA). As a result, all of these
processes lead to the initiation of a hypersensitive response (HR) and systemic acquired
resistance (SAR) to biotic stress factors [30]. However, there is relatively little research on
the mechanisms of plant defense against mistletoe, especially when compared to studies
on such mechanisms against herbivores and pathogens. The results of this research show
that the leaves of mistletoe-infested trees have elevated levels of hydrogen peroxide,
malondialdehyde, a lipid peroxidation product, and electrolyte leakage compared to non-
infested trees (Table 2). However, it should be noted that an increase in ROS production
and the development of oxidative stress are not specific responses to biotic stress but are
also observed when plants are exposed to various abiotic factors, including drought or
mineral nutrient deficiency [31,32]. In this regard, it is difficult to conclude whether the
detected increase in ROS was a direct response to the mistletoe attack or the consequences
associated with its development on the host tree.

The regulation of plant redox homeostasis under stress is based on the activation of the
antioxidative system, which includes several non-enzymatic compounds and antioxidative
enzymes. Proline is a low-molecular-weight cyclic amino acid that is known to provide
osmotic regulation in plants under the influence of stress factors (drought, salinity, cold,
high temperature, etc.). It reduces the effects of ROS by stabilizing the antioxidative
enzymes and protecting the integrity of cell membranes [20–22]. In the present study,
proline levels were higher in the leaves of infested trees, including leaves collected from the
branches of infested trees with no mistletoe bushes (Table 3). It is understood that data on
the change in the proline content in the leaves of host trees infested with mistletoe have not
been previously published. However, considering the hypothesis about the development of
water stress in such trees, the increase in the proline level established in this study becomes
quite understandable.

Protection against ROS and mediation of the activation of defense genes are the
main functions of glutathione for plants under stress. Stressful situations often cause
oxidative stress, which changes the glutathione content and the glutathione ratio toward
the oxidized form [33]. A decrease in the level of the reduced form of glutathione and an
increase in its oxidized form, in the case of mistletoe infestation of trees, indicate a shift of
redox homeostasis in the cell toward oxidation processes (Table 3). A somewhat different
relationship was found for various forms of ascorbic acid; the content of the reduced form
was higher in leaves of infested trees than non-infested ones (Table 3). However, the level
of oxidized forms (dehydroascorbic and 2,3-diketogulonic acids) and the level of oxidized
glutathione increased when trees were infested by mistletoe (Table 3). This result may
indicate an intensification of the ascorbic acid biosynthesis process in trees infested by
mistletoe, despite a decrease in the water and chlorophyll content. Such an increase in
biosynthesis is possible due to the action of jasmonates, which participate in regulating
the biosynthesis of ascorbic acid and are important signal molecules in plants under biotic
stress [34]. Notably, in [25], it was revealed that hydrogen peroxide accumulation in the
bark of mistletoe-infested Scots pine was accompanied by increased reduced glutathione
content and decreased reduced ascorbic acid content. The opposite result obtained in this
work can be associated with both the specific feature of the reaction of small-leaved linden
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to infestation and the fact that different plant materials (leaves and bark) were used in
the studies.

Phenolic secondary metabolites are an integral part of the plant’s defense system
against pathogens, including bacteria, fungi, and viruses, as well as against major abiotic
stresses such as drought, salinity, and UV radiation [35]. In this study, the total content of
phenolic compounds was higher in leaves from branches with a low degree of mistletoe
infestation and lower in leaves from branches with five to seven mistletoe bushes (high
degree of infestation) compared to the control (Table 3). It was shown in [23,36] that
the infestation of T. guianensis trees by the mistletoe P. perrottetii caused no significant
changes in the level of phenolic compounds in the leaves of the host trees but led to an
increase in the level of tannins in non-infested host branches. Changes in the content
of phenolic compounds in host trees may be associated with various processes in which
these secondary metabolites are involved, particularly, maintenance of the redox status
in the cell, lignification, signaling, and the initiation of systemic acquired resistance [37].
An increase in the content of phenolic compounds in leaves from branches with a low
degree of mistletoe infestation could be associated with activation of their biosynthesis
through the activation of phenylalanine ammonia-lyase (PAL), which is a key enzyme
in the phenylpropanoid pathway. Previously, it was shown that PAL activity increases
under mild drought stress and decreases under severe drought stress [38]. In addition
to a decrease in PAL activity at high stress levels, the decrease in the content of phenolic
compounds under a high degree of mistletoe infestation could be due to other reasons. First,
there are not enough reducing agents in cells for the regeneration of phenolic compounds
oxidized by ROS. Second, the oxidized forms of some phenolic compounds (flavonoids
and hydroxycinnamic acids) can be involved in the biosynthesis of polymeric compounds,
in particular lignin or suberin [39], which is characteristic of plant responses to biotic stress.

