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Abstract.  Kisspeptin, encoded by KISS1/Kiss1 gene, is now considered a master regulator of reproductive functions in 
mammals owing to its involvement in the direct activation of gonadotropin-releasing hormone (GnRH) neurons after binding 
to its cognate receptor, GPR54. Ever since the discovery of kisspeptin, intensive studies on hypothalamic expression of 
KISS1/Kiss1 and on physiological roles of hypothalamic kisspeptin neurons have provided clues as to how the brain controls 
sexual maturation at the onset of puberty and subsequent reproductive performance in mammals. Additionally, emerging 
evidence indicates the potential involvement of extra-hypothalamic kisspeptin in reproductive functions. Here, we summarize 
data regarding kisspeptin inside and outside the hypothalamus and revisit the physiological roles of central and peripheral 
kisspeptins in the reproductive functions of mammals.
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Introduction

In the late 1940s, Harris [1] predicted the presence of hypothalamic 
releasing hormones, which are conveyed from the median eminence 

to the pituitary gland through the hypophyseal portal circulation 
to control the synthesis and secretion of pituitary hormones such 
as gonadotropins. This opened the door to the discovery of the 
hypothalamic releasing hormones. After intensive studies on the 
predicted hormones, two independent groups led by Schally [2] 
and Guillemin [3], the 1977 Nobel laureates, isolated luteinizing 
hormone-releasing hormone (LHRH), a ten-amino-acid neuropeptide, 
from the hypothalamus of pigs and sheep. This decapeptide stimulates 
both follicle-stimulating hormone (FSH) and luteinizing hormone 
(LH) secretion in several mammals [4] and, therefore, has been 
termed as the ‘gonadotropin-releasing hormone’ (GnRH).

The importance of GnRH secretion in mammalian reproduction 
was demonstrated by the pioneer experiments of Knobil and his 
colleagues in the late 1970s and early 1980s. They had established 
a GnRH replacement regimen to deliver GnRH in a pulsatile manner 
at a rate equivalent to the physiological frequency of LH pulses [5, 
6], which was observed in ovariectomized rhesus monkeys using 
radioimmunoassays [7]. This regimen successfully recovered both 
FSH and LH levels in female monkeys bearing hypothalamic lesions 
that abolished gonadotropin secretion [5]. In addition, the regimen 
successfully induced regular menstrual cycles and the withdrawal 

of GnRH reverted prepubertal female monkeys to an immature state 
[8]. The necessity of the pulsatile nature of tonic GnRH secretion 
can be understood in light of the regulation of GnRH receptors by 
GnRH itself in gonadotrophs of the anterior pituitary, because the 
continuous infusion of GnRH secretion abolished gonadotropin 
secretion in female monkeys [5]. Tonic FSH and LH secretion 
is found to be pulsatile in males and in most phases of estrous or 
menstrual cycles in females [9–12]. A positive relationship between 
GnRH and LH has been clearly demonstrated in sheep where each 
GnRH pulse in the hypophyseal portal blood corresponds to each 
LH pulse in peripheral circulation [13]. The tonic gonadotropin 
secretion is fine-tuned by negative feedback action of circulating 
estrogen derived from the ovarian follicles [14]. The mechanism of 
the feedback action, however, is largely unknown.

Besides the pulse mode of GnRH/gonadotropin secretion, the 
surge mode of GnRH release is characterized by a large amount of 
GnRH/gonadotropin secretion in females. The GnRH surge-induced 
LH surge is required to induce ovulation, a critical event in female 
reproduction [15–17]. As ovarian follicles grow larger and become 
mature, high levels of circulating estrogen exert their positive impact 
on GnRH neurons to induce a GnRH surge and hence the LH surge 
in female mammals. The GnRH surge in the hypophyseal portal 
circulation has clearly been demonstrated to correspond to the LH 
surge in peripheral circulation in sheep [17–19]. Administration of high 
doses of estrogen reproduces GnRH/LH surges in gonadectomized 
females in diverse mammalian species [16, 17, 20]. On the other 
hand, the response to high doses of estrogen in castrated males 
varies from species to species. Administration of high doses of 
estrogen induces surge-like LH secretion in male primates [21–24] 
and goats [25, 26], but not in sheep [27] and rodents [28–30]. Thus, 
the brain mechanism generating GnRH/LH surges (also known as 
the mechanism underlying the positive feedback action of estrogen) 
is likely conserved in the males of primates and goats, whereas it 
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appears sexually differentiated in sheep and rodents.
The molecular and cellular mechanism underlying the negative 

