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Simple Summary: Meningioma is the most common intracranial neoplasm derived from the arach-
noid cap cells of the leptomeninges. Malignant meningioma is generally more aggressive than other
meningioma and frequently recurs even after surgery and radiation therapy. Clinical trials have been
performed on candidate drugs, including everolimus, an inhibitor of mammalian target of rapamycin.
However, an effective standard systemic therapy has not yet been established and the prognosis of
patients with malignant meningioma is still poor. We recently reported the radiosensitization effects
of gemcitabine in malignant meningioma cells, which suggests its potential to enhance the efficacy of
candidate drugs for meningioma. In the present study, we demonstrated that gemcitabine enhanced
the therapeutic effects of everolimus in malignant meningioma cells, and these effects were further
augmented by navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins, both in vitro and
in vivo. The present results provide support for the clinical application of gemcitabine and navitoclax
in combination with everolimus to the treatment of patients with malignant meningioma.

Abstract: Despite several clinical trials with encouraging findings, effective standard systemic thera-
pies have yet to be established for malignant meningioma and the prognosis of these patients remains
poor. Accumulating preclinical and clinical evidence suggests that gemcitabine is effective against
malignant meningioma. To identify drugs with therapeutic effects that may be enhanced in combina-
tion with gemcitabine, we screened drugs that have been tested in preclinical and clinical trials for
meningioma. In IOMM-Lee and HKBMM malignant meningioma cells, gemcitabine enhanced the
growth inhibitory effects of the mTOR inhibitor everolimus, the clinical benefits of which have been
demonstrated in patients with meningioma. The synergistic growth inhibitory effects of this combina-
tion were accompanied by cellular senescence characterized by an increase in senescence-associated
β-galactosidase activity. To enhance the effects of this combination, we screened senolytic drugs that
selectively kill senescent cells, and found that navitoclax, an inhibitor of anti-apoptotic BCL-2 family
proteins, effectively reduced the number of viable malignant meningioma cells in combination with
everolimus and gemcitabine by inducing apoptotic cell death. The suppression of tumor growth
in vivo by the combination of everolimus with gemcitabine was significantly stronger than that by
either treatment alone. Moreover, navitoclax, in combination with everolimus and gemcitabine,
significantly reduced tumor sizes with an increase in the number of cleaved caspase-3-positive apop-
totic cells. The present results suggest that the addition of gemcitabine with or without navitoclax
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to everolimus is a promising strategy that warrants further evaluation in future clinical trials for
malignant meningioma.

Keywords: malignant meningioma; everolimus; gemcitabine; navitoclax; cellular senescence

1. Introduction

Meningioma is the most common intracranial neoplasm in adults. Meningiomas
are classified as benign (grade 1), atypical (grade 2), and anaplastic/malignant (grade 3)
by the World Health Organization (WHO) classification criteria based on histological
features, including cellular atypia, proliferative activity, and brain invasion [1]. Malignant
meningioma accounts for approximately 2% of meningioma [2]. Even though malignant
meningiomas are treated with radical surgical resection followed by radiation therapy, they
frequently recur and their prognosis remains poor [3].

A number of chemotherapeutic reagents have been applied to the treatment of patients
with meningioma; however, the efficacy of these reagents, including trabectedin, which
was considered promising for meningioma, has mostly been small [3,4]. On the other
hand, recent advances in our understanding of genomic alterations in meningioma have
resulted in the introduction of potential therapeutic targets, such as mammalian target of
rapamycin (mTOR), vascular endothelial growth factor receptor, the hedgehog pathway,
focal adhesion kinase, AKT, and cyclin-dependent kinase [5]. Among these targets, mTOR
is of particular interest because the efficacy of everolimus, an inhibitor of mTOR, for
progressive meningioma was demonstrated in combination with octreotide, a somatostatin
analog, in a phase II clinical trial with encouraging findings [6]. However, randomized
studies are needed to confirm its efficacy in meningioma patients.

We recently reported that gemcitabine, a pyrimidine anti-metabolite chemotherapeutic
drug, was very effective for high-grade meningiomas, which highly express hENT1 and
dCK, a transporter and rate-limiting kinase for gemcitabine, respectively [7,8]. Accordingly,
the guidelines of the European Association of Neuro-Oncology (EANO) listed gemcitabine
as one of the candidate drugs for the treatment of meningioma [3]. A phase II clinical
trial is currently underway after confirmation of the safety and efficacy of gemcitabine in
the treatment of recurrent high-grade meningioma in a small population of patients [9].
Furthermore, we demonstrated that gemcitabine enhanced the effects of radiation together
with navitoclax, an inhibitor of anti-apoptotic BCL-2 family proteins [10], suggesting a role
for gemcitabine as an enhancer of treatments for malignant meningioma. Therefore, to
identify drugs with anti-meningioma effects that may be enhanced by gemcitabine, we
herein screened drugs that are preclinically or clinically used to treat meningioma.

