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Abstract

Identifying structural differences among proteins can be a non-trivial task. When contrasting

ensembles of protein structures obtained from molecular dynamics simulations, biologically-

relevant features can be easily overshadowed by spurious fluctuations. Here, we present

SINATRA Pro, a computational pipeline designed to robustly identify topological differences

between two sets of protein structures. Algorithmically, SINATRA Pro works by first taking in

the 3D atomic coordinates for each protein snapshot and summarizing them according to

their underlying topology. Statistically significant topological features are then projected

back onto a user-selected representative protein structure, thus facilitating the visual identifi-

cation of biophysical signatures of different protein ensembles. We assess the ability of

SINATRA Pro to detect minute conformational changes in five independent protein systems

of varying complexities. In all test cases, SINATRA Pro identifies known structural features

that have been validated by previous experimental and computational studies, as well as

novel features that are also likely to be biologically-relevant according to the literature.

These results highlight SINATRA Pro as a promising method for facilitating the non-trivial

task of pattern recognition in trajectories resulting from molecular dynamics simulations,

with substantially increased resolution.
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Author summary

Structural features of proteins often serve as signatures of their biological function and

molecular binding activity. Elucidating these structural features is essential for a full

understanding of underlying biophysical mechanisms. While there are existing methods

aimed at identifying structural differences between protein variants, such methods do not

have the capability to jointly infer both geometric and dynamic changes, simultaneously.

In this paper, we propose SINATRA Pro, a computational framework for extracting key

structural features between two sets of proteins. SINATRA Pro robustly outperforms stan-

dard techniques in pinpointing the physical locations of both static and dynamic signa-

tures across various types of protein ensembles, and it does so with improved resolution.

This is a PLOS Computational Biology Methods paper.

Introduction

Identifying structural features associated with macromolecular dynamics is crucial to our

understanding of the underlying physical behavior of proteins and their broader impact on

biology and health. Structural and dynamical properties of proteins often serve as signatures of

their functions and activities [1]. Subtle topological changes in protein conformation can lead

to dramatic changes in biological function [2, 3], thus highlighting the importance of being

able to accurately characterize protein conformational dynamics.

Conventionally, the structural dynamics of proteins have been modeled using molecular

dynamics (MD) simulations, which work by sampling structural ensembles from conforma-

tional landscapes. In infinite timescales, such structural ensembles are expected to represent all

physical states such that their ensemble-averaged observables converge to true physical values

and are thus physically meaningful. While MD simulations have provided key insights into the

atomistic motions that underpin many protein functions [4], biologically-relevant structural

changes can be overshadowed by spurious statistical noise caused by the thermal fluctuations

that naturally arise during the course of these simulations [5]. In practice, this can often make

important structural features difficult to identify and robustly interpret from MD trajectories.

Data from MD simulations are often analyzed in a strictly goal-dependent manner by using

computational methods that quantify and assess specific protein characteristics. For example,

geometric changes that arise as a result of ligand binding, point mutations, or post-transla-

tional modifications are usually inferred by analyzing the root mean square fluctuations

(RMSF) of atomic positions or the per-domain radius of gyration with respect to a reference

structure [6]. Unfortunately, these standard approaches are less powerful when the relevant

changes in protein structure are overshadowed by fluctuations irrelevant to the biological pro-

cess of interest.

Recently, more sophisticated methods have aimed to overcome these challenges by taking

advantage of correspondences between the atomic positions on any two given proteins. For

example, per-residue distance functions or contact maps can be calculated on each frame of a

trajectory for clustering [7] or principal component analyses (PCA) [8, 9], which project com-

plex conformations onto a lower-dimensional space for ease of comparison. However, the

downside to these methods is that they require diffeomorphisms between structures (i.e., the
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code originally written in R (version 1.0.0; https://

github.com/lorinanthony/RATE). Visualizing the

reconstructed protein regions outputted by

SINATRA Pro was done using the extensive

molecular modeling system software Chimera

(version 1.14). Molecular dynamic simulations

were performed using Schrödinger’s Desmond

(release 2020-1) and GROMACS (release 2018-2).

Furthermore, pre-processing steps for the protein

structures resulting from MD simulations

examined in the study were performed using Visual

Molecular Dynamics (VMD) (version 1.9.3) and the

Python library MDAnalysis (version 1.1.1). Data

generated from the MD simulations can be

downloaded at https://dataverse.harvard.edu/

dataset.xhtml?persistentId=doi:10.7910/DVN/

FX0TG5. Scripts to reproduce the results in this

paper are also publicly available and can be found

at https://github.com/lcrawlab/SINATRA_Pro_

Paper_Results.
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map from protein A to protein B must be differentiable). There are many scenarios in protein

dynamics where no such transformation is guaranteed because atomic features can be gained

or lost during the evolution of the system [10]. Indeed, there are 3D shape algorithms that con-

struct more general “functional” correspondences and can be applied even across shapes hav-

ing different topology [11, 12]; however, previous work has shown that the performance of

these algorithms drops significantly when the assumed functional mapping input is even

slightly misspecified [13].

In this work, we introduce SINATRA Pro: a topological data analytic pipeline for identify-

ing biologically-relevant structural differences between two protein structural ensembles with-

out the need for explicit contact maps or atomic correspondences. Our algorithm is an

extension of a previous framework, SINATRA, which was broadly introduced to perform vari-

able selection on physical features that best describe the variation between two groups of static

3D shapes [13]. Using a tool from integral geometry and differential topology called the Euler

characteristic (EC) transform [14–17], SINATRA was shown to have the power to identify

known morphological perturbations in controlled simulations and robustly identify anatomi-

cal aberrations in mandibular molars associated within four different suborders of primates.

SINATRA Pro is an adaptation of the SINATRA framework for protein dynamics. Here, we

develop a simplicial complex construction step to specifically model both 3D geometric and

topological relationships between atomic positions on protein structures. We also utilize a new

set of statistical parameters which we calibrate for complex protein systems.

In this study, we demonstrate SINATRA Pro’s ability to identify key structural and dynam-

ical features in a hierarchy of proteins with increasingly challenging features to statistically

resolve. The five proteins studied, TEM β-lactamase, the Abelson Kinase (Abl1), the HIV-1

protease, Elongation Factor Thermo Unstable (EF-Tu), and Importin-β, undergo structural

changes in response to a wide range of well-studied biological phenomena, including muta-

tions, interactions with partners, and small molecule binding. We show that SINATRA Pro

outperforms standard analytic techniques including RMSF and PCA in consistently pinpoint-

ing physical locations of biologically-relevant conformational changes. Overall, we find that

SINATRA Pro holds great promise for extracting topological differences between two sets of

protein structures from meaningless statistical noise.

Results

Pipeline overview

The SINATRA Pro pipeline involves five key steps (see Fig 1). First, the algorithm begins by

taking aligned structures from two all-atom protein MD simulation trajectories of different

phenotypic states (e.g., wild-type versus mutant) as inputs (Fig 1A). In the second step, SINA-

TRA Pro uses the 3D Cartesian coordinates of each atom of the proteins to create mesh repre-

sentations of their 3D structures (Fig 1B). Here, atoms within a predetermined physical

distance cutoff (e.g., *6 Ångströms (Å) apart) are connected by “edges” and then triangles

enclosed by the connected edges are filled to create “faces.” In the third step, we convert the

resulting triangulated meshes to a set of topological summary statistics using an invariant

called the “differential Euler Characteristics (DEC)” transform (Fig 1C). In the fourth step,

SINATRA Pro implements a nonlinear Gaussian process model to classify the protein struc-

tures using the topological summary statistics, with which association measures are computed

for each topological feature to provide a statistical notion of “significance” (Fig 1D). In the last

step of the pipeline, SINATRA Pro maps the association measures back onto the original pro-

tein structures (Fig 1E), which produces “evidence scores” that reveal the spatial locations that
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best explain the variance between two protein ensembles. Theoretical details of our implemen-

tation are fully detailed in the Materials and Methods sections.

Software overview

The software for SINATRA Pro requires the following inputs: (i) 3D Cartesian coordinates

corresponding to the atomic positions in each protein structure; (ii) y, a binary vector denoting

protein class or phenotype (e.g., yi = 0 for wild-type or yi = 1 for mutant); (iii) r, the cutoff dis-

tance for simplicial construction (i.e., constructing the mesh representation for every protein);

(iv) c, the number of cones of directions; (v) d, the number of directions within each cone; (vi)
θ, the cap radius used to generate directions in a cone; and (vii) l, the number of sublevel sets

Fig 1. Schematic overview of SINATRA Pro: A novel framework for discovering biophysical signatures that differentiate classes of proteins. (A)

The SINATRA Pro algorithm requires the following inputs: (i) (x, y, z)-coordinates corresponding to the structural position of each atom in every

protein; (ii) y, a binary vector denoting protein class or phenotype (e.g., mutant versus wild-type); (iii) r, the cutoff distance for simplicial construction

(i.e., constructing the mesh representation for every protein); (iv) c, the number of cones of directions; (v) d, the number of directions within each cone;

(vi) θ, the cap radius used to generate directions in a cone; and (vii) l, the number of sublevel sets (i.e., filtration steps) used to compute the differential

Euler characteristic (DEC) curve along a given direction. Guidelines for how to choose the free parameters are given in Table 1. (B) Using the atomic

positions for each protein, we create mesh representations of their 3D structures. First, we draw an edge between any two atoms if the Euclidean

distance between them is smaller than some value r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we fill in all of the triangles (or faces) formed by these

connected edges. We treat the resulting triangulated mesh as a simplicial complex with which we can perform topological data analysis. (C) We select

initial positions uniformly on a unit sphere. Then for each position, we generate a cone of d directions within angle θ using Rodrigues’ rotation formula

[86], resulting in a total of m = c × d directions. For each direction, we compute DEC curves with l sublevel sets. We concatenate the DEC curves along

all the directions for each protein to form vectors of topological features of length J = l ×m. Thus, for a study with N-proteins, an N × J design matrix is

statistically analyzed using a Gaussian process classification model. (D) Evidence of association measures for each topological feature vector are

determined using relative centrality measures. We reconstruct corresponding protein structures by identifying the atoms on the shape that correspond

to “statistically associated” topological features. (E) The reconstruction enables us to visualize the enrichment of biophysical signatures that best explain

the variance between the two classes of proteins. The heatmaps display atomic (or residue-level, which we define as a collection of atoms) evidence

potential on a scale from [0–100], with a score of 100 meaning most enriched.

https://doi.org/10.1371/journal.pcbi.1010045.g001
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(i.e., filtration steps) used to compute the differential Euler characteristic (DEC) curve along

any given direction. In addition to real data analyses, we implement a controlled benchmark

simulation study designed to assess SINATRA Pro’s performance at identifyin structurally-

perturbed regions in protein dynamics relative to other methods. Results for the controlled

benchmark simulations were done using free parameters {r = 1.0Å, c = 20, d = 8, θ = 0.80,

l = 120}, and results for the real data analyses were done using parameters {r = 6.0Å, c = 20,

d = 8, θ = 0.80, l = 120}. All values were chosen via a grid search. Guidelines for how to choose

the free parameters for the software are given in Table 1. Tables detailing the scalability of the

current algorithmic implementation of SINATRA Pro can also be found in Supporting Infor-

mation (see S1–S3 Tables).

Performance of SINATRA Pro on benchmark simulations

We implemented a controlled simulation study designed to assess SINATRA Pro’s perfor-

mance at identifying structurally-perturbed regions in protein dynamics relative to other

methods. Here, the premise behind “controlled simulations” is that topological artifacts (i.e.,

perturbations of atomic positions in a certain region) are manually introduced to a set of pro-

tein structures to establish a ground truth and statistically evaluate the concept of power. The

original and perturbed structures represent two phenotypic classes and are fed into SINATRA

Pro to assess whether it can reliably identify the perturbed regions of interest.

To generate data for these controlled simulations, we use real structural data of wild-type β-

lactamase (TEM), an enzyme widely implicated in microbial resistance that has evolved

numerous mutations of clinical relevance. In the first phenotypic group (set A), original struc-

tures are drawn at 1 nanosecond (ns) intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2,

3, . . ., 99] ns + δ, where δ is a time offset parameter). Next, a comparable set of perturbed struc-

tures (set B) are drawn at 1 ns intervals but shifted by 0.5 ns with respect to the set A structures

(e.g., tMD = [0.5, 1.5, 2.5, 3.5, . . ., 99.5] ns + δ) to allow for thermal noise to be introduced.

Here, we displace the atomic positions of each atom in the O-loop (i.e., the region of interest

or ROI) in each perturbed structure within set B by

• a constant Cartesian vector set to (i) 0.5 Å, (ii) 1.0 Å, and (iii) 2.0 Å in each (x, y, z) direction;

Table 1. General guidelines for choosing values for the free parameters in the SINATRA Pro pipeline software. The guidelines provided are based off of intuition

gained through the simulation studies. In practice, we suggest specifying multiple cones c> 1 and utilizing multiple directions d per cone (see monotonically increasing

power in S1 Fig in Supporting Information). While the other two parameters (θ and l) do not have monotonic properties, their effects on SINATRA’s performance still

have natural interpretations. Selection of θ 2 [0.1, 0.8] supports previous theoretical results that cones should be defined by directions in close proximity to each other [13,

15]; but not so close that they explain the same local information with little variation. Note that our sensitivity analyses suggest that the power of SINATRA Pro is relatively

robust to the choice of θ. Optimal choice of l depends on the size of the protein molecules that are being analyzed. Intuitively, for rigid proteins, coarse filtrations with too

few sublevel sets cause SINATRA Pro to miss or “step over” structural shifts that occur locally during the course of a molecular dynamic (MD) trajectory. In practice, we

recommend choosing the angle between directions within cones θ and the number of sublevel sets l via cross validation or some grid-based search.

Free Parameters in SINATRA Pro Software

Notation Description Range General Guidelines

r Radius cutoff (Å) for simplicial reconstruction [0,1) Use smaller r� 2.0 Å for rigid proteins and r 2 [2.0 Å, 6.0 Å] for flexible proteins.

c Number of cones of directions [1,1) Set much greater than 1 as more power is generally achieved by taking filtrations over multiple

directions

d Number of directions per cone [1,1) Set much greater than 1 as more power is generally achieved by taking filtrations over multiple

directions

θ Cap radius used to generate directions within a

cone

(0,

2π]

Set between [0.1, 0.8] since cones should be defined by directions in close proximity

l Number of sublevel sets (filtration steps) [1,1) Optimal choice depends on the size of protein molecule being analyzed so use grid search

https://doi.org/10.1371/journal.pcbi.1010045.t001
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• a spherically uniform random vector where each (x, y, z) direction is first drawn from a stan-

dard Gaussian distribution N ð0; 1Þ and then the vector is normalized to be of length (iv) 0.5

Å, (v) 1.0 Å, and (vi) 2.0 Å.