and positive feedback actions of estrogen has been a big concern in 
reproductive physiology for years. This is primarily because GnRH 
neurons do not express estrogen receptor α (ERα) [31], which is 
considered to mediate both types of estrogen feedback actions. The 
most plausible explanation was that other ERα-expressing neurons 
receive and transmit estrogen signals to the GnRH neurons and 
hence properly control GnRH neuronal activities during the estrous 
cycle in females [14, 32, 33]. In recent years, the two populations of 
hypothalamic kisspeptin neurons are found to be the targets of estrogen 
negative/positive feedback actions in order to control two modes 
(pulses and surges) of GnRH/gonadotropin secretion in mammals. 
In addition, emerging evidence indicates the potential physiological 
roles of extra-hypothalamic kisspeptin, produced in gonads, uteri, 
and placenta, on reproductive performance in mammals. The present 
review thus focuses on the roles of kisspeptin inside and outside 
the hypothalamus. A brief review of the discovery of kisspeptin is 
followed by a discussion of the physiological roles of kisspeptin in 
controlling gonadal functions in mammals.

Discovery of Kisspeptin and Its Cognate Receptors

KISS1 gene [34] and its translation product [35] was first identified 
as a gene and protein responsible for metastasis suppression in 
humans. KISS1 was isolated from human nonmetastatic melanoma 
cells in 1996 [34]. The processed 54-amino-acid peptide KISS1 
translation product was identified in human placenta as an endogenous 
ligand of GPR54, a galanin receptor-like orphan G-protein coupled 
receptor, in 2001 [35]. The peptide exhibited the ability to suppress 
tumor metastasis and was therefore designated as metastin [35]. A 
high level of KISS1 expression was found in healthy and tumorous 
human tissues [35]. Concurrently, KISS1 translation products were 
found in human placenta as endogenous ligands of GPR54 and 
designated as kisspeptins [36]. To date, the term kisspeptin has been 
preferably used in the field of reproductive biology after discussion 
at the First World Conference of Kisspeptin Signaling in the Brain, 
in Cordoba in 2008.

The amino acid sequence of processed kisspeptin deduced from 
cloned cDNA consists of 52 to 54 amino acids and is well conserved 
in most mammals examined to date [35–41]. In particular, the 
C-terminal-amidated 10-amino acid sequence, which is considered 
to bind to GPR54 [35], is identical among mammalian species, 
except for tyrosine at the C-terminal being changed to phenylalanine 
in primates. Primate kisspeptin contains the RF-amide motif at the 
C-terminal, and thus kisspeptin is classified as a member of the 
RF-amide peptide family [42]. Ours and other previous studies 
showed that human kisspeptin activated intracellular signaling by 
exhibiting potent binding affinity to GPR74 and GPR147, that are 
known receptors for neuropeptide FF and RF-amide-related peptide 
[43, 44], which are other members of the RF-amide peptide family. 
The physiological significance of kisspeptin-GPR74/147 signaling 
in reproductive biology, if any, remains to be determined. In light of 
this promiscuous relationship between peptides and receptors, the 
term GPR54/Gpr54 is used in this review instead of KISS1R/Kiss1r, 
the official gene symbol of the kisspeptin receptor.

Kisspeptin as a Gatekeeper of Puberty Onset in 
Mammals

The first evidence for the physiological significance of kisspeptin-
GPR54 signaling in the onset of puberty dates back to two independent 
findings of loss-of-function mutations of GPR54 in humans with 
hypogonadotropic hypogonadism, a pubertal failure with impaired 
secretion of gonadotropins [45, 46]. One of these research groups 
generated Gpr54 knockout mice and showed the Gpr54 knockout 
mice successfully reproduced the phenotype of human GPR54 
mutations [46]. These findings strongly suggest that GPR54 and 
its endogenous ligand kisspeptin play a key role as gatekeepers of 
sexual maturation at the onset of puberty. To date, the phenotype of 
GPR54 mutations in humans was recapitulated in loss-of-function 
mutations of KISS1 in humans [47] and in several animal models 
carrying targeted mutations in Kiss1 or Gpr54 loci [48–54].