2. Materials and Methods
2.1. Cell Culture

IOMM-Lee and HKBMM, human malignant meningioma cell lines, were obtained
from the American Type Culture Collection (Manassas, VA, USA) and from the Riken
BioResource Center (Tsukuba, Japan), respectively. Their characteristics as malignant
meningioma cells were confirmed in a previous study [8]. IOMM-Lee cells were cultured in
Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum
(FBS). HKBMM cells were cultured in Ham’s F12 medium supplemented with 10% FBS.

2.2. Cell Viability Assay

Cell viability was evaluated using the WST-8 assay (Figure 1, 4a,b, and S3b,d) with
Cell Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan) or the trypan blue exclusion
assay (Figures 2a,b, and 4c,d) as previously described [10]. Briefly, the WST-8 reagent was
added to the culture medium of cells grown on 96-well cell culture plates, and cells were
incubated at 37 ◦C for 1–3 h. Absorbance at 450 nm was measured using a microplate
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reader (Model 680, Bio-Rad, Hercules, CA, USA). Relative cell viability was calculated as a
percentage of the absorbance of treated samples relative to that of control samples. The
degree of synergism was calculated by the Loewe additivity model, the Bliss independency
model, and the highest single agent (HSA) model using Combenefit software [11]. In the
trypan blue exclusion assay, after being trypsinized and suspended in phosphate-buffered
saline (PBS), cells were stained with 0.2% trypan blue, and viable and dead cells were
identified by their ability and inability, respectively, to exclude trypan blue. The percentage
of dead cells was defined as 100 × the number of dead cells/(the number of viable cells +
the number of dead cells).

2.3. Immunoblot Analysis

Immunoblotting was performed as previously described [12]. Cells were washed with
ice-cold PBS and lysed in RIPA buffer [10 mM Tris/HCl (pH 7.4), 0.1% sodium dodecyl
sulfate (SDS), 0.1% sodium deoxycholate, 1% NP-40, 150 mM NaCl, 1 mM EDTA, 1.5 mM
Na3VO4, 10 mM NaF, 10 mM sodium pyrophosphate, 10 mM sodium β-glycerophosphate,
and 1% protease inhibitor cocktail set III (Fujifilm Wako Pure Chemical Industries, Ltd.,
Osaka, Japan)]. This was followed by the immediate addition of the same volume of
Laemmli buffer 2× [125 mM Tris/HCl (pH 6.8), 4% SDS, 10% glycerol] and boiling at 95 ◦C
for 10 min. Protein concentrations were measured using a BCA protein assay kit (Thermo
Fisher Scientific, Waltham, MA, USA). Samples containing equal amounts of protein were
resolved by SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene
fluoride membranes. Membranes were probed with a primary antibody followed by a
horseradish peroxidase (HRP)-conjugated secondary antibody as recommended by the
manufacturer of each antibody. Specific bands were visualized using Immobilon Western
Chemiluminescent HRP Substrate (Merck Millipore, Billerica, MA, USA) and detected by
the ChemiDoc Touch Imaging System (Bio-Rad).

2.4. Antibodies and Reagents

Anti-cleaved caspase-3 (#9661, Asp175), anti-glyceraldehyde 3-phosphate dehydro-
genase (#5174, GAPDH), anti-cleaved PARP (#9541, Asp214), anti-BIM (#2819), anti-BID
(#2002), anti-NOXA (#14766), anti-PUMA (#12450), anti-BAX (#5023), and anti-BAK (#12105)
antibodies were purchased from Cell Signaling Technology (Beverly, MA, USA). Anti-BCL-
xL (10783-1-AP) and anti-BCL-W (16026-1-AP) antibodies were purchased from ProteinTech
(Rosemont, IL, USA). Anti-BCL-2 (sc-7382) and anti-MCL-1 (sc-20679) antibodies were pur-
chased from Santa Cruz Biotechnologies (Dallas, TX, USA). Antibodies against cleaved
caspase-3, BCL-2, and MCL-1 were diluted at 1:2,000. An antibody against GAPDH was di-
luted at 1:10,000. The other antibodies were diluted at 1:4000. Gemcitabine was purchased
from Fujifilm Wako Pure Chemical Corporation and dissolved in distilled water to prepare 1
mM and 8 mg/mL stock solutions for in vitro and in vivo studies, respectively. Everolimus
was purchased from LC Laboratories (Woburn, MA, USA) and dissolved in DMSO to
prepare 1 mM and 100 mg/mL stock solutions for in vitro and in vivo studies, respectively.
Navitoclax (ABT-263) was purchased from Chemscene (Monmouth Junction, NJ, USA) and
dissolved in DMSO to prepare 100 mM and 100 mg/mL stock solutions for in vitro and
in vivo studies, respectively. Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide
(BPTES) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in DMSO
to prepare a 10 mM stock solution. Quercetin, dasatinib, OTX015, A-1331852, A-1155463,
GSK2256098, rapamycin, and temsirolimus were purchased from Cayman Chemicals (Ann
Arbor, MI, USA) and dissolved in DMSO to prepare 10, 10, 1, 1, 1, 10, 100, and 100 mM
stock solutions, respectively. Vismodegib, palbociclib, sorafenib, and venetoclax (ABT-199)
were purchased from LC Laboratories and dissolved into DMSO to prepare 100, 5, 100, and
50 mM stock solutions. Geldanamycin was purchased from Toronto Research Chemicals
(Toronto, ON, Canada) and dissolved into DMSO to prepare a 10 mM stock solution.
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2.5. Measuring Cell Size

To quantify the size of cultured cells, phase-contrast images were obtained using a BZ-
X700 microscope (Keyence, Osaka, Japan), and the area of individual cells was measured
using ImageJ software [13]. Cell size was quantified in at least 40 cells per condition, and
the frequency distribution of cell sizes was shown as a violin plot.