These simple, artificial control cases are designed to represent two different forms of struc-

tural changes that can happen within protein dynamics. Namely, scenarios (i)-(iii) involve a

displacement of atoms by a constant amount in a constant direction, which emulates a static

structural change; while, scenarios (iv)-(vi) displace the atoms by a constant amount in a

(spherically uniform) random direction, which emulates a dynamic or stochastic structural

change. Altogether, we use datasets of N = 1000 protein structures per simulation scenario:

100 ns intervals × 5 different choices of δ = {0.0, 0.1, 0.2, 0.3, 0.4} ns × 2 phenotypic classes

(wild-type versus perturbed). We evaluate all competing methods’ abilities to correctly identify

perturbed atoms located within the Omega-loop region (Material and methods). Here, we use

receiver operating characteristic (ROC) curves that plot true positive rates (TPR) against false

positive rates (FPR) (Fig 2). This is further quantified by assessing the area under the curve

(AUC). The results presented in the main text reflect using SINATRA Pro with parameters set

to {r = 1.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. Note that additional fig-

ures assessing how robust SINATRA Pro is to different free parameter value settings can be

found in the Supporting Information (see sensitivity analysis in S1 Fig).

Fig 2. Receiver operating characteristic (ROC) curves comparing the power and robustness of SINATRA Pro to competing 3D mapping

approaches in controlled molecular dynamic (MD) simulations. To generate data for these simulations, we consider two phenotypic classes using the

real structural data of wild-type β-lactamase (TEM). In the first phenotypic class, structural protein data are drawn from equally spaced intervals over a

100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset parameter). In the second phenotypic class, proteins are drawn at 1 ns

intervals shifted 0.5 ns with respect to the first set (e.g., tMD = [0.5, 1.5, 2.5, 3.5, . . ., 99.5] ns + δ) to introduce thermal noise, and then we displace the

atomic positions of each atom in theO-loop region by (top row) a constant Cartesian vector of (A) 0.5 Ångströms (Å), (B) 1.0 Å, and (C) 2.0 Å, or

(bottom row) by a spherically uniform random vector of (D) 0.5 Å, (E) 1.0 Å, and (F) 2.0 Å. Altogether, we have a dataset of N = 1000 proteins per

simulation scenario: 100 ns interval × 5 different choices δ = {0.0, 0.1, 0.2, 0.3, 0.4} ns × 2 phenotypic classes (original wild-type versus perturbed). The

ROC curves and corresponding area under the curves (AUC) depict the ability of SINATRA Pro to identify “true class defining” atoms located within

theO-loop region using parameters {r = 1.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. We compare SINATRA Pro to four methods: root

mean square fluctuation (RMSF) (orange); principal component analysis (PCA) (green); Elastic Net classification (pink); and a Neural Network

(brown). For details on these approaches, see Materials and methods. A sensitivity analysis exploring the optimal parameter configurations for PCA and

Neural Network can be found in Supporting Information (see S3 and S4 Figs, respectively).

https://doi.org/10.1371/journal.pcbi.1010045.g002
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Lastly, we want to point out that we do not realign the proteins after structural perturbation

has occurred. Realigning the structures after introducing a perturbation poses a slightly differ-

ent and notably less controlled simulation study. For example, in the constant displacement

case, realigning the structures will shift the whole structure against the perturbing vector and

result in an unintentional displacement on the opposite side of the structure. A true positive in

this case will not be as well-defined as when we keep the unperturbed structure in place and

define the perturbed structure as the ground truth for the positive signal. An example of this

can be seen in S2 Fig.

Overview of competing baselines. In this section, we compare SINATRA Pro to four

competing approaches: root mean square fluctuation (RMSF) calculations, principal compo-

nent analysis (PCA), Elastic Net classification, and Neural Network classification. The first

baseline is RMSF which computes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k x � hxi k2

p
, where x = (x, y, z) denotes the positions of

the protein’s atoms for each frame and hxi is the average position of that corresponding atom

over the entire MD simulation. The difference in the RMSF values between the original and

perturbed structures is taken as the score for feature selection. The second baseline performs

PCA (based on singular value decomposition) over the Cartesian (x, y, z)-coordinates for the

atoms using scikit-learn [18], which reduces the sample space into principal compo-

nents. We sum the components (weighed by their singular values) for the original wild-type

and perturbed data separately, and then determine the magnitudes of the change in the com-

ponent sum between the two protein classes as the score for feature selection. The last two

baselines concatenate the coordinates of all atoms within each protein and treats them as fea-

tures in a dataframe. The Elastic Net uses a regularized linear classification model via stochas-

tic gradient descent in scikit-learn to assign sparse individual coefficients to each

coordinate of every atom, where the free regularization parameter is chosen with 90% training

and 10% validation set splits. We assess the power of the Elastic Net by taking the sum of the

coefficient values corresponding to each atomic position. The Neural Network uses the follow-

ing architecture with Rectified Linear Unit (ReLU) nonlinear activation functions [19]: (1) an

input layer of Cartesian coordinates of all of the atoms; (2) a hidden layer with H = 2048 neu-

rons; (3) a second hidden layer with H = 512 neurons; (4) a third hidden layer with H = 128

neurons; and (5) an outer layer with a single node which uses a sigmoid link function for pro-

tein classification. Batch normalization was implemented between each layer and a normalized

saliency map to rank the importance of each atom [20]. The simplest saliency map attributes

the partial derivatives @yi/@xij as the importance of the coordinates for the j-th atom in the i-th

protein structure; here, yi denotes the neural network output after the sigmoid link function

for the i-th protein structure. We then assign global importance to each atom by
PNc

i¼1
j@yi=@xijj=Nc, where Nc denotes the number of protein structures in a given class. For the

Neural Network, we assess power by taking the sum of the saliency map values corresponding

to each atomic position. To ensure that both PCA and the Neural Network are evaluated with

their optimal parameter configurations, we also performed variants of these approaches in

their own sensitivity analysis. The results for these variants of PCA and the Neural Network

can be found in Supporting Information (see S3 and S4 Figs, respectively).

It is important to note that, while SINATRA Pro is implemented over the entire protein

structure, the four baselines that we consider are limited to only assessing structural differences

between atoms with correspondences between the two datasets—that is, for the competing

baselines, we use all “pairable” atoms and omit mutated residues which be considered “unpair-

able” between structures. The main reason for this is that atomic features can be gained or lost

due to mutations or phylogenetic variations that introduce heterogeneity in protein sequences,

thus creating a lack of a one-to-one correspondence between any two given 3D structures.
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Without this explicit mapping between structures, none of the four coordinate-based compet-

ing approaches are able to be fully implemented as they all rely on (in some way or another)

equal dimensionality across all proteins. Therefore, when assessing MD trajectories, the corre-

sponding or “pairable” atoms represent consistent “landmarks” that summarize the global

geometry of the protein structure. Ultimately, we recognize that these method comparisons

with SINATRA Pro are not equivalent; however, they do highlight a key and practical advan-

tage of the topological data analytic approach used in SINATRA Pro which maintains its utility

even when such atom-by-atom correspondences between protein structures are not available.

Method comparisons. The overall performance of each competing method to identify is

dependent on two factors: (1) whether the structural changes are reproduced by static or sto-

chastic conformations, and (2) the underlying statistical assumptions of the methods. For

example, RMSF had the most difficulty identifying constant displacements in the protein

structures (Fig 2A–2C). In these scenarios, RMSF was effectively a random classifier with an

average AUC� 0.5 and diagonal ROC curves showing no signal detected. These results are

explained by that fact that RMSF effectively measures how much each atomic coordinate x
deviates from the average atomic position in the ensemble hxi. When conformations are con-

stantly shifted, x and hxi are scaled by the same factor and, as a result, their differences remain

unchanged. Therefore, static structural changes are essentially undetectable by RMSF. On the

other hand, RMSF is perfectly well suited for stochastic structural changes because, when

atomic displacements are caused by a random spherical vector, the scaling factors between

each x and hxi are noticeably different (AUC� 0.89 in Fig 2D–2F). Note that PCA follows a

similar trend, but with much less power likely due to the fact that we only consider the top 10

PCs of each protein trajectory in isolation for these analyses. One potential improvement for

the PCA approach (at least for the larger perturbation scenarios) could be to first treat the orig-

inal and perturbed structures as a single dataset and compute the top PCs over the

concatenated protein trajectories. We leave this exploration to the reader.

A slightly different intuition can be followed when looking at the results for the Elastic Net

and Neural Network classifiers. When atomic positions are shifted equally by a constant Carte-

sian vector, the atoms in the ROI for the perturbed proteins become (in some cases)

completely separable from those in the original structures. Therefore, an Elastic Net and Neu-

ral Network have no trouble assigning the true causal atoms non-zero effect sizes (AUC� 0.85

for both approaches in Fig 2A–2C). This observation is similar to previous works which show

coordinate-based regularization to be most effective when variation between 3D structures

occurs on a global scale and in the same direction on the unit sphere [13]. In the cases of ran-

dom spherical perturbations, the variance of the distribution of atoms in the ROI widens;

hence, the Elastic Net and Neural Network have a more difficult time identifying features that

differentiate two protein classes, unless those variations happen on a global scale (again see

Fig 2D–2F).

Most notably, SINATRA Pro performs consistently well in all simulation scenarios, identi-

fying both static and dynamic differences better than most of the competing baselines that we

considered (AUC� 0.96 in Fig 2). Although SINATRA Pro is not as adept as the Elastic Net

(AUC = 1.00 in Fig 2A–2C) at detecting static changes, it is able to robustly select significant

features that are ignored by RMSF. In addition, SINATRA Pro is much better than the Elastic

Net and Neural Network at identifying significant spherical perturbations that arise dynami-

cally between protein structures. We hypothesize that summarizing atomic positions with

Euler statistics is what enables SINATRA Pro to robustly capture both varying topology and

geometry, unlike its coordinate-based counterparts, regardless of whether those differences

occur in a constant or stochastic way.
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Detecting conformational changes in real protein systems

To examine SINATRA Pro’s ability to identify known structural changes of biological signifi-

cance in real data, we consider the following five protein systems (Table 2): (1) the wild-type

and Arg164Ser mutant of TEM β-lactamase; (2) the wild-type and Ile50Val mutant of HIV-1

protease; (3) the guanosine triphosphate (GTP) and guanosine diphosphate (GDP) bound

states of EF-Tu; (4) the wild-type and Met290Ala mutant of the Abl1 tyrosine protein kinase;

and (5) unbound and IBB-bound states of importin-β. We choose to analyze these particular

systems because they undergo varying degrees of conformational changes that have been well-

studied in the literature (again see Table 2). Here, we will treat these previously identified fea-

tures as ROIs, where the assumed “difficulty” for SINATRA Pro to statistically resolve struc-

tural signatures will be based on the stochasticity observed within each protein system.

Namely, it will be more difficult to perform feature selection on structural ensembles that are

highly dynamic as spurious fluctuations can interfere with detecting signal from the ROI. For

each protein system, three MD trajectories were generated. From each of these trajectories, ten

different series of structures are sampled, where each series is separated by 0.1 ns and each

structure in a series is separated by 1 ns. SINATRA Pro is then implemented on the ten differ-

ent series of structures extracted from the same trajectory data to mitigate the impact of vari-

ability between MD simulations (see Material and methods).

Atomic enrichments are illustrated in S5 and S6 Figs, while residue-level structural enrich-

ments are shown in Figs 3–5 and S7–S21 Figs. To quantitatively assess the probability that

SINATRA Pro is identifying any given ROI by chance, we implement a null region hypothesis

test to estimate a P-value and an approximate Bayes factor (BF) corresponding to our power to

reliably and robustly select certain features (Material and Methods). Reported results for the P-

values and BF calculations are based on all MD simulated structures and can be found in

Table 3. For comparison, we again implement the RMSF (Figs 3–5 and S12, S18, S20 and S21

Figs) and Elastic Net (S8, S11, S14, S16 and S19 Figs) baselines on all atomic positions with

correspondences within these same protein systems. Here, we use scatter plots to illustrate the

correlation between how each of these methods and SINATRA Pro rank the variable impor-

tance of the “pairable” atoms. All results presented in the main text reflect using SINATRA

Pro with parameters set to {r = 6.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search.

Note that we also provide additional figures assessing how robust SINATRA Pro is to differ-

ent configurations of protein meshes for these data in the Supporting Information. For exam-

ple, results analyzing SINATRA Pro with protein meshes constructed under different radius

cutoffs r values can be found in S22–S26 Figs. To ensure sampling consistency of the 100 ns

results, we performed sensitivity analyses based on protein structures drawn from different

lengths up to 200 ns MD simulation trajectories (S7, S10, S13, S15 and S17 Figs). Lastly, we test

Table 2. Detailed overview of the different protein systems analyzed in this study. The columns of this table are arranged as follows: (1) the name of each protein stud-

ied; (2) the corresponding Protein Data Bank (PDB) ID for each molecule [92]; (3) the known chemical change or mutation type that is considered; (4) the specific struc-

tural signatures that are known to be associated with each chemical change or mutation type; (5) the presumed difficulty level for SINATRA Pro to detect each structural

signature based on the homogeneity in shape variation between the wild-type and mutant proteins; and (6) references that have previously suggested some level of associa-

tion or enrichment between each structural change and the mutation of interest.

Proteinn PDB ID Chemical Change Structural Signature Difficulty Ref(s)

β-lactamase (TEM) 1BTL Arg164Ser Increased dynamics of O-Loop (Residues 163–178) Easy [21, 22]

HIV-1 Protease 3NU3 Ile50Val Reduced stability in the flaps (Residues 47–55) Medium [29, 31, 32]

EF-Tu 1TTT GTP Hydrolysis Increased flexibility of Domain 2 (Residues 208–308) Easy [37, 87, 88]

Abl1 3KFA Met290Ala Fluctuations in the DFG motif and displacement of helix αC Hard [2, 43, 89–91]

Importin-β 2P8Q IBB Release Uncoiling in the conformation of the superhelix Hard [45–47]

https://doi.org/10.1371/journal.pcbi.1010045.t002
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Fig 3. Real data analyses aimed at detecting structural changes in the O-loop of β-lactamase (TEM) induced by an R164S mutation. In this

analysis, we compare the molecular dynamic (MD) trajectories of wild-type β-lactamase (TEM) versus R164S mutants [21, 22]. For both phenotypic

classes, structural data are drawn from equally spaced intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset

parameter). Altogether, we have a final dataset of N = 2000 protein structures in the study: 100 ns long interval × 10 different choices δ = {0.0, 0.1, 0.2,

. . ., 0.9} ns × 2 phenotypic classes (wild-type versus mutant). This figure depicts results after applying SINATRA Pro using parameters {r = 6.0Å, c = 20,

d = 8, θ = 0.80, l = 120} chosen via a grid search. The heatmaps in panels (A)-(C) highlight residue evidence potential on a scale from [0–100]. A

maximum of 100 represents the threshold at which the first residue of the protein is reconstructed, while 0 denotes the threshold when the last residue is

reconstructed. Panel (A) shows the residue-level evidence potential when applying SINATRA Pro to the whole protein, while panels (B) and (C)
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the robustness of SINATRA Pro when the protein structures have been aligned in two different

ways (Material and Methods). In the first, we align protein structures by minimizing the root-

mean-square distance (RMSD) between their atoms (which we focus on in the main text);

while, in the second, we perform sequence-independent structural alignment where we implic-
itly normalize the 3D protein structures by rotationally aligning their topological summary sta-

tistics (i.e., alignment without taking into correspondence between structures). Figures

comparing the correlation between SINATRA Pro results on the RMSD pre-aligned protein

structures versus using the topological rotational alignment can be found in S27 and S28 Figs.