Further analysis of the first Gpr54 knockout mouse line, which was 
generated by LacZ insertion in Gpr54 locus, revealed β-galactosidase 
activity representing GPR54 expression in normally migrated GnRH 
neurons [49]. Kisspeptin, therefore, is a key molecule that directly 
controls GnRH neurons, as opposed to contributing to the migration 
of GnRH neurons from the nasal placode in mammals. Indeed, 
kisspeptin or its C-terminal amidated decapeptide (also known as 
Kp-10) profoundly stimulates gonadotropin secretion via GnRH 
secretion [55–57]. These findings suggest that kisspeptin is a potent 
stimulator of GnRH secretion via GPR54 expressed in GnRH 
neurons. Recently, we generated Kiss1 knockout rats to evaluate the 
hormonal profiles in Kiss1 knockout animal models in more detail 
[54]. The Kiss1 knockout rats exhibited a lack of both pulse and surge 
modes of gonadotropin (both LH and FSH) secretion and failure of 
puberty onset, indicating that kisspeptin plays an indispensable role 
in generating tonic and cyclic GnRH secretion to regulate puberty 
onset and normal reproductive performance. It should be noted that 
the Kiss1 knockout male rats exhibit no male sexual behaviors, but 
showed female-like lordosis reflex, suggesting that kisspeptin is 
also indispensable for the defeminization and masculinization of 
the brain mechanism controlling sexual behaviors in male rats [58].

Hypothalamic Kisspeptin Neurons Control 
GnRH Secretion

Two populations of hypothalamic kisspeptin neurons
KISS1/Kiss1 expression and its localization in the brain were 

extensively examined in several mammalian species. Localization of 
hypothalamic kisspeptin neurons is largely similar in all mammalian 
species examined [24, 26, 39, 40, 59–63]. Hypothalamic kisspeptin 
neurons are mainly localized in two regions: the anterior region of 
the hypothalamus called the anteroventral periventricular nucleus 
(AVPV) in rodents, or the preoptic area (POA) in other species, 
and the posterior region of the hypothalamus called the arcuate 
nucleus (ARC). As shown below, kisspeptin neurons localized in 
the AVPV of rodents are possibly equivalent to those in the POA of 
goats and monkeys. In addition to the two major populations, there 
are a few additional small populations of kisspeptin neurons in the 
hypothalamus, such as ventromedial hypothalamus and paraventricular 
nucleus [64, 65]. Xu et al. [64] suggested a potential role of those 
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kisspeptin neurons in reproductive behavior. This supposition is 
consistent with our recent study showing that Kiss1 knockout rats 
exhibit abnormal sexual behavior [58].

The two major populations of kisspeptin neurons localized in 
the POA/AVPV and ARC are considered to have separate roles in 
female reproduction, because earlier studies in rodents demonstrated 
a different pattern of Kiss1 expression in these two hypothalamic 
regions. Briefly, AVPV Kiss1 expression is highest in the afternoon 
of proestrus and is positively regulated by estrogen, whereas ARC 
Kiss1 expression is negatively regulated by estrogen treatment 
in rodents [60, 62, 66, 67]. It is, therefore, likely that the AVPV 
kisspeptin neurons are a target of estrogen positive feedback action 
and hence generate the GnRH surge and that the ARC kisspeptin 
neurons are a target of estrogen negative feedback action and are 
involved in GnRH pulse generation. The bidirectional regulation of 
Kiss1 expression by estrogen might be mediated by ERα, because 
estrogen changes AVPV or ARC Kiss1 expression in ovariectomized 
ERβ knockout mice, but not in ERα knockout mice [60]. Recent 
advances in epigenetic research for the regulation of Kiss1 expression 
[68, 69] provide a clue as to how estrogen regulates Kiss1 expression 
in these two hypothalamic regions in a different manner. In the 
AVPV, estrogen-ERα complexes, which are highly recruited at the 
Kiss1 promoter, are likely involved in the histone acetylation of the 
Kiss1 promoter and the subsequent Kiss1 expression by a chromatin 
loop formation between the Kiss1 promoter and the 3′-downstream 
enhancer region [68]. In the ARC, histone acetylation of the Kiss1 
promoter and a chromatin loop formation between the Kiss1 promoter 
and the 5′-upstream enhancer region seems to be involved in Kiss1 
expression in the absence of estrogen [68, 69]. Taken together, histone 
acetylation of the Kiss1 promoter is positively correlated with Kiss1 
expression in both hypothalamic nuclei, and region-specific enhancers 
serve as switches for the bidirectional regulation of Kiss1 expression 
(Fig. 1). Further studies are warranted to elucidate how the histone 
acetylation of the Kiss1 promoter region is bidirectionally regulated 
by estrogen in the AVPV and ARC kisspeptin neurons.