2.6. SA-β-Gal Staining

The SA-β-gal stain was performed using a Cellular Senescence Assay Kit (Cell Biolabs,
San Diego, CA, USA) according to the manufacturer’s instructions. Briefly, cells were
fixed with 0.25% glutaraldehyde for 5 min and stained with the Cell Staining Working
Solution at 37 ◦C for 1 day. Bright-field images were obtained using a BZ-X700 microscope
(Keyence, Osaka, Japan). More than 50 cells were counted to calculate the percentage of
SA-β-gal-positive cells.

2.7. Quantitative Reverse Transcription PCR

RNA was extracted from cells using TRIzol reagent (Thermo Fisher Scientific, Waltham,
MA, USA) and then reverse-transcribed into cDNA using the PrimeScript II 1st strand
cDNA Synthesis Kit (Takara Bio, Kusatsu, Japan). Quantitative PCR was performed with a
Thunderbird SYBR qPCR Mix (Toyobo, Osaka, Japan) using CFX96 C1000 Thermal Cycler
(Bio-Rad). mRNA levels were calculated using the comparative CT method [14] and normal-
ized to the values of the GAPDH gene. cDNA was amplified by gene-specific primers (IL1B:
forward 5′-AACAGGCTGCTCTGGGATTC-3′, reverse 5′-AGTCATCCTCATTGCCACTGT-
3′; CXCL8: forward 5′-AAGAAACCACCGGAAGGAAC-3′, reverse 5′-ACTCCTTGGCAA
AACTGCAC-3′; CCL2: forward 5′-CCCAGTCACCTGCTGTTATAAC-3′, reverse 5′-AGATC
TCCTTGGCCACAATG-3′; CXCL2: forward 5′-GCAGGGAATTCACCTCAAGAAC-3′, re-
verse 5′-AGCTTCCTCCTTCCTTCTGG-3′; GAPDH: forward 5′-ACCATCTTCCAGGAGC
GAGAT-3′, reverse 5′-ATGACGAACATGGGGGCATC-3′).

2.8. Mouse Study

After assessing cell viability using the dye exclusion method, 1 × 106 viable IOMM-
Lee cells suspended in 100 µL PBS were implanted into the bilateral flank regions of
5–7-week-old male BALB/cAJcl-nu/nu mice (CLEA Japan, Tokyo, Japan) anesthetized by a
subcutaneous injection of butorphanol, midazolam, and medetomidine (5, 4, and 0.3 mg
per kg body weight, respectively). Tumor volumes were assessed by measuring tumor
diameters with digital calipers and calculated using the following formula: (length) ×
(width) × (depth) × π/6. After confirming the establishment of tumors (average tumor
volumes greater than 100 mm3), mice were randomized according to tumor volumes and
then treated with gemcitabine (dissolved in PBS, 5 or 10 mg/kg body weight, intraperitoneal
injection), everolimus (dissolved in 4% DMSO in distilled water, 2 mg/kg body weight, oral
gavage) navitoclax (dissolved in 20% DMSO and 80% corn oil, 100 mg/kg body weight,
oral gavage), their vehicles (Control), or their combination.

2.9. Immunohistochemistry

Excised tissues were fixed with 4% paraformaldehyde at 4 ◦C overnight, embedded in
paraffin, and then cut into 4 µm thick sections. After deparaffinization and rehydration,
sections were treated with 3% hydrogen peroxide for 10 min. Antigens were retrieved by a
heat treatment in 0.1 M Tris-HCl buffer (pH 9.0). Slides were incubated with the primary
antibody at 4 ◦C overnight. Immunostaining was performed using Histofine Simple Stain
MAX-PO (Nichirei Biosciences, Tokyo, Japan) and ImmPACT DAB (Vector Laboratories,
Burlingame, CA, USA).

2.10. Gene Silencing by siRNA

siRNAs against human BCL-xL (BCL2L1: #1 HSS141361, #2 HSS141363) and Medium
GC Duplex #2 of Stealth RNAi siRNA Negative Control Duplexes (non-targeting control,
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siControl) were purchased from Thermo Fisher Scientific. IOMM-Lee cells were transfected
with siRNA against BCL-xL (siBCL-xL) or with control RNA (siControl) (50 or 2 pmol per
well of a 6- or 96-well plate, respectively) using Lipofectamine RNAiMAX (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.