As a rule, the metabolites considered above (ascorbic acid, glutathione, phenolic
compounds) not only directly exhibit antioxidative properties, but also act as substrates for
antioxidative enzymes. This study revealed an elevation in SOD, CAT, APX, MDAR, GPX,
POD, and GR activity in the leaves of trees infested by mistletoe (Table 4). The activity
of the latter enzyme increased only with heavy infestation of the branches. At the same
time, the APX and GPX activity was also higher in leaves collected from the branches of
host trees on which there were no mistletoe bushes. In a previous study on changes in the
activities of some enzymes (POD and SOD) in leaves of various tree species infested by
mistletoe, it was shown that the greatest changes were peculiar to SOD [24]. Other authors
noted an increase in CAT and POD activity in the needles of infested Scots pine trees [3].
The increase in activity of enzymes that catalyze the primary stages of ROS detoxification,
particularly superoxide anion radical and hydrogen peroxide, revealed in the present study
indicates a successful response of the antioxidative system to oxidative stress caused by
mistletoe infestation. However, an increase in the contents of oxidized forms of glutathione
and ascorbic acid indicates insufficiently effective work of the enzymes responsible for
the regeneration of the reduced forms of these compounds. The pattern of changes in
the activity of different antioxidative enzymes was differed according to the intensity of
infestation. SOD, APX, GPX, and GR activity was higher with a high degree of infestation
compared to a low degree. APX is known to have a higher affinity with hydrogen peroxide
than POD and CAT and may play a more important role in regulating redox homeostasis in
plant cells under strong stress conditions [40]. In addition to scavenger hydrogen peroxide,
GPX is also able to detoxify lipid peroxides, which is important under high stress levels [41].
A decrease in the activity of other studied enzymes (CAT, MDAR, DHAR, and POD) under
a high degree of mistletoe infestation may be associated with the inactivation of these
enzymes by ROS, decreased enzyme synthesis, or an insufficient amount of substrates (for
example, reduced forms of glutathione and phenolic compounds) [41,42].

The results of PCA showed that the development of oxidative stress was followed by
an increase in proline content and SOD, GPX, APX, and GR activity (Figure 1). Variants of
the experiment (C, NI, LI, HI) were divided into groups indicating the different changes
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in the studied biochemical parameters under different degrees of mistletoe infestation.
The overlap of the 95% confidence ellipses between the two control groups (C and NI)
indicates that some parameters of leaves from host-tree branches with no mistletoe bushes
remained at the same level as that in non-infested trees. However, it should be noted that
some biochemical changes also occurred in leaves from the control branches of host trees.
In particular, they had higher proline, ascorbic acid, and dehydroascorbic acid content,
lower reduced glutathione content, and higher APX, GPX, and DHAR activity compared
to non-infested trees. This result indicates that the infestation of trees by mistletoe not only
leads to local changes in the places of hemiparasite attachment, but also affects the redox
metabolism in the leaves from other parts of infested tree.

4. Materials and Methods
4.1. Plant Material

Leaves from small-leaved linden trees (Tilia cordata Mill.) were used as the object of
the study. This tree species was selected as it is more susceptible to European mistletoe
infestation (Viscum album L. subsp. Album) in Kaliningrad [8]. The trees under study
were located on a test plot of approximately 250 m × 250 m, situated in the territory of
Kaliningrad (54◦44′56” N, 20◦30′55” E). For the study, 5 control trees with no mistletoe (in
the text, tables and figure, this variant is designated as C) and 5 trees infested by mistletoe
were selected. For sampling, control and infested linden trees of approximately the same
age (60–70 years) growing at a distance of no more than 50 m from each other were selected.
Leaves from infested trees were taken from branches on which (i) there was no mistletoe
(NI), (ii) there were 1–2 mistletoe bushes (low degree of infestation, LI), and (iii) there were
5–7 mistletoe bushes (high degree of infestation, HI). On each investigated tree, one branch
was selected that matched the required criteria (number of mistletoe bushes, direction
to sunlight, approximately the same age). From each branch, 8–12 leaves were collected.
The leaves from each branch were combined, mixed, and used for further analysis as an
average sample. Sampling of leaf material was conducted at the beginning of June. Part of
the leaves intended for biochemical analysis was placed in liquid nitrogen for 5–10 min
after collection and stored in the laboratory refrigerator at −80 ◦C until further analysis.