Conformational changes in the active site and regulatory O-loop of

Arg164Ser TEM β-lactamase

Previous studies suggest that the Arg164Ser mutation in β-lactamase (TEM) induces structural

changes in a highly plastic region known as the O-loop (residues 163–178), which plays a

illustrate results when strictly applying the SINATRA Pro pipeline to atoms in residues 65–230 and 65–213, respectively. Annotated regions of interest

are color coded and correspond to the shaded residue windows in panel (D). Panel (D) shows the mean association metrics (and their corresponding

standard errors) computed for each residue within each analysis (see Material and methods). Here, the overlap shows the robustness of SINATRA Pro

to identify the same signal even when it does not have access to the full structure of the protein. The final row plots the correlation between the

SINATRA Pro association metrics and the root mean square fluctuation (RMSF) for all atoms with correspondences in the (E) whole protein, (F)

fragment 65–230, and (G) fragment 65–213.

https://doi.org/10.1371/journal.pcbi.1010045.g003

Fig 4. Real data analyses recover structural changes in the flap region of HIV-1 protease driven by a Ile50Val mutation. In this analysis, we

compare the molecular dynamic (MD) trajectories of wild-type HIV-1 protease versus Ile50Val mutants (i.e., within residues 47–55). For both

phenotypic classes, structural data are drawn from from equally spaced intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ,

where δ is a time offset parameter). Altogether, we have a final dataset of N = 2000 proteins in the study: 100 ns long interval × 10 different choices δ =

{0.0, 0.1, 0.2, . . ., 0.9} ns × 2 phenotypic classes (wild-type versus mutant). This figure depicts results after applying SINATRA Pro using parameters

{r = 6.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. The heatmaps in panels (A) and (B) highlight residue evidence potential on a scale

from [0–100]. A maximum of 100 represents the threshold at which the first residue of the protein is reconstructed, while 0 denotes the threshold when

the last residue is reconstructed. Panel (A) shows residue-level evidence potential when applying SINATRA Pro to chain A, while panel (B) depicts

results for chain B. Annotated regions of interest are color coded and correspond to the shaded residue windows in panel (C). Panel (C) shows the

association metrics (and their corresponding standard errors) computed for each residue in chains A and B, with and without the 50th residue’s side

chain being included in the analysis (see Material and methods). Here, the overlap shows the robustness of SINATRA Pro for identifying the same

signal even when it does not have access to the full structure of the protein. The final row plots the correlation between the SINATRA Pro association

metrics and the root mean square fluctuation (RMSF) for all atoms with correspondences in (D) chain A and (E) chain B, respectively. Highlighted are

all atoms with correspondences found in regions of the protein corresponding to the fulcrum (brown), elbow (purple), flap (blue), cantilever (red), and

I/V50 (yellow) [29, 31, 32].

https://doi.org/10.1371/journal.pcbi.1010045.g004
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Fig 5. Real data analyses identify enrichment in the N-terminal pocket of the Abl1 Tyrosine protein kinase due to a M290A mutation in the αC

helix. In this analysis, we compare the molecular dynamic (MD) trajectories of wild-type Abl1 versus M290A mutants [2, 43, 89–91]. For both

phenotypic classes, structural data are drawn from equally spaced intervals over a 150 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] × 1.5 ns + δ,

where δ is a time offset parameter). Altogether, we have a final dataset of N = 3000 proteins in the study: 150 ns long interval × 15 different choices δ
= {0.0, 0.1, 0.2, . . ., 1.4} ns × 2 phenotypic classes (wild-type versus mutant). This figure depicts results after applying SINATRA Pro using parameters

{r = 6.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. The heatmaps in panels (A)-(C) highlight residue evidence potential on a scale

from [0–100]. A maximum of 100 represents the threshold at which the first residue of the protein is reconstructed, while 0 denotes the threshold

when the last residue is reconstructed. Panel (A) shows residue-level evidence potential when applying SINATRA Pro to the whole protein, while

panels (B) and (C) illustrate results when strictly applying the SINATRA Pro pipeline to atoms in residues 242–502 and 242–315, respectively.

Annotated regions of interest are color coded and correspond to the shaded residue windows in panel (D). Panel (D) shows the association metrics
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major role in the regulation of enzymatic activity [21, 22]. In wild-type β-lactamase, Arg164

makes a salt bridge with Asp179 that “pins down” the O-loop. Mutating Arg164 to serine

breaks this salt bridge and disrupts a vast network of electrostatic and hydrogen interactions,

dramatically affecting the dynamical behavior of the area surrounding the loop, parts of the

active site, and potentially other protein domains [23]. These dynamical rearrangements con-

fer multi-drug resistance to bacteria expressing TEM Arg164Ser, allowing them to hydrolyze a

large number of cephalosporin antibiotics such as ceftazidime, cefixime, and cefazolin, in lieu

of hydrolyzing ampicillin [24]. Given the enormous burden of multiresistant bacteria on pub-

lic health, it is important that we understand the molecular mechanisms behind the structural

rearrangements responsible for the transition to the cephalosporinase phenotype in order to

orient future antibiotic design. Although previous studies have probed these rearrangements

with varying approaches [23], the full mechanism remains elusive, highlighting the need for

novel sampling and analytical methods that can detect the very slight changes in TEM’s active

site topology that lead to drug resistance in the Arg164Ser and similar mutants. To help bridge

this gap in understanding, we ran all-atom MD simulations of unbound TEM-1 and its

Arg164Ser mutant, generated by homology modeling, and analyzed the results using SINA-

TRA Pro, RMSF, and the Elastic Net baselines. Here, we expect SINATRA Pro to reveal new

insights about the molecular mechanisms underlying the specificity shift precipitated by the

Arg164Ser mutation, due its ability to detect both minute static and stochastic changes in

topology that elude traditional methods.

(and their corresponding standard errors) computed for each residue within each analysis (see Material and methods). Here, the overlap shows the

robustness of SINATRA Pro to identify the same signal even when it does not have access to the full structure of the protein. The final row plots the

correlation between the SINATRA Pro association metrics and the root mean square fluctuation (RMSF) for all atoms with correspondences in the

(E) whole protein, (F) fragment 242–502, and (G) fragment 242–315.

https://doi.org/10.1371/journal.pcbi.1010045.g005

Table 3. Null hypothesis experiment to evaluate SINATRA Pro’s ability to find regions of interest (ROI) in each of the proteins analyzed in this study. Here, we

assess how likely it is that SINATRA Pro finds the region of interest (ROI) by chance. These ROIs include: (i) the O-loop (residues 163–178) in TEM; (ii) the flap region

(residues 47–55) in HIV-1 protease; (iii) Domain 2 (residues 208–308) in EF-Tu; and (iv) the DFG motif (residues 381–383) in Abl1. Note that protein structures were

only analyzed if they contained an entire ROI. For example, in the context of Importin-β, the superhelix includes the entire structure and so we do conduct a null analysis.

In this experiment, to produce the results above, we generate “null” regions on each protein using a K-nearest neighbors (KNN) algorithm on different atoms as random

seeds [84], and exclude any generated regions that overlap with the ROI. Next, for each region, we sum the association metrics of all its atoms. We compare how many

times the aggregate scores for the ROI are higher than those for the null regions. These “P-values,” and their corresponding calibrated Bayes factors (BF) when the com-

puted P< 1/e, are provided above. Note that P-values less than the nominal size 0.05 and BFs greater than 2.456 are in bold. Results above are based on SINATRA Pro

using parameters {c = 20, d = 8, θ = 0.80, l = 120} while varying the radius cutoff parameter r for mesh construction on each protein structure.

r = 2 Å r = 4 Å r = 6 Å
Protein ROI Fragment P-value Bayes Factor P-value Bayes Factor P-value Bayes Factor
.5TEM .5O-Loop Whole 5.95 × 10−1 — 3.35 × 10− 4 137.121 5.63 × 10−2 2.270

65–230 1.20 × 10−1 1.447 4.16 × 10− 2 2.783 6.85 × 10−2 2.004

65–213 7.22 × 10− 4 70.438 7.22 × 10− 4 70.438 7.22 × 10− 4 70.438

.5HIV-1 .5Flap Chain A 2.33 × 10−1 1.084 4.03 × 10− 2 2.841 2.95 × 10−1 1.022

Chain B 8.14 × 10− 4 63.554 8.14 × 10− 4 63.554 8.14 × 10− 4 63.554

EF-Tu Domain 2 Whole 9.30 × 10− 4 56.657 9.30 × 10− 4 56.657 9.30 × 10− 4 56.657

Abl1 DFG Motif Whole 1.94 × 10−1 1.157 5.38 × 10−1 — 8.86 × 10− 3 8.783

242–502 1.54 × 10−1 1.279 2.50 × 10− 4 177.614 2.50 × 10− 4 177.614

https://doi.org/10.1371/journal.pcbi.1010045.t003
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We compare the MD trajectories of wild-type and mutant TEM using aligned structures of

the whole protein (Fig 3A and S5(A) Fig), residues 65–230 (Fig 3B and S5(B) Fig), and residues

65–213 (Fig 3C and S5(C) Fig. In all three cases, statistical association measures from SINA-

TRA Pro suggest that there are indeed significant structural changes in the O-loop (residues

163–178) relative to the rest of the regions in the protein (Fig 3D), especially on residues 164

and 176–179, which are involved in the electrostatic interaction networks disrupted by the

arginine to serine substitution. This ROI is not as prominently identified by the RMSF (see

scatter plots in Fig 3E–3G) or the Elastic Net baselines (S8(B)–S8(D) Fig). Alternatively, all

three approaches were able to identify the region harboring residues 213–230, which under-

goes a noticeable dynamic shift over the course the MD trajectory. These results are consistent

with our controlled simulations, which showed that the only time that RMSF and the Elastic

Net both exhibit relatively decent power for stochastic changes is when large structural devia-

tions are introduced (e.g., see power comparisons in Fig 2F).

To more thoroughly assess if the Arg164Ser mutation contributes to the detected changes,

we removed the Arg/Ser164 sidechain, as well as the whole residue (backbone and side chain),

from our analyses. With the Arg/Ser164 atoms removed, association metrics of Arg/Ser164

and residues 176–179 diminished, which implies that signals pertaining to the dynamical con-

tributions from the electrostatic interaction networks mediated by the side-chains of Arg164

and Glu179 are lost due to the missing topology. However, enrichment in theO-loop persisted,

affirming that the identified topological differences are not just due to changes in these atoms.

The null region test showed that the O-loop is indeed a robust significant structural feature in

TEM, with P = 5.63 × 10−2 and BF = 2.27 when the whole TEM protein is analyzed (Table 3

with r = 6.0 Å), P = 6.85 × 10−2 and BF = 2.00 when residues 65–230 are analyzed, and

P = 7.22 × 10−4 and BF = 70.4 when residues 65–213 are analyzed. We hypothesize that the

ROI P-value is larger than the nominal 0.05 level for analyses with the whole structure and res-

idues 65–230 because movement in the O-loop occurs jointly with moderate fluctuations in

the region harboring residues 210–230. Overall, when we limit our scope to just residues 65–

213, the region test robustly rejects the null hypothesis of the O-loop being identified by

chance. It is worth noting that these results also highlight that there can be variations in the

strength of signal detected by SINATRA Pro depending on if one carries out analyses on

whole protein structures versus on different fragments. These variations are most likely due to

bias caused by different structural segments having different centers of mass and reference

points during alignment. This will cause differences in the topological summary statistics that

are computed for each structure and will lead to slightly varying signals in the biophysical sig-

natures detected in downstream SINATRA Pro analyses.

Our results are particularly interesting for the TEM β-lactamase example because they high-

light the importance of codon positions 164 and 179 in controlling O-loop dynamics, which

contributes to modulating activity. Moreover, SINATRA Pro correctly captures the topological

effects of the disruption of the electrostatic network formed by Arg164, Arg178, and Asp179

due to the Arg164Ser mutation. In addition to reaffirming previously observed phenomena,

SINATRA Pro also identified meaningful shifts in the 210–230 segment in response to the

resistance-granting Arg164Ser mutation. This suggests that the topology of the 210–230 seg-

ment, which forms the upper boundaries of the active site, is tightly correlated with shifts in

the O-loop. Our results suggest an additional potential mechanism for activity modulation by

O-loop fluctuations, where topological changes propagate from regulatory loops to parts of the

active site, suggesting potential allosteric couplings between the O-loop and the 210–230 seg-

ment. These results function as a testament to SINATRA Pro’s capacity for distinguishing

meaningful topological differences from the random fluctuations introduced by disorder-

inducing mutations such as Arg164Ser, which obfuscates traditional analyses pipelines.
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Changes in the flap region of HIV-1 protease driven by the Ile50Val

mutation

Our next analysis focuses on the HIV-1 protease, an enzyme that is essential for viral reproduc-

tion and is a well-established target for controlling HIV infections [25]. In vivo, the protease

cleaves the HIV polyproteins Gag and Gag-Pol at multiple sites, creating the mature protein

components of an HIV virion [26]. Over the past 25 years, ten HIV protease inhibitors have

been approved for human use by the Food and Drug Administration (FDA), with many more

undergoing clinical trials [27]. Similar to TEM, point mutations in the protease gene lead to

products that are considerably less susceptible to inhibition by current drugs, generating drug-

resistant HIV variants that pose a considerable risk [28]. Many hypotheses have been proposed

for the molecular mechanisms underlying the most common resistance-granting mutations,

and recent studies have used sophisticated geometric analyses to classify conformational

ensembles of mutant structures based on their influences on the dynamics [29]. Structurally,

the HIV protease forms a homodimer with highly ordered domains [30]. Most resistance-

granting mutations, such as the Ile50Val substitution, are thought to mainly affect the cross-

correlated fluctuations of the flaps (residues 47–55), imparting minute changes to the fulcrum

and lateral topology [29, 31, 32]. These findings suggest that mutations such as Ile50Val effec-

tively rewire residue communication networks, significantly reducing its affinity for binding

the inhibitor. These structural rearrangements lead to surprisingly nuanced changes to the

topology, which as discussed previously, require refined quantitative methods to be detected.

To test SINATRA Pro’s performance in detecting these small changes, we ran all-atom molec-

ular dynamics simulations of “protein and ligand complex in water” systems containing HIV

Protease or its Ile50Val mutant complexed with the antiviral drug Amprenavir [33]. We then

followed that with analysis using either SINATRA Pro, RMSF, or the Elastic Net, with the

objective of measuring each routine’s capacity for detecting and reporting the topological

changes induced by the mutation.