2.11. Statistics

All statistical analyses were performed using GraphPad Prism (GraphPad Software,
San Diego, CA, USA). A p value of <0.05 was considered to be significant.

3. Results
3.1. Growth Inhibitory Effects of Everolimus on Malignant Meningioma Cells Are Enhanced
by Gemcitabine

We initially tested a panel of drugs used in preclinical and clinical studies on menin-
gioma to establish whether gemcitabine enhanced their growth inhibitory effects in the
two malignant meningioma cell lines, IOMM-Lee and HKBMM. The drugs tested included
GSK2256098, an inhibitor of focal adhesion kinase (NCT02523014); vismodegib, an inhibitor
of the sonic hedgehog pathway (NCT02523014); palbociclib, a CDK4/6 inhibitor [15,16];
everolimus, an mTOR inhibitor [6]; and sorafenib, a multiple kinase inhibitor [17]. Among
these drugs, gemcitabine consistently enhanced the effects of everolimus in both the IOMM-
Lee and HKBMM malignant meningioma cell lines (Figure 1a). The Loewe additivity
model, the Bliss independence model, and the HSA model indicated that this combination
was synergistic in these cell lines (Figures 1b and S1). Gemcitabine also enhanced the effects
of other mTOR inhibitors, rapamycin and temsirolimus (Figure S2), suggesting that the
enhancement by gemcitabine was mediated by the inhibition of mTOR signaling.

3.2. Combination of Everolimus and Gemcitabine Induces Cellular Senescence in Malignant
Meningioma Cells

We then investigated the mechanisms by which gemcitabine enhanced the growth
inhibitory effects of everolimus in malignant meningioma cells. In a cell viability assay,
gemcitabine significantly enhanced the growth inhibitory effects of everolimus in malignant
meningioma cell lines. However, it did not induce apparent cell death or activate the
apoptotic pathway, indicating that the enhancement was mediated by some cytostatic
mechanisms (Figure 2).

Malignant meningioma cells treated with the combination of everolimus and gemc-
itabine showed a flat and extended morphology with an increased cell size (Figure 3a,b).
Since these characteristic morphological changes suggested that the combination of everolimus
with gemcitabine induced cellular senescence, we examined senescence-associated β-galactos
idase (SA-β-gal) activity, a gold standard marker for cellular senescence, in meningioma cells
treated with everolimus and gemcitabine. The combination of everolimus and gemcitabine
increased SA-β-gal activity in IOMM-Lee and HKBMM cells (Figure 3a,c). Furthermore,
the combination of everolimus and gemcitabine increased the mRNA expression levels of
inflammatory cytokines, such as IL1B, CXCL8, CCL2, and CXCL2 (Figure 3d). Since increased
cytokine production is one of the hallmarks of cellular senescence or senescence-associated se-
cretory phenotypes (SASP) [18,19], these results support the induction of cellular senescence
in malignant meningioma cells by the combination of everolimus and gemcitabine.



Cancers 2022, 14, 1706 6 of 16Cancers 2022, 14, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 1. Enhancement of growth inhibitory effects of everolimus by gemcitabine in malignant men-
ingioma cells. (a) IOMM-Lee and HKBMM cells plated on 96-well plates in triplicate (500 cells for 
IOMM-Lee and 2000 cells for HKBMM) were untreated (Control) or treated with the indicated drugs 
for 4 days in the absence or presence of gemcitabine (3 nM for IOMM-Lee and 2 nM for HKBMM), 
and cell viability was examined using the WST-8 assay. The percentages of relative cell viability to 
the control (gemcitabine− and drugs−) are indicated (upper), and the relative inhibition efficiency 
values of each drug are shown (lower). The inhibition efficiency of each drug and control (drugs−) 
was calculated by the following formula: 1 − [GEM+]/[GEM−], where [GEM+] and [GEM−] are the 
relative cell viability values of cells treated or not with gemcitabine, respectively. The relative inhi-
bition efficiency of each drug was calculated by dividing the inhibition efficiency of each drug by 
that of untreated cells (drugs−). (b) The combination was evaluated by the WST-8 assay after 4 days 
in the IOMM-Lee and HKBMM meningioma cell lines. The degree of synergy was evaluated by the 
Loewe additivity model. 

3.2. Combination of Everolimus and Gemcitabine Induces Cellular Senescence in Malignant 
Meningioma Cells 

We then investigated the mechanisms by which gemcitabine enhanced the growth 
inhibitory effects of everolimus in malignant meningioma cells. In a cell viability assay, 
gemcitabine significantly enhanced the growth inhibitory effects of everolimus in malig-
nant meningioma cell lines. However, it did not induce apparent cell death or activate the 

0
20
40
60
80

100

R
el

at
iv

e
ce

ll
vi

ab
ilit

y
(%

)

Gemcitabine (nM)

3
0

R
el

at
iv

e
in

hi
bi

tio
n

ef
fic

ie
nc

y

C
on

tro
l GSK

2256098
(µM)

Vismodegib
(µM)

Palbociclib
(µM)

Everolimus
(nM)

Sorafenib
(µM)