Functions of the POA/AVPV kisspeptin neurons
It is well accepted that the POA/AVPV kisspeptin neurons play 

a key role as a surge generator, mediating the positive feedback 
action of estrogen to trigger the preovulatory GnRH/LH surge in 
female mammals (Fig. 2). The AVPV has been considered to be a 
site of positive feedback action of estrogen in rats for years, because 
estrogen microimplants in this region successfully evoked, but 
electrical lesion of this region abolished the LH surge in rats [20, 
70]. Besides previous studies, the POA/AVPV kisspeptin neurons 
are well accepted to be equipped with a GnRH surge-generating 
mechanism. The POA/AVPV kisspeptin neurons express ERα [40, 
60, 62, 67] and their KISS1/Kiss1 expression is induced by estrogen in 
a variety of mammals [24, 26, 39, 40, 60, 62, 71]. The physiological 
roles of kisspeptin in the induction of LH surge were demonstrated 
by a blockade of preovulatory or estradiol-induced LH surges with 
a microinjection of anti-kisspeptin antibody into the POA in rats 
[62, 66], or with a central injection of a kisspeptin antagonist in 
sheep and rats [72, 73].

In rodents, the distribution of AVPV kisspeptin neurons is sexually 
differentiated: Female rodents exhibit a large number of kisspeptin 

neurons along the ventricle of the AVPV, whereas males show only 
a few scattered kisspeptin neurons in this nucleus [61, 62, 74]. The 
sexual dimorphism of AVPV kisspeptin neurons is caused by an 
organizational effect of steroids secreted by perinatal testes, because 
neonatal castration in male rats allows estrogen-induced AVPV Kiss1 
expression in genetically male rats [29]. On the other hand, female 
rats with neonatal androgen/estrogen treatment display a male-like 
pattern of AVPV Kiss1 expression at adulthood [29, 74]. Thus, it is 
plausible that estrogen converted from perinatal testicular androgen 
causes defeminization of the AVPV kisspeptin system in rodents.

The sexual dimorphism in AVPV kisspeptin neurons is likely 
responsible for the sexually differentiated mechanism underlying LH 
surge generation in rodents: Orchidectomized male rodents did not 
show a LH surge even if they received preovulatory levels of estrogen 
[28–30]. There are species differences in the sexual dimorphism 
of the LH surge generating system, because the estrogen-induced 
LH surge is evident in castrated male primates [22, 24] and goats 
[25, 26] as described earlier in this review. Recent studies [24, 26] 
demonstrated preovulatory levels of estrogen-induced POA KISS1 
expression and/or c-Fos expression detected in the kisspeptin neurons 
in males of these species. Thus, unlike rodents, the inherent LH 
surge generating system seems to be conserved in male monkeys 
and goats at adulthood. The responsiveness to estrogen in the POA 
kisspeptin neurons in monkeys and goats is likely to be lower in 
males than females: The numbers of the POA kisspeptin neurons 
in male monkeys and c-Fos expressing kisspeptin neurons in male 
goats are fewer than those in females in the presence of preovulatory 
levels of estrogen [24, 26]. Thus, the POA kisspeptin neurons in 

Fig. 1. Schematic illustration of the molecular and epigenetic mechanism 
underlying hypothalamic Kiss1 expression. (A) In the anteroventral 
periventricular nucleus (AVPV), estrogen-estrogen receptor α 
(ERα) complex induces Kiss1 expression via histone acetylation 
of the Kiss1 promoter and chromatin loop formation between the 
Kiss1 promoter region and the 3'-downstream region. (B) In the 
arcuate nucleus (ARC), histone acetylation of the Kiss1 promoter 
and chromatin loop formation between the Kiss1 promoter region 
and the 5'-upstream region via unknown transcriptional factor(s) 
seems to be involved in Kiss1 expression. Ac, histone acetylation.
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monkeys and goats are sensitive to testicular androgen during 
the developmental period as suggested in rodents and are partly 
defeminized by estrogen during the period. It might be dependent 
on species differences in the timing of androgen secretion from the 
fetal testes and the critical period window of brain organization 
and differentiation. Indeed, gestational androgen exposure induces 
polycystic ovary syndrome in rhesus monkeys [75], suggesting a 
dysfunction of the LH surge generating system. It should be noted 
that estrogen failed to induce the LH surge in intact male monkeys 
[16], probably because of the inert mechanism generating the LH 
surge in the presence of androgen.