4.2. Determination of Relative Water Content

Part of the freshly harvested leaves was used to establish the relative water content.
First, the fresh mass of leaves was measured. Then, the leaves were kept in distilled water
for 12 h. After that, the samples were dried with filter paper and weighed to determine
the turgid weight. The dry weight of leaves was measured after drying at 70 ◦C for 24 h.
Relative water content in leaves was calculated using the formula given in [43].

4.3. Determination of Chlorophyll Content

The chlorophyll a and b content in the extract of fresh leaves preserved at −80 ◦C after
homogenization with 80% acetone and centrifugation was determined spectrophotomet-
rically. Optical absorption was measured at 470, 646.8, and 663.2 nm. The chlorophyll
content was calculated using the formula in [44] and expressed per gram of dry weight.

4.4. Determination of Oxidative Stress Parameters

Electrolyte leakage was determined in freshly harvested leaves by measuring electri-
cal conductivity as described in [45]. Determination of the malondialdehyde content in
fresh leaves preserved at −80 ◦C was carried out by reaction with thiobarbituric acid as
described in [46] with an extinction coefficient of 155 mM−1 cm−1. The hydrogen perox-
ide content was determined using potassium iodide (KI) solution according to [47]. The
malondialdehyde and hydrogen peroxide content was expressed per gram of dry weight.
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4.5. Determination of Non-Enzymatic Antioxidant Content

The proline content in fresh leaves preserved at −80 ◦C was determined spectropho-
tometrically using the acid-ninhydrin method as described in [48]. The calculation of
proline content was carried out according to a calibration graph constructed using standard
solutions of L-proline.

The determination of reduced and oxidized glutathione content was carried out spec-
trophotometrically according to [49]. The reduced glutathione content was determined by
using sequential reactions of oxidation by 5,5’-dithio-bis (2-nitrobenzoic acid) and enzy-
matic reduction by NADPH in the presence of GR. The reduced glutathione content was
calculated as the difference between the total glutathione and oxidized glutathione content.

The ascorbic, dehydroascorbic, and 2,3-diketogulonic acid content was measured
spectrophotometrically by the reaction of dehydroascorbic and 2,3-diketogulonic acids
with 2,4-dinitrophenylhydrazine as described in [39]. Ascorbic acid was first oxidized
with 2,6-dichlorophenolindophenol. For the separate determination of dehydroascorbic
and 2,3-diketogulonic acids, the former was reduced to ascorbic acid using a solution of
unithiol in phosphate buffer.

The total content of phenolic compounds was determined using Folin–Ciocalteu
reagent as described in [50]. The phenolic compound content was calculated from a
calibration curve constructed using gallic acid as a standard.

The content of all non-enzymatic antioxidants was recalculated on a dry weight
basis for a better comparison of data regarding their content in plant samples differing
in moisture.

4.6. Determination of Antioxidative Enzyme Activity

Frozen leaf samples (approximately 0.4 g) were ground in liquid nitrogen and homog-
enized in 10.0 mL of ice-cold 100 mM phosphate buffer (pH 7.0) containing 0.1 mM EDTA
and 1.0% polyvinylpyrrolidone [51]. To prevent the inactivation of enzymes when deter-
mining APX, MDAR, and DHAR activity, 1 mM ascorbic acid and 2 mM β-mercaptoethanol
were added to the homogenizing buffer [52]. The resulting homogenates were centrifuged
at 15,000× g for 20 min at 4 ◦C. Supernatants were used to determine antioxidative enzyme
activity and protein concentration.