10 10 100 1 10 10.1 10 10.1 10 10.1 10100

IOMM-Lee

Concentration:

HKBMM

Gemcitabine (nM)

2
0

0
20
40
60
80

100
Concentration:

C
on

tro
l

10 10 100 1 10 10.1 10 10.1 10 10.1 10100

R
el

at
iv

e
ce

ll
vi

ab
ilit

y
(%

)

R
el

at
iv

e
in

hi
bi

tio
n

ef
fic

ie
nc

y

1.0
1.2
1.4
1.6
1.8

1.0
1.2
1.4
1.6
1.8

IOMM-Lee

Sy
ne

rg
y

An
ta

go
ni

sm

HKBMM

a

b
MM-Lee

100

50

0
0

1
2

3
4 100

10
5

1
0.1

0
Gemcitabine (nM) Everolimus (nM) Gemcitabine (nM) Everolimus (nM)

100

50

0
0

1
2

3
4 100

10
5

1
0.1

0

R
el

at
iv

e 
ce

ll 
vi

ab
ilit

y 
(%

)

GSK
2256098

(µM)
Vismodegib

(µM)
Palbociclib

(µM)
Everolimus

(nM)
Sorafenib

(µM)

Figure 1. Enhancement of growth inhibitory effects of everolimus by gemcitabine in malignant
meningioma cells. (a) IOMM-Lee and HKBMM cells plated on 96-well plates in triplicate (500 cells for
IOMM-Lee and 2000 cells for HKBMM) were untreated (Control) or treated with the indicated drugs
for 4 days in the absence or presence of gemcitabine (3 nM for IOMM-Lee and 2 nM for HKBMM),
and cell viability was examined using the WST-8 assay. The percentages of relative cell viability to
the control (gemcitabine− and drugs−) are indicated (upper), and the relative inhibition efficiency
values of each drug are shown (lower). The inhibition efficiency of each drug and control (drugs−)
was calculated by the following formula: 1 − [GEM+]/[GEM−], where [GEM+] and [GEM−] are
the relative cell viability values of cells treated or not with gemcitabine, respectively. The relative
inhibition efficiency of each drug was calculated by dividing the inhibition efficiency of each drug by
that of untreated cells (drugs−). (b) The combination was evaluated by the WST-8 assay after 4 days
in the IOMM-Lee and HKBMM meningioma cell lines. The degree of synergy was evaluated by the
Loewe additivity model.
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Figure 2. Effects of the combination of everolimus and gemcitabine on malignant meningioma cells.
(a) IOMM-Lee and HKBMM cells plated on 6-well plates in 6 replicates (5 × 104 cells per well for
IOMM-Lee and 2 × 105 cells per well for HKBMM) were incubated without or with everolimus (EVE,
5 nM) for 4 days in the absence or presence of gemcitabine (GEM, 3 nM for IOMM-Lee and 2 nM for
HKBMM) and subjected to a cell viability assay to assess the viable cell number (a) and percentage
of dead cells (b), or to an immunoblot analysis to examine the expression of the indicated proteins
(c). Similar results were obtained from 2 independent biological replicates. Values are shown as
mean + SD. p-values were calculated by a one-way ANOVA with Tukey’s post hoc test (a) or by the
Kruskal–Wallis test (b). * p < 0.05. † p < 0.05, vs. the Control (EVE− and GEM−). NS: p ≥ 0.05.