The involvement of the POA kisspeptin neurons in inducing LH 
surge is still open to dispute in sheep. Conflicting evidence exists 
regarding estrogen-induced POA KISS1 expression in ewes [63, 
71]: Estrogen did not always exert a stimulatory influence on KISS1 
expression in this nucleus. Ewes exhibit higher KISS1 expression in 
both the POA and ARC at the late follicular phase compared to the 
luteal phase [63]. Hoffman et al. [76] showed the activation of POA 
but not ARC kisspeptin neurons at the timing of LH surge in ewes. 
Further studies are required to evaluate the role of POA kisspeptin 
neurons in the induction of LH surge in ewes. The involvement 
of ARC kisspeptin neurons in GnRH/LH surge generation will be 
discussed in the next section of this review.

Functions of the ARC kisspeptin neurons
The ARC kisspeptin neurons are considered a part of the GnRH 

pulse generator. A method for detecting the ARC multiple unit activity 
(MUA) volleys has been introduced to rhesus monkeys in 1980s 

[77], then to rats [78], and finally goats [79]. The ARC MUA volleys 
correspond to LH pulses and therefore are considered to represent 
the activity of the GnRH pulse generator. The ARC kisspeptin 
neurons would be the source of the periodic MUA volleys, because 
MUA volleys are successfully monitored only when the recording 
electrodes are placed in close proximity to the kisspeptin neurons 
in the goat ARC [38]. The ARC kisspeptin neurons project their 
fibers to the median eminence, where kisspeptin fibers are closely 
associated with GnRH fibers in rats and goats [80, 81]. This suggests 
that GnRH neuronal terminals in the median eminence are one of 
the action sites of kisspeptin for stimulating GnRH secretion [80, 
81]. In this context, Keen et al. [82] showed pulsatile kisspeptin 
secretions at the median eminence and most of the secretions were 
correlated with GnRH pulses in rhesus monkeys.

The morphological characteristics of the ARC kisspeptin neurons 
bring us a better understanding of the GnRH pulse generator. In 2007, 
Goodman et al. [83] discovered that two neuropeptides, neurokinin 
B and dynorphin A, are colocalized in the ARC kisspeptin neurons 
in sheep. Since then, the ARC kisspeptin neurons are referred to 
as KNDy (kisspeptin/neurokinin B/dynorphin A) neurons [84]. 
The colocalization of the three neuropeptides in the ARC was then 
confirmed in other mammals, such as mice and goats [85, 86]. 
Wakabayashi et al. [86] demonstrated that neurokinin B facilitated, 
and dynorphin A inhibited, the frequency of MUA volleys in goats. 
The effects of neurokinin B and dynorphin A on LH pulses were 
then confirmed in sheep [87]. These findings suggest that the KNDy 
neuron is an intrinsic source of the GnRH pulse generator, in which 
the two neuropeptides may function in an autocrine and/or paracrine 
manner (Fig. 3). Indeed, most KNDy neurons express tachykinin 
receptor 3 (NK3R), a receptor for neurokinin B, in sheep [88] 

Fig. 2. Schematic illustration of the brain mechanism controlling 
the preovulatory gonadotropin-releasing hormone (GnRH)/
luteinizing hormone (LH) surge in mammals. Estrogen derived 
from the mature follicles exerts a positive feedback action on 
Kiss1 expression in the preoptic area (POA)/AVPV. Kisspeptin 
appears to act on GnRH neuronal cell bodies and triggers GnRH/
LH surge and subsequent ovulation in females.