SOD (EC 1.15.1.1) activity was determined by its ability to inhibit photochemical
reduction of nitro blue tetrazolium according to a previously described protocol [53]. CAT
(EC 1.11.1.6) activity was determined by decreased optical absorption at 240 nm as a
result of the decomposition of hydrogen peroxide and was calculated using an extinction
coefficient of 39.4 mM–1 cm–1 [54]. APX (EC 1.11.1.11) activity was measured by decreased
optical absorption at 290 nm as a result of oxidation of the ascorbate with hydrogen
peroxide and calculated by using an extinction coefficient of 2.8 mM−1 cm−1. MDAR
(EC 1.6.5.4), and GR activity was determined by decreased NADPH concentration and
calculated using an extinction coefficient of 6.2 mM−1 cm−1 (at 340 nm). The activity
of DHAR (EC 1.8.5.1) was assessed by the increase in optical absorption at 265 nm as
a result of the formation of ascorbate (extinction coefficient equal to 14.6 mM−1 cm−1).
APX, MDAR, DHAR, and GR activity was measured according to the protocols described
in [52]. GPX (1.11.1.9) activity was assessed by the decreased reduced glutathione content
as a result of its oxidation with hydrogen peroxide [55]. POD (EC 1.11.1.7) activity was
determined spectrophotometrically using guaiacol and hydrogen peroxide as substrates
and was calculated using an extinction coefficient of 26.6 mM−1 cm−1 (at 470 nm) [56].

To convert the activity of all enzymes per mg of protein, the protein concentration was
measured spectrophotometrically using the Bradford assay [57]. Bovine serum albumin
was used as a standard.

A Shimadzu UV-3600 spectrophotometer (Shimadzu, Kyoto, Japan) was used for
spectrophotometric analysis. All biochemical analyses were performed in triplicate.
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4.7. Statistical Analysis

The experimental data were statistically processed using OriginPro 9 software (Origin-
Lab Corporation, Northampton, MA, USA). Statistical analysis of data was performed
only with biological replications corresponding to the number of studied control and
infested trees (n = 5). The tables show mean values with standard error of the mean. To
determine the significance of differences between mean values, one-way ANOVA followed
by Tukey’s post hoc test was carried out. Principal component analysis (PCA) was used
to assess the relationships between the studied parameters. The significance of loadings
in PCA was estimated using the bootstrap at n = 999 and presented as 95% confidence
intervals [58]. The bootstrap analysis was performed using Past v. 4.01 (Natural History
Museum, University of Oslo, Oslo, Norway).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants10091871/s1, Table S1: Correlation matrix with Pearson coefficient values for relative
water content, chlorophyll content, oxidative stress, and antioxidative compounds and enzymes.
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41. Dumanović, J.; Nepovimova, E.; Natić, M.; Kuča, K.; Jaćević, V. The significance of reactive oxygen species and antioxidant
defense system in plants: A concise overview. Front. Plant Sci. 2021, 11, 552969. [CrossRef] [PubMed]

42. Shawon, R.A.; Kang, B.S.; Lee, S.G.; Kim, S.K.; Lee, H.J.; Katrich, E.; Gorinstein, S.; Ku, Y.G. Influence of drought stress on
bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food Chem. 2020, 308,
125657. [CrossRef]

43. Nadgórska-Socha, A.; Kandziora-Ciupa, M.; Ciepał, R.; Barczyk, G. Robinia pseudoacacia and Melandrium album in trace elements
biomonitoring and air pollution tolerance index study. Int. J. Environ. Sci. Technol. 2016, 13, 1741–1752. [CrossRef]

44. Sumanta, N.; Haque, C.I.; Nishika, J.; Suprakash, R. Spectrophotometric analysis of chlorophylls and carotenoids from com-monly
grown fern species by using various extracting solvents. Res. J. Chem. Sci. 2014, 4, 63–69.

45. Ahmad, P.; Ahanger, M.A.; Alyemeni, M.N.; Wijaya, L.; Alam, P. Exogenous application of nitric oxide modulates osmolyte
metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato.
Protoplasma 2018, 255, 79–93. [CrossRef]

46. Wang, Y.; Ding, M.; Gu, X.; Wang, J.; Pang, Y.; Gao, L.; Xia, T. Retracted: Analysis of interfering substances in the measurement of
malondialdehyde content in plant leaves. Am. J. Biochem. Biotechnol. 2013, 9, 235–242. [CrossRef]

47. Junglee, S.; Urban, L.; Sallanon, H.; Lopez-Lauri, F. Optimized assay for hydrogen peroxide determination in plant tissue using
potassium iodide. Am. J. Anal. Chem. 2014, 5, 730–736. [CrossRef]

48. Dash, S.P.; Dixit, S.; Sahoo, S. Phytochemical and biochemical characterizations from leaf extracts from Azadirachta Indica: An
important medicinal plant. Biochem. Anal. Biochem. 2017, 6. [CrossRef]