3.3. Navitoclax Enhances Effects of the Combination of Everolimus and Gemcitabine by
Inducing Apoptosis

Previous studies reported that senolytic drugs, which selectively kill senescent cells,
enhanced the effects of treatments inducing cellular senescence [20,21]. To screen for
senolytic drugs that enhance the growth inhibitory effects of everolimus and gemcitabine,
we treated malignant meningioma cells with senolytic drugs, such as OTX015, an inhibitor
of bromodomain and extra-terminal proteins [22]; quercetin and dasatinib [23]; navitoclax,
an inhibitor of anti-apoptotic BCL-2 family proteins [10,24,25]; geldanamycin, an inhibitor
of heat shock protein 90 [26]; and BPTES, an inhibitor of glutaminase 1 [27], in combination
with everolimus and gemcitabine. Among them, navitoclax strongly decreased the viability
of malignant meningioma cells treated with everolimus and gemcitabine (Figure 4a). The
treatment with everolimus and gemcitabine decreased the IC50 values of navitoclax by 76.4-
and 30.9-fold in IOMM-Lee and HKBMM, respectively, suggesting that this combination
increased the sensitivity of malignant meningioma cells to navitoclax (Figure 4b). In a cell
viability assay, navitoclax significantly decreased the number of viable cells (Figure 4c)
and increased the number of dead cells in everolimus- and gemcitabine-treated cells
(Figure 4d) with the induction of the apoptotic markers, cleaved caspase 3, and cleaved
PARP (Figure 4e). These results indicate that navitoclax enhanced the growth inhibitory
effects of the combination of everolimus and gemcitabine by inducing apoptotic cell death.
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Figure 3. Cellular senescence in malignant meningioma cells treated with everolimus and gemcitabine.
IOMM-Lee and HKBMM cells were incubated without or with everolimus (EVE, 5 nM) for 4 days
in the absence or presence of gemcitabine (GEM, 3 nM for IOMM-Lee and 2 nM for HKBMM) and
subjected to evaluations of cell sizes (a,b), SA-β-gal staining (a,c), and RT-qPCR in 5 replicates to
assess the expression of the indicated genes (d). (a) Representative phase-contrast images and SA-β-
gal staining. Scale bars, 50 µm. (b) Quantification of cell sizes. The size of more than 40 cells per group
was measured and shown as violin plots (lines, median; dotted lines, quartile). (c) The percentages of
SA-β-gal-positive cells were quantified (n = 4, each group). (d) Relative gene expression to untreated
cells (EVE− and GEM−). Similar results were obtained from 2 independent biological replicates.
Values are shown as the mean + SD. p-values were calculated by the Kruskal–Wallis test with Dunn’s
multiple comparison test (b) or by a one-way ANOVA with Tukey’s (c) or Sidak’s multiple comparison
test (d). * p < 0.05. † p < 0.05, vs. the Control (EVE− and GEM−). NS: p ≥ 0.05.
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Figure 4. Enhancement of effects of everolimus and gemcitabine by navitoclax. IOMM-Lee and
HKBMM cells plated on 96-well plates in triplicate (2000 cells per each well) were untreated (Control)
or treated with everolimus (5 nM) in combination with gemcitabine (3 nM for IOMM-Lee and 2 nM
for HKBMM) (EVE + GEM) for 3 days in the absence (−) or presence of indicated senolytics, and cell
viability was examined using the WST-8 assay. The percentages of average relative cell viability to
the Control (EVE−, GEM−, and Senolytics−) are indicated in each square and shown as heat maps
(a). Alternatively, plated IOMM-Lee and HKBMM cells were treated with various concentrations
of navitoclax for 3 days in the presence (EVE + GEM) or absence (Control) of the combination of
everolimus and gemcitabine, and cell viability was examined using the WST-8 assay (b). IOMM-Lee
and HKBMM cells plated on a 6-well plate in 6 replicates (5 × 104 cells per well for IOMM-Lee and
1 × 105 cells per well for HKBMM) were incubated without or with everolimus (5 nM) in combination
with gemcitabine (3 nM for IOMM-Lee and 2 nM for HKBMM) (EVE + GEM) for 3 days in the absence
or presence of navitoclax (1 µM) and subjected to a cell viability assay to assess the viable cell number
(c) and percentage of dead cells (d). Alternatively, these cells were incubated for 2 days and subjected
to an immunoblot analysis to examine the expression of the indicated proteins (e). Q, quercetin.
D, dasatinib. Similar results were obtained from 2 independent biological replicates. Values are
shown as the mean + SD. The half maximal inhibitory concentration (IC50) was calculated by a
non-linear regression model. p-values were calculated by a one-way ANOVA with Tukey’s post hoc
test. * p < 0.05. † p < 0.05, vs. the Control (EVE−, GEM−, and navitoclax−). Original blot images can
be found at Figures S6–S8.
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3.4. Role for BCL-xL in Enhancements in Combined Effects of Everolimus and Gemcitabine
by Navitoclax

We investigated the mechanisms by which the combination of everolimus and gem-
citabine increased the sensitivity of malignant meningioma cells to navitoclax. Since
navitoclax is a BH-3 mimetic that interferes with the interaction of anti-apoptotic BCL-2
family proteins with pro-apoptotic BCL-2 family proteins [28], we examined the expres-
sion of these proteins. However, the treatment with everolimus and gemcitabine did not
consistently alter the expression of BCL-2 family proteins in malignant meningioma cells
(Figure S3a). These results prompted us to assume that the combination of everolimus
and gemcitabine increased sensitivity to navitoclax by increasing dependency on BCL-2
family proteins instead of altering protein expression. Among anti-apoptotic BCL-2 family
proteins, navitoclax mainly targets BCL-2 and BCL-xL [28]. Therefore, we examined the
sensitivity of malignant meningioma cells treated with gemcitabine and everolimus to
the BCL-2-specific inhibitor, venetoclax, and the BCL-xL-specific inhibitors, A-1331852
and A-1155463 [28]. Everolimus and gemcitabine-treated malignant meningioma cells
were sensitive to A-1331852 and A-1155463, but less sensitive to venetoclax, suggesting
increased dependency on BCL-xL rather than BCL-2 (Figure S3b). To support this notion,
the combination of everolimus and gemcitabine increased sensitivity to the suppression of
BCL-xL expression by the siRNA treatment in malignant meningioma cells (Figure S3c,d).