Even though MD simulations are performed on the protein’s native dimeric form, chains A

and B were separately selected and aligned before being input into each statistical method to

avoid alignment bias due to inter-chain orientation. This focuses SINATRA, RMSF, and the

Elastic Net on identifying the structural differences within each chain (e.g., Fig 4A and 4B and

S5(D) and S5(E) Fig). However, note that results for the analyses on the dimeric structures can

be found in the Supporting Information (S9 Fig). Overall, our analyses reveal that chains A

and B seem to respond asymmetrically to the backbone effects of the mutation within the time-

frame of the simulations (Table 3). This is not unexpected, as during the course of the simula-

tions, the inhibitor Amprenavir affects dynamics asymmetrically by interacting more

significantly with residues of Chain A. The change in RMSF for most of the residues in the flap

are shown to be greater than 0.2 Å for chain A and smaller than 0.2 Å for chain B, indicating

that the flap became more dynamic in the MD simulations when the Ile50Val mutation was

introduced into chain A (Fig 4D–4E and S20(B) Fig). Meanwhile, the Elastic Net shows larger

nonzero coefficients in the fulcrum for chain A than in chain B (S11(A) Fig).

While association metrics from SINATRA Pro identify structural changes in the flap for both

chains (Fig 4C), they also capture the geometric shifts within the fulcrum for chain A. We

hypothesize that the coexistence of the two changes (flap and fulcrum) in chain A contributes to

a smaller peak (i.e., a weaker signal) in the association metrics produced by SINATRA Pro in

the flap for chain A than in chain B. This asymmetry is confirmed by the null test, as topological

changes in the flap appear to be less statistically significant in chain A (P = 2.95 × 10−1 and

BF = 1.022) than in chain B (P = 8.14 × 10−4 and BF = 63.554) for this MD simulation data. Sim-

ilar to β-lactamase, we assess if the Ile50Val mutation contributes to these detected topological

PLOS COMPUTATIONAL BIOLOGY Topological method for discovering signatures in protein dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010045 May 2, 2022 15 / 42

https://doi.org/10.1371/journal.pcbi.1010045


changes. Upon removing the Ile/Val50 side-chain, the signal observed by SINATRA Pro in the

flap drops with the missing topology, but still displays a significant peak relative to the rest of the

protein, which implies that the change in association scores is not solely due to the structural dif-

ferences upon introducing the Ile50Val mutation (Fig 4C). Although SINATRA Pro clearly

identified the effects of the isoleucine to valine substitution in flap topology and fulcrum dynam-

ics, SINATRA Pro did not detect other previously elucidated structural signatures of the muta-

tion, such as lateral extension [29]. As the baseline approaches also failed to identify these

features, it is likely that their absence stems from sampling limitations inherent to the brute-

force and relatively short production dynamics used to generate the conformational datasets.

The HIV protease system presents a good test case for SINATRA Pro due to its relative

structural simplicity and the symmetry of the dimer. Encouragingly, SINATRA Pro’s results

closely match those observed in previous studies that sought to characterize deltas in the back-

bone dynamics of the HIV protease in response to resistance-granting mutations [29].

Domain 2 in EF-Tu undergoes structural changes upon GTP hydrolysis

In our third analysis, we focus on EF-Tu (elongation factor thermo unstable), which is a G-

protein that is responsible for catalyzing the binding of aminoacyl-tRNAs to the ribosome in

prokaryotes. After binding GTP and a given aa-tRNA, EF-Tu strongly interacts with the ribo-

somal A site [34]. Following productive aa-tRNA binding, EF-Tu is released upon GTP hydro-

lysis [35]. The resultant GDP molecule is exchanged for GTP with EF-Ts (elongation factor

thermo stable), allowing elongation to continue. Structurally, EF-Tu is composed of a Ras-like

catalytic domain (RasD), common to G-proteins, and two beta-barrel domains (D2 and D3)

[36]. Previous studies probing dynamic fluctuations of GTPases have identified that, after

hydrolysis (in the GDP-bound state), EF-Tu shows considerably increased flexibility of back-

bone atoms belonging to Domains 2 and 3, which are downstream of the nucleotide binding

site in RasD [37]. These fluctuations are thought to be correlated with conformational rear-

rangements required for the exchange of GDP for GTP [37]. The conformational rearrange-

ments are thought to occur on multiple millisecond timescales [37], presenting an obstacle for

their study using all-atom molecular dynamics simulations. While the full relaxations associ-

ated with the change in ligand chemistry are challenging to sample effectively, we expect

SINATRA Pro to have the ability to detect subtle topological differences arising from rear-

rangements of residue interacting networks in response to the chemical change in the ligand.

To compare our method’s performance to that of alternative techniques (S12 and S14 Figs),

we run SINATRA Pro, RMSF, and the Elastic Net on the whole structure (S5(F) and S12A(A)

Figs) and fragment windows limited to residues 208–308 (S5(G) and S12(B) Figs) and 311–405

(S5(H) and S12(C) Figs). Note that all figures displaying the enrichment of structural features

are projected onto the GTP-bound structures. The evidence scores from SINATRA Pro reveal

significant structural changes at Domain 2, with minimal structural changes in the majority of

the Ras-like Domain, which agrees with findings in previous studies [37]. The null region test

shows that Domain 2 is indeed an important structural feature in EF-Tu identified by SINA-

TRA Pro with P = 9.30 × 10−4 and BF = 56.657, which robustly rejects the null hypothesis of

the ROI being identified by chance (Table 3).

The chemical changes associated with the substitution of GTP with GDP in the EF-Tu sys-

tem are thought to have significant impacts on backbone topology, making this a particularly

interesting use case for SINATRA Pro. Despite the challenges associated with the considerable

noise inherent to the complex EF-Tu system, SINATRA Pro succeeded in identifying the

meaningful topological deltas that are thought to be important for function and that were elu-

cidated in previous studies.
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N-pocket enlargement and αC helix displacement in Met290Ala Abl1

Protein tyrosine kinases (TKs) such as Abl1 and Src play significant roles in eukaryotic life, as

phosphorylation of tyrosine residues in key proteins act as on/off switches that regulate a

plethora of cellular processes and allow for efficient message passing [38]. Deregulation of the

activity of these enzymes due to mutations is usually associated with severe forms of cancer

and other chronic diseases, posing a grave public health problem [39]. Due to their physiologi-

cal importance, the enzymatic activity of tyrosine kinases is tightly regulated by a series of

structural elements that fluctuate among metastable conformations between the active and

inactive states [40]. This highly dynamic behavior has been exploited for the development of

TK inhibitors, such as the widely-known anticancer drug Imatinib, which exclusively targets

the “DFG out” state of Abl1 [40–42]. In this conformation, the phenylalanine residue of the

region known as the DFG motif (comprised of Asp381, Phe382, and Gly383) occupies Abl1’s

ATP binding site, preventing substrate binding and inactivating the enzyme [43]. Other TK

inhibitors such as Dasatinib are capable of binding to Abl1’s “DFG-in” conformation, in

which the positions of the aspartic acid and phenylalanine side-chains are inverted with

respect to their positions in DFG-out conformations, activating the enzyme (i.e., making it

capable of productive phosphorylation) [42]. The transition from the DFG-in to the DFG-out

state is thought to happen on the multi-millisecond timescale, which presents a challenge for

capturing it with unbiased atomistic MD simulations [43]. As a workaround, previous studies

have used an engineered Abl1 mutant, Met290Ala, in which the energy barrier for the DFG

flip is considerably reduced, as the steric effect presented by the bulky methionine is removed

[2]. Although the sampling of the entire DFG flip is a rare event that happens in the milisecond

timescale and thus outside of the scope of this work, we hypothesize that the Met290Ala muta-

tion should induce minute topological changes around the DFG motif even in shorter simula-

tions, due to the removal of the steric hindrances associated with the bulky methionine and

that SINATRA Pro is capable of detecting these changes in contrast to the wild-type

dynamics. To test this hypothesis and further measure our method’s capacity for detecting

localized topological changes, we ran molecular dynamics simulations on the TK domain of

the unbound state of Abl1 and its Met290Ala mutant. Specifically, we run SINATRA Pro,

RMSF, and the Elastic Net on the whole structure (Fig 5A and S6(A) Fig), fragments limited to

residues 242–502 (Fig 5B and S6(B) Fig), and the N-lobe spanning residues 242–315 (Fig 5C

and S6(C) Fig).

Since we only simulated the kinase domain of Abl1, both the N-terminal and C-terminal

domains are shown to be highly dynamic as they are no longer stabilized by the mass of the

entire protein. As a result, whole structural changes are overshadowed by large and noisy fluc-

tuations, and competing methods (Elastic Net and RMSF) have a difficult time identifying

enrichment in the DFG motif (S16(A) and S21A(A) Figs). Nonetheless, SINATRA Pro is able

to identify the enrichment in the DFG motif regardless of the inclusion or exclusion of the N-

and C-terminal (Fig 5). The signal in the DFG motif ROI becomes better statistically resolved

when we remove some of the structural noise and concentrate on regions spanning residue

fragments 242–502 and 242–315 (i.e., the N-lobe). The null region test results for SINATRA

Pro show that the DFG motif is indeed an important structural feature in Abl1: P = 8.86 × 10−3

and BF = 8.783 for the whole structure analysis (i.e., including the termini) and P = 2.50 × 10−4

and BF = 178 for the analysis on residues 242–502 (i.e., excluding the termini), both of which

reject the null hypothesis of the ROI being identified by chance (Table 3). In these analyses, the

structural differences around the DFG motif between unbound Abl1 and its Met290Ala

mutant were large enough for both RMSF and the Elastic Net to have power. As a comparison,

SINATRA Pro not only robustly identifies residues associated with the greater N-pocket cleft
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as being statistically significant (i.e., the DFG motif), but also the αC helix spanning residues

281–293 as a moderately enriched region (Fig 5).

From the SINATRA Pro output, we can postulate hypotheses regarding the involvement of

specific codon positions outside of the DFG motif in the concerted motions that culminate in

the flip, such as the two peaks of signal surrounding it (residues 350–360 and 390–400). These

interesting results show that even short simulations can prove useful for gaining mechanistic

insights regarding long-timescale macromolecular relaxations, as long as the heuristics

employed to analyze the resulting trajectories are capable of detecting the often minute signals

associated with these topological shifts.

Opening of superhelix differentiates unbound and IBB-bound Importin-β
Our last analysis focused on the karyopherin Importin-β, an essential member of the nuclear

import complex in eukaryotes, as it mediates the transportation of cargo from the cytosol to

the nucleus [44]. Molecular recognition by Importin-β often requires the cooperative binding

of molecular adaptors that recognize and bind to nuclear localization sequences (NLS)—struc-

tural motifs present in cargo destined for the nucleus [44]. Structurally, Importin-β is orga-

nized as a superhelix composed of up to 20 tandem HEAT repeats, each of which contain two

antiparallel alpha helices linked by a turn [45]. This highly ordered structure is further stabi-

lized by interactions with Importin-β-binding (IBB) domains of transport adaptors such

Importin-α or Snurportin 1, which attach very strongly to Importin-β [46]. The release of IBB

peptides after successful transport across the nuclear pore leads to large structural rearrange-

ments and fluctuations that are propagated across most of Importin-β’s backbone [47].

Although not difficult to detect with traditional analysis pipelines, such as calculating per-resi-

due root-mean-square fluctuations or the backbone’s radius of gyration, the pseudo-global

nature of these rearrangements is diametrically opposite to most of the previously explored

examples, presenting an important test for SINATRA Pro. Considering this, we ran MD simu-

lations of unbound and IBB-bound Importin-β and, as with the previous examples, analyzed

the resulting trajectories with SINATRA Pro to compare against standard methods. The struc-

tural features identified are projected onto the IBB-bound form (S6(D) and S18A(A) Figs).

Association metrics from SINATRA Pro, RMSF, and the Elastic Net all indicate large-scale

conformational changes occur upon IBB release that involve the majority of the importin-β
structure (S18(B), S18(C) and S19 Figs).

Since Importin-β functions as a molecular spring due to its supercoiled structure and exten-

sive interactions with targets for transport, the sudden removal of the bound IBB domain to

generate the unbound structure leads to extensive and drastic fluctuations across most of the

backbone during production dynamics, originating from multiple highly-correlated nodes in

each HEAT repeat. These drastic rearrangements translate to significant deltas in the topology

and per-residue fluctuations that are readily detected by all tested methods. Importantly, the

SINATRA Pro output replicates the expected results for the IBB bound/unbound Importin-β
system, demonstrating the method’s capacity for picking up relevant structural determinants

not only for localized changes, but also for backbone-wide large-scale fluctuations.

Discussion

There is a growing library of computational methods that leverage geometry and topology to

study aspects of both protein structure and function. For example, recent work has used shape

retrieval techniques from computer vision to identify distant protein homologs [48, 49]; while

others are actively studying the utility of topology-based and tessellation-based protein repre-

sentations in various deep learning tasks for accurate protein structure prediction [50]. In this
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paper, we introduced SINATRA Pro: a topological data analytic approach designed to extract

biologically-relevant structural differences between two protein ensembles. Through an exten-

sive benchmark simulation study, we assessed the utility and statistical properties of SINATRA

Pro against commonly used methods in the field. Here, we showed that our proposed frame-

work can robustly identify both static and dynamic structural changes that occur between pro-

tein ensembles. We also highlighted that, unlike other standard approaches in the field,

SINATRA Pro does not require atom-by-atom correspondences between structures and thus

can be implemented using all atomic information that is available, rather than being limited to

atomic features that are conserved over side-chain substitutions. With real MD data, we used

SINATRA Pro to analyze five different protein systems and demonstrated its ability to identify

known regions of interest that have been validated by previous experimental and computa-

tional studies, as well as reveal novel structural features that are also likely to be biologically-

relevant according to evidence in the literature. Overall, these results show the promise of

SINATRA Pro as a hypothesis generation tool that practitioners can use to design more

informed experiments for answering downstream scientific questions (e.g., whether a muta-

tion or chemical change “induces” a specific structural change).

There are many potential extensions to the SINATRA Pro pipeline. First, in its current

form, SINATRA Pro treats all atomic features as being equally important a priori to the pheno-

type of interest. One particularly interesting extension of the method would be to up- or

down-weight the contributions of different types of atomic features (e.g., carbons, hydrogens,

or oxygens) or residues (e.g., serine versus arginine) to more accurately represent the topology

of specific inter-atomic connections such as hydrogen and covalent bonds. In practice, this

would require making such annotations and deriving topological summary statistics of protein

structures based on a weighted Euler characteristic transform [51]. Another natural extension

would be to apply the SINATRA Pro pipeline to other data types used to study variation in 3D

protein structures such as cryogenic electron microscopy (cryo-EM), nuclear magnetic reso-

nance (NMR) ensembles, and X-ray crystallography (i.e., electron density) data. Previous work

has already shown that topological characteristics computed on tumors from magnetic reso-

nance images (MRIs) have the potential to be powerful predictors of survival times for patients

with glioblastoma multiforme (GBM) [17, 51] and other cancer subtypes [52–54]; however, it

has also been noted that the efficacy of current topological summaries decreases when hetero-

geneity between two phenotypic classes is driven by minute differences [13]. For example,

cryo-EM images can look quick similar even for two proteins harboring different mutations.

SINATRA Pro’s improved ability to capture inter-class variation is driven by local fluctuations

in shape morphology, so it would be interesting to see if our proposed pipeline could offer

more resolved insights for these types of applications.

URLs

SINATRA Pro software, https://github.com/lcrawlab/SINATRA-Pro; Schrödinger Desmond

software, https://www.schrodinger.com/products/desmond; GROMACS software, https://

www.gromacs.org; Visual Molecular Dynamics (VMD) software, https://www.ks.uiuc.edu/

Research/vmd/; MDAnalysis software, https://www.mdanalysis.org; UCSF Chimera software,

https://www.cgl.ucsf.edu/chimera/.