Fig. 3. Schematic illustration of the brain mechanism generating GnRH 
pulses in mammals. The most plausible explanation is that, in the 
ARC, KNDy neurons are an intrinsic source of GnRH pulses; 
under this condition, neurokinin B (NKB) stimulates, while 
dynorphin A (Dyn) inhibits, synchronized neuronal activity 
among KNDy neurons. The interaction of these peptides probably 
generates pulsatile kisspeptin secretion. Kisspeptin appears to act 
on the GnRH neuronal terminals and generates pulsatile secretion 
of GnRH and hence gonadotropin, which regulates ovarian 
follicular development and testicular spermatogenesis.
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and mice [85]. Thus, it is likely that neurokinin B is involved in 
the generation of intermittent bursts of KNDy neurons via NK3R 
activation and that kisspeptin transmits the pulse generator activity 
toward the GnRH neurons [86, 87, 89]. On the other hand, dynorphin 
A has been suggested to terminate the burst activity of the GnRH 
pulse generator via an unknown mechanism(s), because only a small 
number of KNDy neurons express κ-opioid receptors, which are 
receptors for dynorphin A [85, 90]. The transmitter phenotypes of 
neurons expressing κ-opioid receptors, which are involved in GnRH 
pulse generation, remain an open question.

Interestingly, the ARC kisspeptin neurons might also be involved 
in GnRH/LH surge generation as well. In sheep, the number of ARC 
KISS1-expressing cells increased in the late follicular phase [63, 
91]. Merkley et al. [92] suggested that an activation of the ARC 
kisspeptin neurons as well as their POA population determines the 
timing of LH surge in sheep. Similarly, the activation of kisspeptin 
neurons located in the ARC and AVPV of rats at the proestrous stage 
was found in an earlier study [66]. Recently, O'Byrne and colleagues 
[93] showed that the reduction of ARC kisspeptin expression by 
virus-induced Kiss1-antisense expression resulted in a decrease in 
the amplitude but not in the incidence of LH surge in rats. Thus, 
the ARC kisspeptin neurons may play some roles in the generation 
and/or amplification of GnRH/LH surges in rats.

Extra-hypothalamic Kisspeptins

Emerging evidence indicates the potential involvement of extra-
hypothalamic kisspeptin in reproductive functions. Table 1 summarizes 
the localization and potential roles of kisspeptin located outside the 
hypothalamus.

Kisspeptin neurons in the limbic system and hippocampus
Kisspeptin neurons have been found in the medial amygdala and 

the bed nucleus of stria terminalis, a limbic system [59, 64, 94]. In 
addition, Kiss1 expression was also found in the rat hippocampus 
at lower levels than in the two major hypothalamic populations or 
in the amygdala [95]. Limbic and hippocampal Kiss1 expression 
seems to be controlled by sex steroids: Estrogen increases Kiss1 
expression in the limbic system in rats and mice of both sexes 
[64, 94], whereas androgen decreases Kiss1 expression in male rat 
hippocampus [96]. In the medial amygdala, Kiss1 expression shows 
sexual dimorphism with males having more kisspeptin neurons than 
females [94]. Compared to the hypothalamic kisspeptin neurons, 
little is known about the physiological role of kisspeptin neurons 
in the limbic system and hippocampus. Recently, Pineda et al. [97] 
showed reciprocal connectivity between the accessory olfactory 
bulb and the amygdala kisspeptin neurons, suggesting the role of 
amygdala kisspeptin neurons as putative mediators of olfactory 
control of the reproductive function in rodents. Indeed, Comninos et 
al. [98] and Gresham et al. [99] showed that injection of kisspeptin 
into the amygdala enhanced LH secretion in rats, suggesting that 
kisspeptin-GPR54 signaling in the amygdala may have a physiological 
role in stimulating LH secretion in rats.

Ovarian kisspeptin
Kisspeptin expression has been found in the ovary of rats [100, 

101], but the results are inconsistent between these studies. Castellano 
et al. [100] showed kisspeptin-immunoreactivities in the theca layers 
of growing follicles, the corpora lutea, and the interstitial tissue of 
the rat ovary. In contrast, Laoharatchatathanin et al. [101] showed 
Kiss1 mRNA almost solely in the follicles of rat ovary using the laser-
capture microdissection technique. Both studies showed a transient 
increase in Kiss1 mRNA at the proestrus or after human chorionic 
gonadotropin (hCG) stimulation. Ovarian Kiss1 expression seems 
to be controlled by preovulatory LH surge [100] and a kisspeptin 
antagonist exerts a negative influence on the shape of the corpus 
luteum in vivo and progesterone production from granulosa cells in 
vitro [101]. These suggest that ovarian kisspeptin may serve as a 
local regulator of luteinization. On the other hand, Ricu et al. [102] 
suggested that ovarian kisspeptin acts as a local regulator of follicular 
development, because local administration of the same kisspeptin 
antagonist at a higher dose exerts a negative influence on puberty 
onset and estrous cyclicity without changes in plasma LH levels in 
rats. Recently, two groups showed that ovarian Kiss1 expression is 
higher in aged rats and mice than in young ones and suggested a 
possible role of ovarian kisspeptin in reproductive senescence, in 
particular ovarian aging [103, 104].