3.5. Combined Effects of Everolimus, Gemcitabine, and Navitoclax on Malignant Meningioma
Cells In Vivo

To evaluate the potential clinical significance of the combination of everolimus, gemc-
itabine, and navitoclax, we examined their effects on IOMM-Lee malignant meningioma
cells in a subcutaneous implantation xenograft model. The suppression of tumor growth
was significantly greater with the combination of everolimus and gemcitabine than with
either treatment alone in experiments with two different doses of gemcitabine (10 and
5 mg/kg body weight), and no significant weight loss was observed in mice (Figures 5a, S4
and S5). An immunohistochemical analysis of Ki-67, a marker of cell proliferative activity,
revealed that the combination of everolimus and gemcitabine decreased the percentage
of Ki-67-positive tumor cells in mice more than either gemcitabine or everolimus alone
(Figure 5b,c). Since navitoclax enhanced the effects of everolimus and gemcitabine by
inducing apoptosis in vitro, we examined the therapeutic impact of adding navitoclax to
everolimus and gemcitabine in vivo. The treatment with navitoclax, which alone does not
exert growth inhibitory effects on meningioma xenografts [10], reduced tumor volumes by
approximately 50% in mice treated with everolimus and gemcitabine (Figure 5d). Histo-
logically, navitoclax increased the number of cleaved caspase-3-positive apoptotic cells by
approximately 3-fold in vivo as well as in vitro (Figure 5e,f).
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Figure 5. Combined effects of everolimus, gemcitabine, and navitoclax on malignant meningioma
cells in vivo. IOMM-Lee cells (1 × 106 cells per place) were subcutaneously implanted. After the
establishment of tumors had been confirmed, mice were treated with everolimus (2 mg/kg, oral,
every day) (EVE), gemcitabine (10 mg/kg, intraperitoneal injection, 3 times a week) (GEM), both
(EVE + GEM), or vehicle (Control). The sizes of tumors were measured. n = 8, each group (a).
Immunohistochemistry for Ki-67 in excised tumors (the Control group on day 53 and the other
groups on day 60: one day after the last treatment) (b), and the quantification of Ki-67-positive cells
(c). Alternatively, after the establishment of tumors had been confirmed, mice were treated with
everolimus (2 mg/kg, oral, every day) in combination with gemcitabine (10 mg/kg, intraperitoneal
injection, 3 times a week) and navitoclax (100 mg/kg, oral, every day) (EVE + GEM + Nav) or vehicle
(EVE + GEM). The sizes of tumors were measured. n = 8, each group (d). Immunohistochemistry
for cleaved caspase 3 in excised tumors (on day 36: one day after the last treatment) (e) and the
quantification of cleaved caspase-3-positive cells (f). Values are shown as the mean ± or + SD. p-
values were calculated by a one-way ANOVA with Tukey’s post hoc test (a,c), by a two-way ANOVA
with Tukey’s post hoc test (d), or by the Student’s t-test (f). * p < 0.05. NS p ≥ 0.05 and † p < 0.05, vs.
the Control (EVE− and GEM−). Scale bars, 50 µm.

4. Discussion

The present study demonstrated that gemcitabine enhanced the therapeutic effects
of everolimus in malignant meningioma cells both in vitro and in vivo. We also revealed
that the combined therapeutic effects of these two drugs were mainly cytostatic, and that
the addition of navitoclax, an inhibitor of BCL-2 family proteins, rendered these effects
cytotoxic by inducing apoptosis. We recently reported the benefits of the combination
of gemcitabine with radiation therapy, which has a maximum tolerated dose that limits
its availability to recurrent meningiomas previously treated with radiation. The present
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results indicate the advantage of combination therapy with gemcitabine and everolimus
because it may be used to treat patients who have already received radiation therapy.

Even with standard therapy, namely, radical surgery followed by radiation therapy,
the prognosis of malignant meningioma remains poor [3]. A number of drugs, such as
hydroxyurea, interferon-alpha, mifepristone, imatinib, and erlotinib, have been evaluated
in clinical trials on patients with meningioma. However, the majority of clinical trials
lack adequate power to prove the effectiveness of these drugs due to the small number of
patients and the lack of a control arm [29]. Trabectedin, a chemotherapeutic agent used
to treat advanced sarcoma, exhibited therapeutic activity for grade 2/3 meningioma cells
in vitro [30]. However, a prospective randomized phase II clinical trial on patients with re-
current grade 2 or 3 meningiomas showed that trabectedin did not improve progression-free
survival or overall survival [4]. A prospective phase II study on nivolumab, a programmed
death 1 blocking antibody, among patients with grade 2/3 meningioma demonstrated
that it failed to improve six-month progression-free survival; however, a minor subset of
patients characterized by a high tumor mutation burden benefited from the treatment [31].
Clinical trials using anti-angiogenic therapy with sunitinib or bevacizumab have been
performed on patients with grade 2/3 meningioma [32–34]. Although the findings from
these uncontrolled studies are promising, they need to be confirmed in prospective con-
trolled trials [3]. The AKT/mTOR pathway was shown to be activated in meningioma, and
mTOR inhibitors suppressed meningioma cell growth in vitro and in vivo [35]. In a phase
II clinical trial that evaluated the efficacy of everolimus plus bevacizumab in patients with
recurrent, progressive meningioma, this combination prolonged progression-free survival
slightly more in patients with WHO grade 2/3 meningioma than in patients with grade 1
meningioma [36]. Furthermore, a prospective, multicenter, single-arm, phase II study using
the combination of everolimus and octreotide was performed on patients with meningioma.
Although further randomized studies are warranted to confirm the findings obtained, this
study revealed the anti-tumor activity and tolerability of everolimus [6]. On the other hand,
a recent study on a small group of patients with meningioma documented the efficacy and
safety of treatment with gemcitabine, and a phase II clinical trial is now underway [9]. As a
reflection of these findings, everolimus and gemcitabine are listed as candidate drugs for
meningioma in the latest version of the EANO guidelines [3]. In a phase I clinical trial on
patients with solid tumors, the combination of everolimus and gemcitabine was generally
tolerated well with some hematologic dose-limiting toxicities [37]. In our preclinical study,
the combination of everolimus and gemcitabine was effective against malignant menin-
gioma cells, even at a dose of gemcitabine that was lower than the clinical dose because of
the high sensitivity of these cells to gemcitabine. Therefore, the present results underscore
the potential impact of the combination of these two promising drugs in the treatment of
malignant meningioma.