Material and methods

Molecular dynamics simulations

The protein structure data used in the current study are a result of molecular dynamic (MD)

simulations. For large systems (i.e., IBB-bound Importin-β, unbound Importin-β) and those
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containing small-molecule ligands (i.e., wild-type HIV Protease, Ile50Val HIV protease, GTP-

bound EF-Tu, and GDP-bound EF-Tu), we used Schrödinger’s Desmond (release 2020–1)

[55] to run three independent 100 nanosecond (ns) simulations for each system. This decision

is rooted in Desmond’s high performance when dealing with hundreds of thousands of atoms,

and the extensive validation of the small-molecule parameters contained in the OPLS3e force-

field [56]. The systems were built within a dodecahedron box extending 1 nanometer (nm)

beyond the solute in all three dimensions and solvated with water molecules using the SPC

model [57]. Charges were neutralized by replacing a varying number of solvent molecules with

sodium and chloride ions. Before production dynamics, all systems were relaxed and equili-

brated with Desmond’s standard relaxation protocol, which first performs energy minimiza-

tion with 50 kcal/mol/Å2 restraints on the protein’s heavy atoms, followed by an extensive

equilibration protocol. This protocol is detailed below:

1. NVT equilibration at 10 K for 12 ps

2. NPT equilibration at 10 K for 12 ps

3. NPT equilibration at 300K with harmonic restraints on the protein’s heavy atoms for 120

ps

4. NPT equilibration at 300 K, unrestrained, for 240 ps,

where NVT denotes constant temperature and volume and NPT denotes constant temperature

and pressure. After equilibration, unrestrained NPT production simulations were conducted

at 300 K and 1 atm for 100 ns for each system, to ensure consistency among the trajectories.

Time steps for all simulations were set to their default values: 2:2:6 fs (bonded:near:far).

For comparatively small systems without ligands (i.e., wild-type TEM, Arg164Ser TEM,

wild-type Abl1, and Met290Val Abl1), we used GROMACS (release 2018–2) [58] to run three

independent 100 ns simulations for each system (150 ns for Abl1). Simulations were con-

ducted with a 2 fs time step using the Amberff14SB force-field [59] and the TIP3P water model

[57]. As with the Desmond simulations, the systems were built within a dodecahedron

box and charges neutralized by replacing a number of solvent atoms with sodium and chloride

ions. For each system, energy was minimized using a steepest-descent algorithm until the max-

imum force on any given atom was less than 1000 kJ/mol/min. Solvent atoms were equili-

brated in sequential 0.5 ns NVT and NPT simulations with solute heavy atoms restrained by a

spring constant of 1,000 kJ/mol/nm2 using the LINCS algorithm [60]. After equilibration, pro-

duction dynamics were conducted sans the position restraints. All simulations were conducted

at 300 K and 1 atm. Lastly, using Visual Molecular Dynamics (VMD) (version 1.9.3)

[61], we converted all trajectories employed in this study to a DCD file format and stripped

solvent atoms to facilitate downstream computational analyses.

Protein structure alignment

In the current study, protein structures are aligned in one of two ways. In the first procedure,

we align protein structures by minimizing the root-mean-square distance (RMSD) between

the atoms on their backbone alpha-carbons (which we denote in shorthand by Cα). The first

frame of the MD simulation is chosen as the reference structure. Next, all other frames (i.e.,

the mobile and fluctuating structures) in the dataset are aligned to this reference frame by (i)
first superposing the center of mass of the Cα atoms to the same origin and then (ii) minimiz-

ing the RMSD rotation matrix. This calculation is performed using the MDAnalysis soft-

ware package in Python (see Data and Software Availability) [6, 62–64]. For inter-class

alignment when comparing protein class A to class B (e.g., mutants versus wild-type), all
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frames in the trajectory of class A and B are aligned to the first frame in the trajectory of class

A. Note that, in our current study, there is only one point mutation in each protein. In this

case, determining correspondences between sequences in the trajectories of class A and B is

trivial because mutated residues in the mutant structures just correspond to the un-mutated

residue in the wild-type (e.g., Arg164 in WT versus Ser164 in Arg164Ser mutant in β-lacta-

mase). In the controlled simulation experiments, perturbed structures were obtained by

directly modifying the atomic coordinates of the pre-aligned proteins; therefore, the perturbed

structures do not need further alignment since their unperturbed regions remain aligned after

the controlled modifications.

In the second alignment procedure, we perform sequence-independent structural align-

ment where we implicitly normalize the 3D protein structures by rotationally aligning their

topological summary statistics. To carry out this alignment procedure, we first take each pair

of protein structures and superpose the center of mass of the Cα atoms to the same origin.

Next, we compute topological summary statistics over the mesh representation of each struc-

ture in m = 500 spherically uniformly distributed directions (see the remaining sections of

Material and Methods). We take the squared Euclidean distance between any two directions to

be the cost needed to align structures via their topological summaries; and we determine the

“optimal” direction alignment by finding the rotation that minimizes the cumulative cost of

aligning all directional pairs between proteins. Here, we use the random sample consensus

(RANSAC) method to determine the rotational matrix that aligns the angle between any two

directions to be within an error threshold of 0.9 [65]. More specifically, we require that the dot

product between two directions has to be larger than 0.9 to be considered aligned in RANSAC.

Figures comparing the correlation between SINATRA Pro results on the five real protein sys-

tems using the RMSD pre-alignment versus using the topological rotational alignment can be

found in the Supporting Information (S27 and S28 Figs). There are large agreements between

both alignment procedures in almost all protein systems. The one exception being HIV-1 pro-

tease where we believe that the difference in results is driven by the fact that the small dynamic

topology of protein makes it difficult to identify optimal stable reference signatures for align-

ment in summary statistic space.

Converting protein structure data to 3D Mesh representations

To convert protein structures into a mesh representation, in the first step of the SINATRA Pro

pipeline, we make use of a technique which we refer to as a “simplicial construction” (Fig 1B).

In this procedure, we treat the atomic positions for the protein as vertices on a 3D shape or

surface. First, we draw an edge between any two atoms if their Euclidean distance is smaller

than some radius cutoff r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we fill in all of the tri-

angles (or faces) formed by these connected edges. The resulting triangulated meshes are then

normalized to the unit sphere, which means that the coordinates for all atoms are scaled with

respect to the mesh with the largest radius. We treat the normalized meshes as simplicial com-

plexes which we then use to compute topological summary statistics.

Topological summary statistics for protein Mesh representations

Adopted from its predecessor [13], the second step of the SINATRA Pro pipeline uses a tool

from integral geometry and differential topology called the Euler characteristic (EC) transform

[14–17]. As a brief overview of this approach, given the mesh representation M of a protein

structure, the Euler characteristic is an accessible topological invariant defined as

w ¼ #VðMÞ � #EðMÞ þ #FðMÞ; ð1Þ
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where the collection f#VðMÞ; #EðMÞ; #FðMÞg denotes the number of vertices (atoms),

edges (connections between atoms), and faces (triangles enclosed by edges) of the mesh,

respectively. An EC curve wnðMÞ tracks the change in the Euler characteristic with respect to a

given filtration of length l in some direction ν. Theoretically, this is done by first specifying a

height function hν(x) = x⊺ν for some atomic position x 2M in direction ν. This height func-

tion is then used to define sublevel sets (or subparts) of the mesh Ma
n

in direction ν, where

hν(x)� a. In practice, the EC curve is wðMa
n
Þ computed over a range of l filtration steps in

direction ν. The corresponding EC transform is defined as the collection of EC curves across

a set of ν = 1, . . ., m directions, and maps onto a 3D protein structure as a concatenated

J = (l ×m)-dimensional feature vector to be used for statistical analyses.

In previous studies, it has been observed that the Euler characteristic can be a less-than-

optimal shape summary statistic when inter-class variation between 3D objects is high and

driven by local fluctuations in morphology [13, 16, 17, 52, 66]. Given that this situation can be

quite common in molecular dynamics, we introduce a new topological invariant which we

refer to as the differential Euler characteristic (DEC) (see Fig 1C). As an alternative to Eq (1),

the DEC is computed as the following

Dw ¼ DVðMÞ � DEðMÞ þ DFðMÞ; ð2Þ

where, for some lag parameter t, we define DVðMÞ ¼ #VlðMÞ � #Vl� tðMÞ, DEðMÞ ¼
#ElðMÞ � #El� tðMÞ and DFðMÞ ¼ #FlðMÞ � #Fl� tðMÞ. In this study, we set t = 1 such that,

intuitively, the DEC tracks the changes (i.e., the local appearance or disappearance of topologi-

cal features) in the number of vertices, edges, and faces from one sublevel set to the next. Much

like with the original Euler characteristic, the DEC curve is DwðMa
n
Þ computed over a range of l

filtration steps in a given direction ν and the DEC transform is similarly defined as the collection

of DEC curves across a set of ν = 1, . . ., m directions. Overall, for each dataset with N total pro-

teins, an N × J design matrix X is statistically analyzed, where the columns denote the differen-

tial Euler characteristic computed at a given filtration step and direction. Each sublevel set value,

direction, and set of atomic positions used to compute a DEC curve are stored by the algorithm

for the association mapping and projection phases of the pipeline.

Choosing the number of directions and filtration steps. In this paper, we use a series of

simulations and sensitivity analyses to develop an intuition as to how to set the granularity of

sublevel filtrations l and choose the number of directions m for real protein structure data (Fig

1, S1 Fig, and Table 1). Since the structural changes that a protein class exhibits can occur on

both a global and local scale, depending on its biophysical and chemical properties, we recom-

mend choosing the former parameter l via cross validation or a grid-based search. For the lat-

ter, the SINATRA Pro software defines the total number of directions m as the union of c sets

of cones of directions D ¼
S

CkðyÞ, where each cone CkðyÞ ¼ fnk;1; . . . ; nk;d j yg for k = 1, . . ., c
is parameterized by a cap radius θ from which equidistant vectors are generated over the unit

sphere. We use cones because local shape information matters most when determining recon-

structed manifolds and it has been shown that topological invariants that are measured in

directions of close proximity contain similar local information [13, 15, 67, 68]. This naturally

leads to the construction of sets CkðyÞ where the angle θ between them is relatively small (again

see Table 1). In general, we use sufficiency results for topological transforms (see Theorem

7.14 in Curry et al. [15]) to motivate the notion that considering larger numbers of m = c × d
directions will lead to a more robust summary of 3D shapes and surfaces. Hence, ideally, one

would select an effectively large number of c cones (and d directions within these cones) to

ensure that SINATRA Pro is summarizing all relevant structural information about the vari-

ance between phenotypic classes (e.g., mutants versus wild-type).
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Probabilistic model for protein structure classification

In the third step of the SINATRA Pro pipeline, we use (weight-space) Gaussian process probit

regression model to classify protein structures based on their topological summaries generated

by the DEC transformation via Eq (2). Here, we specify the following probabilistic hierarchical

model (Fig 1D) [69–73]

y � BðπÞ; gðπÞ ¼ F� 1ðπÞ ¼ f ; f � N ð0;KÞ; ð3Þ

where y is an N-dimensional vector of Bernoulli distributed phenotypic class labels (e.g.,

mutants versus wild-type), π is an N-dimensional vector representing the underlying probabil-

ity that a shape is classified as a “class” (e.g., y = 1 if “mutant”), g(�) is a probit link function

with F(�) the cumulative distribution function (CDF) of the standard normal distribution, and

f is an N-dimensional vector estimated from the data. We take a classic kernel regression

approach [72, 74–76] where we posit that f lives within a reproducing kernel Hilbert space

(RKHS) defined by some (nonlinear) covariance function, which implicitly accounts for

higher-order interactions between features, leading to more complete classifications of struc-

tural data [77–79]. To this end, we assume f is normally distributed with mean vector 0 and

covariance matrix K with elements defined by the radial basis function Kii0 = exp{−ϑkxi − xi0k
2}

with bandwidth ϑ set using the “median criterion” approach to maintain numerical stability

and avoid additional computational costs [80]. Here, xi and xi0 denote the collection of topo-

logical features for the i-th and i0-th observation in X, respectively. The full model specified in

Eq (3) is commonly referred to as “Gaussian process classification” (GPC).

Given the complete specification of the GPC, we use Bayesian inference to draw samples

from the posterior distribution of the latent variables, which is proportional to p(f|y)/ p(y|f) ×
p(f). Here, p(y|f) denotes the likelihood of the observed binary labels given the functions (i.e.,

the Bernoulli distribution), and p(f) is the prior distribution for the latent variables (i.e., the

multivariate normal distribution). The probit likelihood in Eq (3) makes it intractable to esti-

mate the posterior distribution p(f|y) via a closed-form solution. We instead use a Markov

chain Monte Carlo (MCMC) method called “elliptical slice sampling” to conduct posterior

inference [81].

Feature selection of topological summary statistics

After implementing the elliptical slice sampling algorithm to estimate the posterior distribu-

tion of the latent variables f in Eq (3), we define a nonparametric effect size for each topological

summary statistic via the following standard projection [78, 82]

β ¼ ðX⊺XÞþX⊺f ; ð4Þ

where M+ is used to denote the generalized inverse of a matrix M, and each element in β details

the nonlinear relationship between the DEC topological summary statistics and the variance

between protein structures. In order to determine a statistical rank ordering for these effect

sizes, we assign an information theoretic-based measure of relative centrality to each j-th topo-

logical feature using Kullback-Leibler divergence (KLD) [79]

KLDðbjÞ≔KL pðβ� jÞ k pðβ� j j bj ¼ 0Þ
h i

¼
R

β� j
log

pðβ� jÞ
pðβ� j j bj ¼ 0Þ

 !

pðβ� jÞ dβ� j: ð5Þ
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for j = 1, . . ., J topological features. Finally, we normalize to obtain an association metric (Fig

1D),

gj ¼ KLDðbjÞ=
P

KLDðblÞ: ð6Þ

There are two key takeaways from this scaled formulation. First, the KLD is non-negative,

and it equals zero if and only if the posterior distribution of β−j is independent of the effect βj.
Intuitively, this is equivalent to saying that removing an unimportant topological feature has

no impact on explaining the variance between different protein structure. Second, γ = (γ1, . . .,

γJ) is bounded on the unit interval [0, 1] with the natural interpretation of providing relative

evidence of association for each DEC statistic (where values close to 1 suggest greater impor-

tance). From a classical hypothesis testing point-of-view, the null hypothesis for Eq (6)

assumes that every DEC feature equally contribute to the total variance between proteins,

while the alternative hypothesis proposes that some DEC features are better associated with

biophysical changes in protein structures than others [13, 79].

