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Allotetraploid cotton (Gossypium hirsutum) is cultivated globally

as an important fibre and oil crop, and also serves as a model for

genomic analysis of allopolyploidization. The cotton research is

currently dedicated to identifying functional genome compo-

nents, including protein-coding genes and non-coding regulatory

elements, to guide the improvement of agronomic traits (Huang

et al., 2021). The research is also extended to understand the 3-

dimensional (3D) genome structure, building on the increasing

evidence of its role in gene transcription and regulation (Domb

et al., 2022). However, the understanding of higher-order chro-

matin structure and long-range transcriptional cis-regulatory

elements remains fragmentary. In this study, three chromatin

architecture mapping technologies, including Pore-C, Hi-C and

ChIA-PET, were used to resolve the fine hierarchy of 3D genome

in G. hirsutum. In combination with ATAC-Seq, ChIP-Seq and

RNA-Seq, this study addresses the putative effect of chromatin

interaction on homoeologous gene transcription between two

subgenomes.

Limited by experimental principles, Hi-C does not perform well

for exploring multiple interactions (Lieberman-Aiden et al., 2009).

However, Pore-C can complement this shortcoming by intracellular

cross-linking, in situ digestion (DpnII), in situ proximity ligation,

reverse cross-linking and Nanopore long-read sequencing (Fig-

ure 1a; Deshpande et al., 2022). To construct a fine 3D genome

map of cotton, we produced an ultra-high-resolution (3 Kb) Hi-C

library (233 Gb) and a Pore-C library (113 Gb) with appropriate

resolution (20Kb) using leaves ofG. hirsutum (Figure 1b, Tables S1

and S2). The length of the A compartment (100 Kb) accounts for

44.34% and 43.02% of the entire genome identified by Pore-C

and Hi-C, respectively, with a high consistency of eigenvectors and

high overlap (92.99%) between them (Figure 1c and d). There are

7702 and 8028 topologically associating domains (TADs) identified

from Hi-C and Pore-C at the 20 Kb resolution, respectively, with

high consistency of insulation score (Figure 1e and f). These results

indicate that Pore-C library can be used to identify A/B compart-

ment and TAD architecture accurately.

Compared with Hi-C, the prominent advantage of Pore-C is to

detect multiple interactions. Our result shows that Pore-C iden-

tifies 43.56% of multiple interactions (order ≥3) (Figure 1g). To

investigate the multiple interactions between large-scale domains

in cotton, we identified TAD cliques that represent clusters of

interacting TADs. Compared with the observation in Hi-C data,

Pore-C revealed more complex interactions (Figure 1h and i).

Meanwhile, more genes were participated in higher levels of TAD

clique interactions in Pore-C (Figure 1j). By analysing the propor-

tion of A/B compartment in TAD cliques and its distribution on the

chromosome, we found that the larger TAD cliques included more

B compartments, closer to the centromere (Figure 1k and l). We

further found that the genes in larger TAD cliques were more likely

to be down-regulated, which suggests they may be located in a

more inhibitory micro-environment (Figure 1m). These results

indicate that Pore-C represents an efficient approach for mapping

higher-order chromatin structure in terms of completely investi-

gating multi-interactions over large domains, which helps to

understand the status and intranuclear position of functional

genomic components.

We next used the Hi-C, ChIA-PET (H3K4me3) and ChIP-Seq

(H3K4me3, H3K27ac and H3K27me3) data to study the chro-

matin loops and their potential role in gene transcription

(Table S3). We identified 31 047 gene–gene (G–G) loops that

linked two genes together, 40 035 gene-non-coding regions (G–
N) loops and 121 415 other loops (N–N) at the 3 Kb resolution. It

is found that genes located in G-G loop anchors had higher

expression levels, associated with higher content of active histone

modifications (Figure 1n, Figure S1). Subsequently, to investigate

the regulatory role of non-coding regions on gene expression

bridged by loops, we identified 4670 and 3076 putative long-

range transcriptional cis-regulatory elements (CREs) by combining

ATAC-Seq, ChIP-Seq and chromatin loops. These CREs were

associated with H3K4me3, H3K27ac and H3K27me3 modifica-

tions, and were overlapped with Tn5 transposase-hypersensitive

sites (THSs), linked with 2317, 2713, 4193 and 6683 genes,

respectively. The genes modified by H3K27me3 had the lowest

expression levels, possibly associated with the inactive role of

H3K27me3 (Figure 1o). These data provide a resource for

characterizing functional regulatory elements in non-coding

genomic regions.

Using the fine 3D genome mapping of allotetraploid cotton,

we further investigated the putative effect of different 3D

genome architectures of two subgenomes on transcriptional

regulation. We found 9115 homoeologous gene pairs with

different spatial locations on TADs, that is one located in TAD

boundary and the other in TAD interior. Compared with randomly

selected gene pairs, this gene set contained a significantly higher
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Figure 1 Multi-omics mapping of the fine 3D genome structure and implications in transcriptional regulation in allotetraploid cotton. (a) Schematic of the

Pore-C method. (b) The bar plot shows the resolutions of Hi-C and Pore-C. (c) The point plot represents the consistency of eigenvectors between Hi-C and

Pore-C. (d) One representative genome region shows the status of A/B compartment identified by Hi-C and Pore-C. (e) The density plot shows the

consistency of insulation score between Hi-C and Pore-C. (f) The heatmap shows TAD structures at the 20 Kb resolution. (g) The histogram shows the

number of concatemers and the schematic representation of 5-way concatemer interactions identified by Pore-C. (h) The bar plot shows the number of

TAD cliques identified from Pore-C and Hi-C libraries. (i) The network plot represents the interactions of TADs. (j) The snakey plot shows the distribution of

genes in different TAD cliques between Pore-C and Hi-C. (k) The bar plot shows the ratio of A and B compartments in different TAD cliques. (l) The

distribution of TAD cliques and A/B compartment on chromosomes. (m) The expression level of genes located in different TAD cliques. (n) The expression

level of genes linked by different loops. (o) The expression level of genes regulated by different CREs. (p) Biased expression of homoeologous genes with

topological change from TAD interior in the Dt subgenome to the boundary in the At subgenome. (q) Biased expression of homoeologous genes with

differential loops between subgenomes.
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proportion exhibiting subgenomic expression bias (1088 versus

424, Pearson’s chi-squared test <0.001), which may suggest

different spatial locations of homoeologous genes were associ-

ated with expression imbalance (Figure 1p). Meanwhile, an

analysis of CREs showed that 5977 homoeologous gene pairs

were regulated by subgenome-differential CREs through chro-

matin loops, and 716 gene pairs exhibited expression bias

towards one of two subgenomes, which was also a significant

higher proportion than random gene pairs (716 versus 41,

Pearson’s chi-squared test <0.001; Figure 1q). These results

indicate that homoeologous gene expression was not only

influenced by the difference in the distribution of TAD positions

but also influenced by the changed CREs linked by regulatory

loops. Analysis of the relationship between the change of

subgenomic 3D architecture and homoeologous gene expression

bias contributes to the understanding of subgenomic regulatory

divergence after allopolyploidization in cotton.

To sum up, we used multi-omics to comprehensively probe the

fine 3D genomic architecture of allotetraploid cotton. With the

Pore-C technique, we investigated the characteristics of complex

high-level multiple interactions over large domains and the

potential effects on gene expression. We also revealed that

biased expression of homoeologous gene pairs was implicated

with the subgenome-asymmetric organization of higher-order

chromatin architecture. This study highlights the necessity of

decoding the hierarchy of 3D genome for a wider understanding

of complicated transcriptional regulation in polyploid plants.
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