49. Lwalaba, J.L.W.; Louis, L.T.; Zvobgo, G.; Richmond, M.E.A.; Fu, L.; Naz, S.; Mwamba, M.; Mundende, R.P.M.; Zhang, G.
Physiological and molecular mechanisms of cobalt and copper interaction in causing phyto-toxicity to two barley genotypes
differing in Co tolerance. Ecotoxicol. Environ. Saf. 2020, 187, 109866. [CrossRef] [PubMed]

50. Maslennikov, P.; Golovina, E.; Artemenko, A. Ecological and geochemical conditions for the accumulation of antioxidants in the
leaves of Lathyrus maritimus (L.) Bigel. Plants 2020, 9, 746. [CrossRef] [PubMed]

51. Usman, K.; Abu-Dieyeh, M.H.; Zouari, N.; Al-Ghouti, M.A. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena
qataranse. Sci. Rep. 2020, 10, 17070. [CrossRef]

52. Wang, C.-Q.; Xu, H.-J.; Liu, T. Effect of selenium on ascorbate–glutathione metabolism during peg-induced water deficit in
Trifolium repens L. J. Plant Growth Regul. 2011, 30, 436–444. [CrossRef]

53. Sairam, R.K.; Rao, K.; Srivastava, G. Differential response of wheat genotypes to long term salinity stress in relation to oxidative
stress, antioxidant activity and osmolyte concentration. Plant Sci. 2002, 163, 1037–1046. [CrossRef]

54. Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [CrossRef]
55. Hartikainen, H.; Xue, T.; Piironen, V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000, 225, 193–200. [CrossRef]
56. Kandziora-Ciupa, M.; Nadgórska-Socha, A.; Barczyk, G.; Ciepał, R. Bioaccumulation of heavy metals and ecophysiological

responses to heavy metal stress in selected populations of Vaccinium myrtillus L. and Vaccinium vitis-idaea L. Ecotoxicology 2017, 26,
966–980. [CrossRef] [PubMed]

57. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of
protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

58. Peres-Neto, P.R.; Jackson, D.A.; Somers, K.M. Giving meaningful interpretation to ordination axes: Assessing loading significance
in principal component analysis. Ecology 2003, 84, 2347–2363. [CrossRef]

http://doi.org/10.1016/j.plaphy.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32169794
http://doi.org/10.1016/j.phytochem.2009.07.008
http://doi.org/10.1016/j.plaphy.2010.08.016
http://doi.org/10.3389/fpls.2020.552969
http://www.ncbi.nlm.nih.gov/pubmed/33488637
http://doi.org/10.1016/j.foodchem.2019.125657
http://doi.org/10.1007/s13762-016-1010-7
http://doi.org/10.1007/s00709-017-1132-x
http://doi.org/10.3844/ajbbsp.2013.235.242
http://doi.org/10.4236/ajac.2014.511081
http://doi.org/10.4172/2161-1009.1000323
http://doi.org/10.1016/j.ecoenv.2019.109866
http://www.ncbi.nlm.nih.gov/pubmed/31677568
http://doi.org/10.3390/plants9060746
http://www.ncbi.nlm.nih.gov/pubmed/32545748
http://doi.org/10.1038/s41598-020-73621-z
http://doi.org/10.1007/s00344-011-9206-z
http://doi.org/10.1016/S0168-9452(02)00278-9
http://doi.org/10.1016/s0076-6879(84)05016-3
http://doi.org/10.1023/A:1026512921026
http://doi.org/10.1007/s10646-017-1825-0
http://www.ncbi.nlm.nih.gov/pubmed/28624857
http://doi.org/10.1016/0003-2697(76)90527-3
http://doi.org/10.1890/00-0634

	Introduction 
	Results 
	Effect of Mistletoe Infestation on the Relative Water Content and the Content of Chlorophylls in Linden Leaves 
	Effect of Mistletoe Infestation on Oxidative Stress Parameters in Linden Leaves 
	Effect of Mistletoe Infestation on Non-Enzymatic Antioxidants in Linden Leaves 
	Effect of Mistletoe Infestation on Antioxidative Enzyme Activity in Linden Leaves 
	Interaction between Relative Water Content, Chlorophyll Content, Oxidative Stress, and Antioxidative Response of Linden Trees to Mistletoe Infestation 

	Discussion 
	Materials and Methods 
	Plant Material 
	Determination of Relative Water Content 
	Determination of Chlorophyll Content 
	Determination of Oxidative Stress Parameters 
	Determination of Non-Enzymatic Antioxidant Content 
	Determination of Antioxidative Enzyme Activity 
	Statistical Analysis 

	References