Closed form solution for atomic-level association measures. For simplicity, we assume

that the implied posterior distribution of β (deterministically given in Eq (4)) is approximately

multivariate normal with an empirical mean vector μ and positive semi-definite covariance/

precision matrix S = Λ−1 [13, 79]. Given these values, we iteratively partition such that, for

each j-th topological feature:

β ¼
bj

β� j

0

@

1

A; μ ¼
mj

μ� j

0

@

1

A; Σ ¼
sj σ⊺

� j

σ� j Σ� j

0

@

1

A; Λ ¼
lj λ⊺

� j

λ� j Λ� j

0

@

1

A: ð7Þ

Under normality assumptions, Eq (5) has the following closed form solution

KLDðbjÞ ¼
1

2
� logjΣ� jΛ� jj þ trðΣ� jΛ� jÞ þ 1 � J þ ajðbj � mjÞ

2
h i

; ð8Þ

where log |�| represents the matrix log-determinant function, and tr(�) is the matrix trace func-

tion. Importantly, the term aj ¼ λ⊺
� jΛ

� 1

� j λ� j characterizes the linear (and non-negative) rate of

change of information when the effect of any topological feature is absent from the analysis

[79]. By symmetry in the notation for elements of the sub-vectors and sub-matrices, we simply

permute the order of the variables in β and iteratively compute the KLD to measure the cen-

trality of each DEC transform.

Approximate computation. In practice, we use a few approximations to scale the other-

wise computationally expensive steps in Eq (8). The first approximation involves computing

the log determinant. With a dataset of reasonably dense meshes, the number of topological fea-

tures is expected to be large (i.e., J� 0). In this setting, the term −log(|S−j Λ−j|) + tr(S−j Λ−j) +

(1 − p) remains relatively equal for each feature j and makes a negligible contribution to the

entire sum. Thus, we simplify Eq (8) to

KLDðbjÞ � ajðbj � mjÞ
2
=2: ð9Þ

This approximation of the KLD still relies on the full precision matrix Λ. For a large num-

ber of topological features J, this calculation is expensive; however, it is only done once and

and can be done with efficient matrix decomposition. The rate of change parameter

aj ¼ λ⊺
� jΛ

� 1

� j λ� j, on the other hand, depends on the partitioned matrix Λ� 1

� j for every j-th topo-

logical feature. This requires inverting a (J − 1) × (J − 1) matrix J times. Fortunately, we can

reduce this computational burden by taking advantage of the fact that any Λ� 1

� j is formed by
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removing the j-th row and column from the precision matrix Λ. Therefore, given the partition

in Eq (7), we can use the Sherman-Morrison formula [83] to efficiently approximate these

quantities using the following rank-1 update for each topological feature

ΩðjÞ ¼ Λ � Λσjσ
⊺
j Λ=ð1þ σ⊺

j ΛσjÞ j ¼ 1; . . . ; J: ð10Þ

Here, σj is the j-th column from the posterior covariance matrix S, and each Λ� 1

� j is approxi-

mated by removing the j-th row and column from O(j). Ultimately, this reduces the computa-

tional complexity of Eq (9) to just J-independent O(J2) operations which can be parallelized.

Reconstruction and visualization of biophysical signatures

After obtaining association measures γ for each topological feature computed via Eq (6), in the

fourth step of the SINATRA Pro pipeline, we map this information back onto the original

structures to visualize topological differences between the protein classes. The main idea is that

we want to select or prioritize atoms that correspond to the topological features with the great-

est association measures. To do this, we perform a criterion-based reconstruction algorithm

[13]. In each direction, each atom (i.e., vertex) lies along a filtration step that corresponds to a

γj value. Therefore, each atom corresponds to m = (c × d) values in γ. To perform the recon-

struction, we sort the values in γ from smallest to largest and continuously increase a thresh-

old. If all of the γ values corresponding to an atom are larger than the threshold, the atom is

considered “alive”. As the threshold is increased, when the criterion is no longer satisfied, the

atom is considered “dead” and that minimum value below the threshold (which we will denote

by ĝ) is assigned the atom as its evidence score. This calculation is repeated for each frame in

the dataset. For atomic-level evidence scores (e.g., S5 and S6 Figs), the γ̂ values are ranked

among all atoms and scaled from 0 (lowest) to 100 (highest) to facilitate the visualization and

interpretation of structural and biophysical enrichment. To compute residue-level evidence

scores (e.g., Figs 3–5, and S7, S9, S10, S12, S13, S15, S17 and S18 Figs), we take the average of

the γ̂ values for all atoms within a residue which are then also ranked and scaled from 0 to 100.

Performance assessment for controlled simulation study

We demonstrate the power of the SINATRA Pro pipeline for identifying biophysical signa-

tures in protein dynamics via multiple controlled simulations studies using the sequential

procedure:

1. Fit the Gaussian process classification (GPC) model using elliptical slice sampling and com-

pute relative centrality association measures γj for each j-th topological feature (i.e., differ-

ential Euler characteristic or DEC per sublevel set filtration). Recall, the total number of

features J = c × d × l is a product of (i) c, the number of cones of directions; (ii) d, the num-

ber of directions within each cone; and (iii) l, the number of sublevel sets (i.e., steps in the

filtration) used to compute the DEC along a given direction.

2. Sort the topological features from largest to smallest according to their association measures

γ1� γ2� � � � � γp.

3. By iteratively moving through the sorted measures Tk = γk (starting with k = 1), we recon-

struct the atoms corresponding to the topological features with {j: γj� Tk}.

An atom is “detected” when the sublevel set in which it resides is selected across all of the

directions within a particular cone. We form a union of the set of detected atoms across all

cones to construct the set of reconstructed vertices at a given level Tk. Using this set of vertices,
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we compute the true positive rate (TPR) and false positive rate (FPR) by assessing overlap with

the set of truly associated (i.e., perturbed) atoms used to generate the protein classes:

TPR ¼
P

TP
P

P
; FPR ¼

P
FP

P
N

ð11Þ

where TP is the number of correctly detected true atoms, P is the total number of causal

atoms, TN stands for the true negatives detected by the SINATRA Pro pipeline, and N stands

for the total number of non-causal atoms. In this manner, we obtain a receiver operating char-

acteristic (ROC) curve for the simulation studies (see Fig 2 and S1 Fig).

ROI null experiment and statistical assessment

To statistically assess whether SINATRA Pro is identifying the known regions of interest

(ROI) in proteins by chance (see Table 2), we use a previously developed null-based scoring

method [13]. The goal of this analysis is to estimate the probability of obtaining a result from

SINATRA Pro under the assumption that the null hypothesis H0 of there being no structural

differences between mutant and wild-type proteins is true. Here, we treat the K atoms located

within each ROI of every mutant protein as a landmark. We construct a test statistic τ� for

each ROI by summing the association metric scores of every atom it contains. To construct a

“null” distribution and assess the strength of any score τ�, we randomly select T “seed” atoms

across the mesh outside the ROI for each mutant protein and uniformly generate T-“null”

regions that are also K-atoms wide. We then compute similar (null) scores τ1, . . ., τT for each

randomly generated region. A “P-value”-like quantity (for the i-th mutant protein) is then gen-

erated by:

Pi ¼
1

T þ 1

XT

t¼1

Iðt�i � ttÞ; i ¼ 1; . . . ;N ð12Þ

where Ið�Þ is an indicator function, and a smaller Pi means more confidence in either method’s

ability to find the desired paraconid landmark. To ensure the robustness of this analysis, we

generate the N-random null regions using a K-nearest neighbors (KNN) algorithm on each of

the T-random seed vertices [84]. We also use a calibration formula to transform each P-value

to an approximate Bayes factor (BF) [85], which is defined as the ratio of the marginal likeli-

hood under the alternative hypothesis H1 (i.e., that there is indeed a structural difference

between phenotypic classes) versus the null hypothesis H0:

BFðPiÞ10
¼ ½� e Pi logðPiÞ�

� 1
; i ¼ 1; . . . ;N ð13Þ

for Pi< 1/e and BF(Pi)10 is an estimate of PrðH1 jMÞ=PrðH0 jMÞ, where M is again used to

denote the protein meshes. We take the median of the Pi and BF(Pi)10 values in Eqs (12) and

(13) across all mutant proteins, respectively, and report them in Table 3.

Supporting information

S1 Fig. Power and sensitivity analysis assessing the robustness of SINATRA Pro to differ-

ent free parameter settings in controlled molecular dynamic (MD) simulations. To gener-

ate data for these simulations, we consider two phenotypic classes using real structural data of

wild-type β-lactamase (TEM). In the first phenotypic class, structural protein data are drawn

from equally spaced intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ,

where δ is a time offset parameter). In the second phenotypic class, proteins are drawn from

0.5 ns intervals later relative to the first group (e.g., tMD = [0.5, 1.5, 2.5, 3.5, . . ., 99.5] ns + δ) to
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introduce physical thermal noise, and then we displace the atomic positions of each atom in

the O-loop region by (1) a constant cartesian vector of (light blue) 0.5 ȧngströms (Å), (blue)

1.0 Å, and (dark blue) 2.0 Å, or (2) by a spherically uniform random vector of (pink) 0.5 Å,

(red) 1.0 Å, and (dark red) 2.0 Å. Altogether, we have a dataset of N = 1000 proteins per simu-

lation scenario: 100 ns interval × 5 different choices δ = {0.0, 0.1, 0.2, 0.3, 0.4} ns × 2 pheno-

typic classes (original wild-type versus perturbed). The area under the curve (AUC) details the

ability of SINATRA Pro to identify “true class defining” atoms located within the O-loop

region as a function of changing the different free parameters used in the algorithm. Here, we

assess the robustness of the algorithm to (A) d number of directions per cone, (B) c number of

cones, (C) θ cap radius used to generate directions within each cone, (D) l number of sublevel

sets (or filtration steps) used to compute the topological summary statistics, and (E) the radius

cutoff r in Å used to construct the simplicial complex. While varying each parameter, the other

parameters are fixed at {r = 1.0Å, c = 20, d = 8, θ = 0.80, l = 120}. Guidelines for how to choose

the free parameters are given in Table 1 in the main text.

(PNG)

S2 Fig. Effect of realignment after displacement in the controlled experiments aimed at

assessing the ability of SINATRA Pro to detect artificial changes in the O-loop of β-lacta-

mase (blue region). In the main text, we conduct a controlled simulation study where con-

sider two phenotypic classes using real structural data of wild-type β-lactamase (TEM). In the

first phenotypic class, structural protein data are drawn from equally spaced intervals over a

100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset parameter).

In the second phenotypic class, proteins are drawn from 0.5 ns intervals later relative to the

first group (e.g., tMD = [0.5, 1.5, 2.5, 3.5, . . ., 99.5] ns + δ) to introduce physical thermal noise.

Here, we displace the atomic positions of each atom in the O-loop region by a constant carte-

sian vector of 0.5, 1.0, and 2.0 ȧngströms (Å), respectively. The purpose of this figure is to

show why we do not realign the proteins after structural perturbation has occurred. Realigning

the structures after introducing a perturbation poses a slightly different and notably less con-

trolled simulation study. For example, in this constant displacement case, realigning the struc-

tures will shift the whole structure against the perturbing vector and result in an unintentional

displacement on the opposite side of the structure (as depicted by the pink, brown, and purple

lines). A true positive in this case is not as well-defined as when we keep the unperturbed

structure in place and define the perturbed structure as the ground truth for the positive signal

(as shown by the grey, orange, and green lines).

(JPG)

S3 Fig. Receiver operating characteristic (ROC) assessing the differentiating power of PCA

under different model parameter configurations in controlled molecular dynamic (MD)

simulations. Here, in addition to the Cartesian-based PCA approach described in the main

text, we also perform an additional PCA strategy on the covariance matrix between atomic posi-

tions. This is done by first taking the atomic positions of all frames, centering their mean to be

zero, and normalizing them to have unit variance equal to one. Next, the position covariance

matrix is generated between the two datasets using the function V½x; y� ¼ E½ðx � �xÞðy � �yÞ⊺�
which takes on positive values if two variables are correlated and negative if two variables are

anti-correlated. We then run PCA on the covariance matrix and choose the number of principal

components that explain at least some percentage of its cumulative variance. Note that the out-

put from PCA produces vectors that have dimensionality equal to the total number of atoms in

the protein structures, and these can be interpreted as a measure of how explanatory each

atomic position is in determining the variation between two sets of data (e.g., class A and B,
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respectively). In this analysis, the principal components are taken as feature vectors to generate

the ROC curves, where the least correlated (or anti-correlated) variables with the class labels are

considered to be the differentiating features. Above, we are ranking atoms according to the least

absolute correlation. In the legend, the approach used to in the main text is simply listed as

PCA, while the method run on the positional covariance matrix is indicated by poscov. Each

method is evaluated using a different number of principal components based on the cumulative

variance explained: 50%, 75%, and 100%. We then use area under the curves (AUC) to summa-

rize this performance. Both strategies show similar performance across all simulation scenarios

in the constant perturbations, while the original PCA approach that explains 100% of the varia-

tion over the Cartesian (x, y, z)-coordinates for the atoms is best in the simulations with random

spherical perturbations. The latter is what is displayed in the main text.

(PNG)

S4 Fig. Receiver operating characteristic (ROC) assessing the differentiating power of the

Neural Network under different model parameter and architecture configurations in con-

trolled molecular dynamic (MD) simulations. Here, in addition to the Neural Network

described in the main text (depicted in blue), we also perform an additional search over different

architectures and model training procedures. For the former, we try deepening the architecture

with Rectified Linear Unit (ReLU) nonlinear activation functions [19] to the following: (1) an

input layer of Cartesian coordinates of all of the atoms; (2) a hidden layer with H = 2048 neu-

rons; (3) a second hidden layer with H = 2048 neurons; (4) a third hidden layer with H = 512

neurons; (5) a third hidden layer with H = 128 neurons; and (6) an outer layer with a single node

which uses a sigmoid link function for protein classification. For the latter modification, we try

regularizing the network weights using a combination of L1, L2, and L1 + L2 penalties. These cor-

respond to the “Least Absolute Shrinkage and Selection Operator” or LASSO solution [93],

Ridge Regression [94], and the Elastic Net [95], respectively. Once again, batch normalization

was implemented between each layer and a normalized saliency map to rank the importance of

each atom [20]. We assess power by taking the sum of the saliency map values corresponding to

each atomic position which is summarized by the area under the curves (AUC).

(PNG)

S5 Fig. Atomic-level results for detecting biophysical signatures in (top row) TEMβ-lacta-

mase, (middle row) HIV-1 protease bound to Amprenavir, and (bottom row) GTP-bound

EF-Tu. In these analyses, we compare the molecular dynamics (MD) trajectories of alternative

states for each protein to the corresponding trajectories of (i) Arg164Ser TEM β-lactamase, (ii)
Ile50Val HIV-1 protease bound to Amprenavir, and (iii) GDP-bound EF-Tu, respectively. We

analyze datasets based on different fragments of each protein. Specifically, in the case of TEM

β-lactamase, we analyze (A) the whole protein structure, (B) residues 65–230, and (C) residues

65–213; in HIV-1 protease, we analyze (D) chain A and (E) chain B; and, in EF-Tu, we analyze

(F) the whole protein structure, (G) residues 220–310, and (H) residues 311–405. Here, consis-

tency between fragments within a protein type shows the robustness of SINATRA Pro to iden-

tify the same signal even when it does not have access to the full structure. The heatmaps

highlight the atomic evidence potential on a scale from [0–100]. A maximum of 100 represents

the threshold at which the first atom of the protein is reconstructed, while 0 denotes the thresh-

old when the last atom is reconstructed. Annotated are regions of interest (ROIs) according to

literature sources that have previously suggested some level of structural association for each

chemical change of interest, including: (i) theO-loop (residues 163–178) in TEM; (ii) the flap

region (residues 47–55) in HIV-1 protease; and (iii) Domain 2 (residues 208–308) in EF-Tu.