The combination of everolimus and gemcitabine synergistically enhanced their thera-
peutic effects in cell lines of various types of malignancies, including pancreatic cancer [38],
cholangiocarcinoma [39,40], bladder cancer [41], and non-Hodgkin lymphoma [42]. The
anti-tumor effects of this combination were mainly mediated by the induction of apop-
tosis and suppression of proliferative activity. In the present study, the combination of
everolimus with gemcitabine exerted cytostatic effects rather than cytocidal effects, such as
apoptosis, accompanied by the induction of cellular senescence in malignant meningioma
cells. While gemcitabine reportedly induced cellular senescence in cancer cells [43], the
effects of everolimus on cellular senescence are bidirectional: promoting and suppressing
senescence [20]. In the present study, although everolimus alone did not result in cellular
senescence, its combination with gemcitabine significantly induced cellular senescence.
Similar to the present results, although rapamycin, an inhibitor of mTOR, alone did not in-
duce senescence in the SMMC-7221 hepatocellular carcinoma cell line, its combination with
5-FU, an anti-metabolite, induced senescence and exerted synergistic anti-tumor effects [44].
These findings suggest that the induction of cellular senescence is one of the mechanisms
underlying the anti-tumor effects of the combination of everolimus and gemcitabine.



Cancers 2022, 14, 1706 13 of 16

The present study demonstrated that navitoclax, an inhibitor of anti-apoptotic BCL-2
family proteins, enhanced the effects of the combination of everolimus and gemcitabine in
malignant meningioma cells in vitro and in vivo. The main molecular targets of navitoclax
are BCL-2 and BCL-xL. In this study, the combination of everolimus and gemcitabine
sensitized malignant meningioma cells to A-1331852 and A-1155463, specific inhibitors of
BCL-xL, but not to venetoclax, a specific inhibitor of BCL-2, suggesting that sensitization ef-
fects were mainly dependent on the inhibition of BCL-xL. Consistent with our observations,
the chemosensitization effects of navitoclax were largely dependent on the inhibition of
BCL-xL in other types of malignant cells and in combination with other types of chemother-
apeutics [25,45]. Cellular sensitivity to BH-3 mimetics is dictated not only by the presence
of anti-apoptotic BCL-2 family proteins, but also by the activities of pro-apoptotic BCL-2
family proteins [46]. Although the dependency on BCL-xL is often caused by alterations
in the expression of other BCL-2 family proteins, such as MCL-1 and NOXA [24,47,48],
the combination of everolimus and gemcitabine in malignant meningioma cells did not
consistently alter the expression of these proteins in the present study. Further studies
are needed to elucidate the mechanisms underlying the increases in BCL-xL dependency
induced by this combination in malignant meningioma cells.

In the present study, we successfully demonstrated the combined therapeutic effects of
everolimus and gemcitabine in conjunction with navitoclax in subcutaneous models in vivo,
which underscores the potential significance of this combination in the clinical management
of malignant meningioma. We previously reported that implanted meningiomas in our
intracranial model were mainly fed by brain blood vessels with a blood–brain barrier
(BBB) [10], in contrast to meningiomas in patients, which are mainly fed by extra-axial
blood vessels devoid of BBB. Therefore, we selected a subcutaneous model for our in vivo
studies because navitoclax does not penetrate BBB [49]. To test the therapeutic effects
of the combination of everolimus, gemcitabine, and navitoclax in an orthotopic setting,
the development of intracranial meningioma models that more closely recapitulate the
pathophysiology of meningioma is awaited.

5. Conclusions

The present results suggest that gemcitabine, alone or in combination with navitoclax,
enhanced the anti-tumor effects of everolimus and support the clinical application of
gemcitabine and navitoclax in conjunction with everolimus to the treatment of patients
with malignant meningioma. Clinical trials that evaluate the impact of the combination
of everolimus with gemcitabine with or without navitoclax in patients with malignant
meningioma are warranted.
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