(PNG)
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S6 Fig. Atomic-level results for detecting biophysical signatures in (top row) Abl1 and

(bottom row) IBB-bound Importin-β. In these analyses, we compare the molecular dynamics

(MD) trajectories of the alternative states for each protein to the corresponding trajectories of

(i) Met290Val Abl1 and (ii) unbound Importin-β, respectively. We analyze Abl1 based on dif-

ferent fragments the protein. Specifically, we analyze (A) the whole protein structure, (B) resi-

dues 242–502, and (C) residues 242–315. Here, consistency between fragments within a

protein type shows the robustness of SINATRA Pro to identify the same signal even when it

does not have access to the full structure. The heatmaps highlight the atomic evidence potential

on a scale from [0–100]. A maximum of 100 represents the threshold at which the first atom of

the protein is reconstructed, while 0 denotes the threshold when the last atom is reconstructed.

Annotated are regions of interest (ROIs) according to literature sources that have previously

suggested some level of structural association for each chemical change of interest, including

the DFG motif in Abl1. Note that, in the context of Importin-β, the superhelix includes the

entire structure and so we do not include any additional annotations.

(PNG)

S7 Fig. Sensitivity analyses on different lengths of MD simulations aimed at detecting con-

sistent structural changes in the O-loop of TEM β-lactamase induced by the Arg164Ser

mutation using SINATRA Pro. In this analysis, we compare the molecular dynamics (MD)

trajectories of wild-type TEM β-lactamase versus the Arg164Ser mutant [21, 22]. For both phe-

notypic classes, structural data are drawn from equally spaced intervals over a 10 ns (grey), 20

ns (orange), 50 ns (green), 100 ns (pink), 150 ns (brown), and 200 ns (purple) MD trajectory.

As an example of how data are sampled, in the 150 ns simulation case, we have tMD = [0, 1.5, 3,

. . ., 148.5] ns + δ, where δ = {0.0, 0.15, 0.3, . . ., 1.35} ns is a time offset parameter. Panels (A)-

(C) show the mean association metrics (and their corresponding standard errors) computed

for each residue within each analysis (see Material and methods) with the (A) whole protein,

(B) fragment 65–230, and (C) fragment 65–213. The overlap of lines shows the robustness of

SINATRA Pro to identify the same signal regardless of trajectory length.

(PNG)

S8 Fig. Real data analyses aimed at detecting structural changes in the O-loop of TEM β-

lactamase induced by the Arg164Ser mutation using atomic-level regularization with Elas-

tic Net classification. In this analysis, we compare the molecular dynamics (MD) trajectories

of wild-type TEM β-lactamase versus the Arg164Ser mutant [21, 22]. For both phenotypic clas-

ses, structural data are drawn from equally spaced intervals over a 100 ns MD trajectory (e.g.,

tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset parameter). Altogether, we have a final

dataset of N = 2000 proteins in the study: 100 ns long interval × 10 different choices δ = {0.0,

0.1, 0.2, . . ., 0.9} ns × 2 phenotypic classes (wild-type versus mutant). To generate these results,

we first concatenate the (x, y, z)-coordinates of all atoms within each protein and treat them as

features in a data frame. Next, we use Elastic Net regularization [95] to assign sparse regression

coefficients to each coordinate of every atom (where the penalization term is chosen via cross-

validation). Panel (A) shows the mean absolute coefficient of all atoms within each residue

computed over each fragment-based analysis (see Material and methods in the main text). The

final row plots the correlation between the SINATRA Pro association metrics and the Elastic

Net coefficients for all atoms with correspondences in the (B) whole protein, (C) fragment 65–

230, and (D) fragment 65–213.

(PNG)

S9 Fig. SINATRA Pro analysis on the dimeric form of HIV-1 protease to detect structural

change in the flap region driven by a Ile50Val mutation. In this analysis, we compare the
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molecular dynamic (MD) trajectories of wild-type HIV-1 protease versus Ile50Val mutants

(i.e., within residues 47–55). For both phenotypic classes, structural data are drawn from from

equally spaced intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ,

where δ is a time offset parameter). Altogether, we have a final dataset of N = 2000 proteins in

the study: 100 ns long interval × 10 different choices δ = {0.0, 0.1, 0.2, . . ., 0.9} ns × 2 pheno-

typic classes (wild-type versus mutant). This figure depicts results after applying SINATRA

Pro using parameters {r = 6.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. We

compare these results to the analyses with chains A and B presented in the main text. Here, the

signal in the region of interest (i.e., the flap of each chain) persisted in the dimeric form, but is

overshadowed by the noise in the other parts of the protein since the relative orientation

between the two monomers causes each chain to be misaligned with itself. Highlighted are res-

idues for regions of the protein corresponding to the fulcrum (brown), elbow (purple), flap

(blue), cantilever (red), and I/V50 (yellow) [29, 31, 32].

(PNG)

S10 Fig. Sensitivity analyses on different lengths of MD simulations aimed at detecting

consistent structural changes in the flap region of HIV-1 protease driven by the Ile50Val

mutation using SINATRA Pro. In this analysis, we compare the molecular dynamics (MD)

trajectories of wild-type HIV-1 protease versus the Ile50Val mutant (i.e., within residues 47–

55) [29, 31, 32]. For both phenotypic classes, structural data are drawn from equally spaced

intervals over a 10 ns (grey), 20 ns (orange), 50 ns (green), 100 ns (pink), 150 ns (brown), and

200 ns (purple) MD trajectory. As an example of how data are sampled, in the 150 ns simula-

tion case, we have tMD = [0, 1.5, 3, . . ., 148.5] ns + δ, where δ = {0.0, 0.15, 0.3, . . ., 1.35} ns is a

time offset parameter. Panels (A)-(C) show the mean association metrics (and their corre-

sponding standard errors) computed for each residue within each analysis (see Material and

methods) with (A) chain A and (B) chain B, respectively. The overlap of lines shows the

robustness of SINATRA Pro to identify the same signal regardless of trajectory length.

(PNG)

S11 Fig. Real data analyses aimed at detecting structural changes in the flap region of

HIV-1 protease driven by the Ile50Val mutation using atomic-level regularization with

Elastic Net classification. In this analysis, we compare the molecular dynamics (MD) trajecto-

ries of wild-type HIV-1 protease versus the Ile50Val mutant (i.e., within residues 47–55) [29,

31, 32]. For both phenotypic classes, structural data are drawn from equally spaced intervals

over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset

parameter). Altogether, we have a final dataset of N = 2000 proteins in the study: 100 ns long

interval × 10 different choices δ = {0.0, 0.1, 0.2, . . ., 0.9} ns × 2 phenotypic classes (wild-type

versus mutant). To generate these results, we first concatenate the (x, y, z)-coordinates of all

atoms within each protein and treat them as features in a data frame. Next, we use Elastic Net

regularization [95] to assign sparse regression coefficients to each coordinate of every atom

(where the penalization term is chosen via cross-validation). Panel (A) shows the mean abso-

lute coefficient of all atoms within each residue computed over each fragment-based analysis

(see Material and methods in the main text). The final row plots the correlation between the

SINATRA Pro association metrics and the Elastic Net coefficients for all atoms with corre-

spondences in (B) chain A and (C) chain B, respectively.

(PNG)

S12 Fig. Real data analyses aimed at detecting structural changes in Domain 2 of the elon-

gation factor EF-Tu upon guanosine triphosphate (GTP) hydrolysis. In this analysis, we

compare the molecular dynamics (MD) trajectories of GTP-bound EF-Tu versus GDP-bound
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EF-Tu [37, 87, 88]. For both phenotypic classes, structural data are drawn from equally spaced

intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time

offset parameter). Altogether, we have a final dataset of N = 2000 proteins in the study: 100 ns

long interval × 10 different choices δ = {0.0, 0.1, 0.2, . . ., 0.9} ns × 2 phenotypic classes (wild-

type versus mutant). This figure depicts results after applying SINATRA Pro using parameters

{r = 6.0Å, c = 20, d = 8, θ = 0.80, l = 120} chosen via a grid search. The heatmaps in panels (A)-

(C) highlight residue evidence potential on a scale from [0–100]. A maximum of 100 repre-

sents the threshold at which the first residue of the protein is reconstructed, while 0 denotes

the threshold when the last residue is reconstructed. Panel (A) shows residue-level evidence

potential when applying SINATRA Pro to the whole protein, while panels (B) and (C) illus-

trate results when strictly applying the SINATRA Pro pipeline to atoms in residues 208–308

and 311–405, respectively. Panel (D) shows the association metrics (and their corresponding

standard errors) computed for each residue within each analysis (see Material and methods).

Here, the overlap shows the robustness of SINATRA Pro to identify the same signal even when

it does not have access to the full structure of the protein. The final row plots the correlation

between the SINATRA Pro association metrics and the root mean square fluctuation (RMSF)

for all atoms with correspondences in the (E) whole protein, (F) fragment 208–308, and (G)

fragment 311–405.

(PNG)

S13 Fig. Sensitivity analyses on different lengths of MD simulations aimed at detecting

consistent structural changes in Domain 2 of the elongation factor EF-Tu upon guanosine

triphosphate (GTP) hydrolysis using SINATRA Pro. In this analysis, we compare the the

molecular dynamics (MD) trajectories of GTP-bound EF-Tu versus GDP-bound EF-Tu [37,

87, 88]. For both phenotypic classes, structural data are drawn from equally spaced intervals

over a 10 ns (grey), 20 ns (orange), 50 ns (green), 100 ns (pink), 150 ns (brown), and 200 ns

(purple) MD trajectory. As an example of how data are sampled, in the 150 ns simulation case,

we have tMD = [0, 1.5, 3, . . ., 148.5] ns + δ, where δ = {0.0, 0.15, 0.3, . . ., 1.35} ns is a time offset

parameter. Panels (A)-(C) show the mean association metrics (and their corresponding stan-

dard errors) computed for each residue within each analysis (see Material and methods) with

the (A) whole protein, (B) fragment 208–308, and (C) fragment 311–405. The overlap of lines

shows the robustness of SINATRA Pro to identify the same signal regardless of trajectory

length.

(PNG)

S14 Fig. Real data analyses aimed at detecting structural changes in Domain 2 of the elon-

gation factor EF-Tu upon guanosine triphosphate (GTP) hydrolysis using atomic-level

regularization with Elastic Net classification. In this analysis, we compare the molecular

dynamics (MD) trajectories of GTP-bound EF-Tu versus GDP-bound EF-Tu [37, 87, 88]. For

both phenotypic classes, structural data are drawn from equally spaced intervals over a 100 ns

MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset parameter). Alto-

gether, we have a final dataset of N = 2000 proteins in the study: 100 ns long interval × 10 dif-

ferent choices δ = {0.0, 0.1, 0.2, . . ., 0.9} ns × 2 phenotypic classes (wild-type versus mutant).

To generate these results, we first concatenate the (x, y, z)-coordinates of all atoms within each

protein and treat them as features in a data frame. Next, we use Elastic Net regularization [95]

to assign sparse regression coefficients to each coordinate of every atom (where the penaliza-

tion term is chosen via cross-validation). Panel (A) shows the mean absolute coefficient of all

atoms within each residue computed over each fragment-based analysis (see Material and

methods in the main text). The final row plots the correlation between the SINATRA Pro
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association metrics and the Elastic Net coefficients for all atoms with correspondences in the

(B) whole protein, (C) fragment 220–310, and (D) fragment 311–405.

(PNG)

S15 Fig. Sensitivity analyses on different lengths of MD simulations aimed at detecting

consistent structural changes in the N-terminal pocket of the Abl1 Tyrosine protein kinase

due to the Met290Val mutation in the αC helix using SINATRA Pro. In this analysis, we

compare the the molecular dynamics (MD) trajectories of wild-type Abl1 kinase domain ver-

sus the Met290Val mutant [2, 43, 89–91]. For both phenotypic classes, structural data are

drawn from equally spaced intervals over a 10 ns (grey), 20 ns (orange), 50 ns (green), 100 ns

(pink), 150 ns (brown), and 200 ns (purple) MD trajectory. As an example of how data are

sampled, in the 150 ns simulation case, we have tMD = [0, 1.5, 3, . . ., 148.5] ns + δ, where δ =

{0.0, 0.15, 0.3, . . ., 1.35} ns is a time offset parameter. Panels (A)-(C) show the mean associa-

tion metrics (and their corresponding standard errors) computed for each residue within each

analysis (see Material and methods) with the (A) whole protein, (B) fragment 242–502, and

(C) fragment 242–315. The overlap of lines shows the robustness of SINATRA Pro to identify

the same signal regardless of trajectory length.

(PNG)

S16 Fig. Real data analyses aimed at detecting structural changes in the N-terminal pocket

of the Abl1 Tyrosine protein kinase due to the Met290Val mutation in the αC helix using

atomic-level regularization with Elastic Net classification. In this analysis, we compare the

molecular dynamics (MD) trajectories of wild-type Abl1 kinase domain versus the Met290Val

mutant. [2, 43, 89–91]. For both phenotypic classes, structural data are drawn from equally

spaced intervals over a 150 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] × 1.5 ns + δ, where

δ is a time offset parameter). Altogether, we have a final dataset of N = 3000 proteins in the

study: 150 ns long interval × 15 different choices δ = {0.0, 0.1, 0.2, . . ., 1.4} ns × 2 phenotypic

classes (wild-type versus mutant). To generate these results, we first concatenate the (x, y, z)-

coordinates of all atoms within each protein and treat them as features in a data frame. Next,

we use Elastic Net regularization [95] to assign sparse regression coefficients to each coordi-

nate of every atom (where the penalization term is chosen via cross-validation). Panel (A)

shows the mean absolute coefficient of all atoms within each residue computed over each frag-

ment-based analysis (see Material and methods in the main text). The final row plots the corre-

lation between the SINATRA Pro association metrics and the Elastic Net coefficients for all

atoms with correspondences in the (B) whole protein, (C) fragment 242–502, and (D) frag-

ment 242–315.

(PNG)

S17 Fig. Sensitivity analyses on different lengths of MD simulations aimed at detecting

uncoiling of the superhelix in Importin-β upon release of an IBB peptide using SINATRA

Pro. In this analysis, we compare the the molecular dynamics (MD) trajectories of IBB-bound

Importin-β versus unbound Importin-β [45–47]. For both phenotypic classes, structural data

are drawn from equally spaced intervals over a 10 ns (grey), 20 ns (orange), 50 ns (green), 100

ns (pink), 150 ns (brown), and 200 ns (purple) MD trajectory. As an example of how data are

sampled, in the 150 ns simulation case, we have tMD = [0, 1.5, 3, . . ., 148.5] ns + δ, where δ =

{0.0, 0.15, 0.3, . . ., 1.35} ns is a time offset parameter. Panels (A)-(C) show the mean associa-

tion metrics (and their corresponding standard errors) computed for each residue within each

analysis (see Material and methods). The overlap of lines shows the robustness of SINATRA

Pro to identify the same signal regardless of trajectory length.

(PNG)
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S18 Fig. Real data analyses aimed at detecting uncoiling of the superhelix in Importin-β
upon release of an IBB peptide. In this analysis, we compare the molecular dynamics (MD)

trajectories of IBB-bound Importin-β versus unbound Importin-β [45–47]. For both pheno-

typic classes, structural data are drawn from equally spaced intervals over a 100 ns MD trajec-

tory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ, where δ is a time offset parameter). Altogether, we

have a final dataset of N = 2000 proteins in the study: 100 ns long interval × 10 different

choices δ = {0.0, 0.1, 0.2, . . ., 0.9} ns × 2 phenotypic classes (wild-type versus mutant). This fig-

ure depicts results after applying SINATRA Pro using parameters {r = 6.0Å, c = 20, d = 8, θ =

0.80, l = 120} chosen via a grid search. The heatmap in panels (A) highlights residue evidence

potential on a scale from [0–100]. A maximum of 100 represents the threshold at which the

first residue of the protein is reconstructed, while 0 denotes the threshold when the last residue

is reconstructed. Panel (B) plots the correlation between the SINATRA Pro association metrics

and the root mean square fluctuation (RMSF) for all atoms with correspondences. Panel (C)

shows the SINATRA Pro association metrics (and their corresponding standard errors) com-

puted for each residue within the analysis (see Material and methods in the main text for more

details).

(PNG)

S19 Fig. Real data analyses at detecting uncoiling of the superhelix in Importin-β upon

release of IBB using atomic-level regularization with Elastic Net classification. In this anal-

ysis, we compare the molecular dynamics (MD) trajectories of IBB-bound Importin-β versus

unbound Importin-β [45–47]. For both phenotypic classes, structural data are drawn from

equally spaced intervals over a 100 ns MD trajectory (e.g., tMD = [0, 1, 2, 3, . . ., 99] ns + δ,

where δ is a time offset parameter). Altogether, we have a final dataset of N = 2000 proteins in

the study: 100 ns long interval × 10 different choices δ = {0.0, 0.1, 0.2, . . ., 0.9} ns × 2 pheno-

typic classes (wild-type versus mutant). To generate these results, we first concatenate the (x, y,

z)-coordinates of all atoms within each protein and treat them as features in a data frame.

Next, we use Elastic Net regularization [95] to assign sparse regression coefficients to each

coordinate of every atom (where the penalization term is chosen via cross-validation). Panel

(A) shows the mean absolute coefficient of all atoms within each residue computed over each

fragment-based analysis (see Material and methods in the main text). In panel (B), we plot the

correlation between the SINATRA Pro association metrics and the Elastic Net coefficients for

all atoms with correspondences.

(PNG)

S20 Fig. Residue-level results from running root mean square fluctuation (RMSF) analysis

on TEM β-lactamase, HIV-1 protease, and GTP-bound EF-Tu. In these analyses, we com-

pare the molecular dynamics (MD) trajectories of the alternative state for each protein to the

corresponding trajectories of (A) Arg164Ser mutant β-lactamase, (B) Ile50Val mutant HIV-1

protease, and (C) GDP-bound EF-Tu, respectively. We analyze datasets based on different

fragments of each protein. Specifically, (A) in TEM β-lactamase, we analyze the whole protein

structure, residues 65–230, and residues 65–213; (B) in HIV-1 protease, we analyze chain A

and chain B; and, (C) in EF-Tu, we analyze the whole protein structure, residues 220–310, and

residues 311–405. The y-axis denotes the absolute difference (or Δ-change) in RMSF between

wild-type and mutants classes.

(PNG)

S21 Fig. Residue-level results from running root mean square fluctuation (RMSF) analysis

on Abl1 and IBB-bound Importin-β. In these analyses, we compare the molecular dynamics

(MD) trajectories of the alternative state for each protein to the corresponding trajectories of
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(A) Met290Val Abl1 and (B) unbound Importin-β, respectively. We analyze Abl1 based on

different fragments the protein. Specifically, we analyze the whole protein structure, residues

242–502, and residues 242–315. Note that, in the context of Importin-β, the superhelix

includes the entire structure and so we do include any additional sub-fragment analyses. The

y-axis on denotes the absolute difference (or Δ-change) in RMSF between wild-type and

mutants classes.

(PNG)

S22 Fig. Sensitivity analysis assessing the robustness of SINATRA Pro to different radius

cutoffs r values used to construct the simplicial complexes for TEM β-lactamase. Recall

that we use the atomic positions for each protein to create mesh representations of their 3D

structures (see Fig 1 in the main text). First, we draw an edge between any two atoms if their

Euclidean distance smaller than some value r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we

fill in all the triangles (or faces) formed by these connected edges. We treat the resulting trian-

gulated mesh as an simplicial complex with which we can perform topological data analysis.

Here, we consider the construction of mesh representations for each protein while setting r =

{2.0, 4.0, 6.0} ȧngströms (Å). Other SINATRA parameters were fixed: c = 20 cones, d = 8 direc-

tions per cone, θ = 0.80 cap radius used to generate directions in a cone, and l = 120 sublevel

sets per filtration. In each plot, we show the association metrics (and their corresponding stan-

dard errors) computed for each residue while analyzing (A) the whole protein, (B) fragment

65–230, and (C) fragment 65–213. Note that an overlap in signal shows the robustness of

SINATRA Pro to this input parameter value.

(PNG)

S23 Fig. Sensitivity analysis assessing the robustness of SINATRA Pro to different radius

cutoffs r values used to construct the simplicial complexes for HIV-1 protease. Recall that

we use the atomic positions for each protein to create mesh representations of their 3D struc-

tures (see Fig 1 in the main text). First, we draw an edge between any two atoms if their Euclid-

ean distance smaller than some value r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we fill in

all the triangles (or faces) formed by these connected edges. We treat the resulting triangulated

mesh as an simplicial complex with which we can perform topological data analysis. Here, we

consider the construction of mesh representations for each protein while setting r = {2.0, 4.0,

6.0} ȧngströms (Å). Other SINATRA parameters were fixed: c = 20 cones, d = 8 directions per

cone, θ = 0.80 cap radius used to generate directions in a cone, and l = 120 sublevel sets per fil-

tration. In each plot, we show the association metrics (and their corresponding standard

errors) computed for each residue while analyzing (A) chain A and (B) chain B. Note that an

overlap in signal shows the robustness of SINATRA Pro to this input parameter value.

(PNG)

S24 Fig. Sensitivity analysis assessing the robustness of SINATRA Pro to different radius

cutoffs r values used to construct the simplicial complexes for EF-Tu. Recall that we use the

atomic positions for each protein to create mesh representations of their 3D structures (see

Fig 1 in the main text). First, we draw an edge between any two atoms if their Euclidean dis-

tance smaller than some value r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we fill in all the

triangles (or faces) formed by these connected edges. We treat the resulting triangulated mesh

as an simplicial complex with which we can perform topological data analysis. Here, we con-

sider the construction of mesh representations for each protein while setting r = {2.0, 4.0, 6.0}

ȧngströms (Å). Other SINATRA parameters were fixed: c = 20 cones, d = 8 directions per

cone, θ = 0.80 cap radius used to generate directions in a cone, and l = 120 sublevel sets per fil-

tration. In each plot, we show the association metrics (and their corresponding standard
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errors) computed for each residue while analyzing (A) whole protein, (B) fragment 208–308,

and (C) fragment 311–405. Note that an overlap in signal shows the robustness of SINATRA

Pro to this input parameter value.

(PNG)

S25 Fig. Sensitivity analysis assessing the robustness of SINATRA Pro to different radius

cutoffs r values used to construct the simplicial complexes for Abl1. Recall that we use the

atomic positions for each protein to create mesh representations of their 3D structures (see

Fig 1 in the main text). First, we draw an edge between any two atoms if their Euclidean dis-

tance smaller than some value r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we fill in all the

triangles (or faces) formed by these connected edges. We treat the resulting triangulated mesh

as an simplicial complex with which we can perform topological data analysis. Here, we con-

sider the construction of mesh representations for each protein while setting r = {2.0, 4.0, 6.0}

ȧngströms (Å). Other SINATRA parameters were fixed: c = 20 cones, d = 8 directions per

cone, θ = 0.80 cap radius used to generate directions in a cone, and l = 120 sublevel sets per fil-

tration. In each plot, we show the association metrics (and their corresponding standard

errors) computed for each residue while analyzing (A) the whole protein, (B) fragment 242–

502, and (C) fragment 242–315. Note that an overlap in signal shows the robustness of SINA-

TRA Pro to this input parameter value.

(PNG)

S26 Fig. Sensitivity analysis assessing the robustness of SINATRA Pro to different radius

cutoffs r values used to construct the simplicial complexes for Importin-β. Recall that we

use the atomic positions for each protein to create mesh representations of their 3D structures

(see Fig 1 in the main text). First, we draw an edge between any two atoms if their Euclidean

distance smaller than some value r, namely dist|(x1, y1, z1), (x2, y2, z2)|< r. Next, we fill in all

the triangles (or faces) formed by these connected edges. We treat the resulting triangulated

mesh as an simplicial complex with which we can perform topological data analysis. Here, we

consider the construction of mesh representations for each protein while setting r = {2.0, 4.0,

6.0} ȧngströms (Å). Other SINATRA parameters were fixed: c = 20 cones, d = 8 directions per

cone, θ = 0.80 cap radius used to generate directions in a cone, and l = 120 sublevel sets per fil-

tration. Note that an overlap in signal shows the robustness of SINATRA Pro to this input

parameter value.

(PNG)

S27 Fig. Real data analysis results demonstrating the idea of running SINATRA Pro with

sequence-independent (or correspondence free) structural alignment based on topological

summary statistics. Here, we perform sequence-independent structural alignment where we

implicitly normalize the 3D protein structures by rotationally aligning their topological sum-

mary statistics. To carry out this alignment procedure, we first take each pair of protein struc-

tures and superimpose the center of mass of the backbone alpha-carbons (Cα) atoms to the

same origin. Next, we compute topological summary statistics over the mesh representation of

each structure in m = 500 spherically uniformly distributed directions (see the Material and

methods in the main text). We take the squared Euclidean distance between any two directions

to be the cost needed to align structures via their topological summaries; and we determine the

“optimal” direction alignment by finding the rotation that minimizes the cumulative cost of

aligning all directional pairs between proteins. We use the random sample consensus (RAN-

SAC) method to determine the rotational matrix that aligns the angle between any two direc-

tions to be within an error threshold of 0.9 [65]. More specifically, we require that the dot

product between two directions has to be larger than 0.9 to be considered aligned in RANSAC.
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The figures above compare the correlation (R) between the association metrics from SINA-

TRA Pro calculated from the structures aligned using Euler characteristic (EC) transform and

structures pre-aligned using RMSD for β-lactamase: (A) the whole protein, (B) fragment 65–

230, and (C) fragment 65–213; monomers of HIV-1 protease: (D) chain A and (E) chain B;

and fragments of the elongation factor EF-Tu: (F) the whole protein, (G) fragment 220–310

(Domain 2), and (H) fragment 311–405 (Domain 3). Correlations near one symbolize high

agreement between the two alignment schemes.

(PNG)

S28 Fig. Real data analysis results demonstrating the idea of running SINATRA Pro with

sequence-independent (or correspondence free) structural alignment based on topological

summary statistics. Here, we perform sequence-independent structural alignment where we

implicitly normalize the 3D protein structures by rotationally aligning their topological sum-

mary statistics. To carry out this alignment procedure, we first take each pair of protein struc-

tures and superimpose the center of mass of the backbone alpha-carbons (Cα) atoms to the

same origin. Next, we compute topological summary statistics over the mesh representation of

each structure in m = 500 spherically uniformly distributed directions (see the Material and

methods in the main text). We take the squared Euclidean distance between any two directions

to be the cost needed to align structures via their topological summaries; and we determine the

“optimal” direction alignment by finding the rotation that minimizes the cumulative cost of

aligning all directional pairs between proteins. We use the random sample consensus (RAN-

SAC) method to determine the rotational matrix that aligns the angle between any two direc-

tions to be within an error threshold of 0.9 [65]. More specifically, we require that the dot

product between two directions has to be larger than 0.9 to be considered aligned in RANSAC.

The figures above compare the correlation (R) between the association metrics from SINA-

TRA Pro calculated from the structures aligned using ECT and structures pre-aligned using

RMSD for fragments of Abl1 Tyrosine protein kinase: (A) the whole protein, (B) fragment

242–502, and (C) fragment 242–315; and (D) unbound Importin-β. Correlations near one

symbolize high agreement between the two alignment schemes.

(PNG)

S1 Table. Empirical runtimes for running the SINATRA algorithm as a function of its free

parameters and inputs. Each entry represents the time (in seconds) it takes to run each step

of the SINATRA Pro algorithm based on: (i) the total number of proteins analyzed N = 50, (ii)
the number of cones of directions c = {15, 20}, (iii) the number of directions within each cone

d = {4, 8}, and (iv) the number of sublevel sets (i.e., filtration steps) used to compute the Euler

characteristic (EC) along a given direction l = {25, 50}. We simulate 10 different datasets for

each combination of parameter values. Values appearing after the ± symbol are the standard

deviations of these estimated times across the different runs. Each analysis was performed

using simulated protein structures with *2700 atoms and all runtimes were computed using a

central processing unit (CPU) with 8 cores and 128 gigabytes (GB) of RAM.

(PDF)

S2 Table. Empirical runtimes for running the SINATRA algorithm as a function of its free

parameters and inputs. Each entry represents the time (in seconds) it takes to run each step

of the SINATRA Pro algorithm based on: (i) the total number of proteins analyzed N = 100,

(ii) the number of cones of directions c = {15, 20}, (iii) the number of directions within each

cone d = {4, 8}, and (iv) the number of sublevel sets (i.e., filtration steps) used to compute the

Euler characteristic (EC) along a given direction l = {25, 50}. We simulate 10 different datasets

for each combination of parameter values. Values appearing after the ± symbol are the
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standard deviations of these estimated times across the different runs. Each analysis was per-

formed using simulated protein structures with *2700 atoms and all runtimes were computed

using a central processing unit (CPU) with 8 cores and 128 gigabytes (GB) of RAM.

(PDF)

S3 Table. Empirical runtimes for running the SINATRA algorithm as a function of its free

parameters and inputs. Each entry represents the time (in seconds) it takes to run each step

of the SINATRA Pro algorithm based on: (i) the total number of proteins analyzed N = 200,

(ii) the number of cones of directions c = {15, 20}, (iii) the number of directions within each

cone d = {4, 8}, and (iv) the number of sublevel sets (i.e., filtration steps) used to compute the

Euler characteristic (EC) along a given direction l = {25, 50}. We simulate 10 different datasets

for each combination of parameter values. Values appearing after the ± symbol are the stan-

dard deviations of these estimated times across the different runs. Each analysis was performed

using simulated protein structures with *2700 atoms and all runtimes were computed using a

central processing unit (CPU) with 8 cores and 128 gigabytes (GB) of RAM.

(PDF)
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