Recently, forced ovulation in Kiss1 or Gpr54 knockout mice was 
reportedly achieved by a combination of estradiol priming and a 
standard superovulation protocol using equine CG and hCG [105]. 
In addition, the oocytes collected from Kiss1 knockout mice were 
successfully fertilized with wildtype mouse sperm and developed 
to the blastocyst stage in vivo. This suggests that ovarian kisspeptin 
is dispensable for oocyte maturation. Further studies are warranted 
to clarify the role(s) of local kisspeptin in oocyte fertilizability and 
developmental ability.

Testicular kisspeptin
There are conflicting results on the Kiss1/kisspeptin expression 

in the testis. Mei et al. [106] found Kiss1 or Gpr54 promoter-driven 
β-galactosidase activity in the testis as well as in the hypothalamus 
of knock-in mice carrying targeted mutations in Kiss1 or Gpr54 loci 
with a LacZ insertion. More specifically, the β-galactosidase activity 
was almost solely found in haploid spermatids. The same study failed 
to detect any kisspeptin-immunoreactivities in spermatids, suggesting 
that the Kiss1 mRNA may be translationally repressed in mice.

Pinto et al. [107] reported that kisspeptin- and GPR54-
immunoreactivities were found in mature human spermatozoa 
and suggested that kisspeptin-GPR54 signaling may control sperm 
motility and hyperactivation. So far, there is little physiological 
evidence regarding the function of the sperm, such as motility and 
fertility. The functions of the sperm should be analyzed in Kiss1 or 
Gpr54 knockout animal models to resolve this conflict.

Placental and uterine kisspeptin: an implication to 
implantation

Kisspeptin was first identified in human placenta [35, 36], because 
it is highly expressed in the syncytiotrophoblast cells of the placenta 
[108, 109] and its concentrations in the maternal blood markedly 
increased throughout the period of pregnancy [108, 110]. In rat 
placenta, kisspeptin expression is found in the trophoblast giant 
cells and transiently increases at embryonic day 12 when the embryo 
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exhibits the implantation [37]. This suggests that kisspeptin may be 
involved in the implantation in rodents, though the physiological 
role(s) of large amounts of placental kisspeptin is presently unknown 
even in humans.

Kiss1 and Gpr54 expression is also found in uteri in mice. Zhang 
et al. [111] showed that both Kiss1 and Gpr54 expression increases 
with the initiation of implantation and the progression of uterine 
decidualization. Calder et al. [105] showed that Kiss1 heterozygous 
embryos failed to implant in superovulated Kiss1 knockout mice. Thus, 
uterine kisspeptin is likely involved in the implantation process. In 
addition, Calder et al. [105] showed insufficient expression of leukemia 
inhibitory factor, a cytokine absolutely required for implantation in 
mice [112], and the administration of leukemia inhibitory factor to 
superovulated Kiss1 knockout females was sufficient to partially rescue 
the implantation of Kiss1 heterozygous embryos. These studies may 
indicate a novel role of uterine kisspeptin in embryonic implantation.

Conclusion and Unanswered Questions

Ever since the discovery of kisspeptin in 2001, intensive studies 
on hypothalamic expression of KISS1/Kiss1 and on physiological 
roles of hypothalamic kisspeptin neurons have provided a clue as to 
how the brain controls sexual maturation at the onset of puberty and 
subsequent reproductive performance in mammals. As described in 
this review, the two major populations of hypothalamic kisspeptin 
neurons are considered centers generating GnRH pulses and surges. 
There are still some important unanswered questions on hypothalamic 
kisspeptin neurons. First, it remains unclear how the ARC kisspeptin 
neurons are synchronized to each other in order to generate the pulsatile 
kisspeptin and hence GnRH secretion. Morphologically, the fibers 
of the kisspeptin neurons extend over the whole ARC, indicating 
a neuronal connection among kisspeptin neurons. Second, afferent 
inputs to the ARC kisspeptin neurons remain unsettled. In particular, 
inhibitory inputs to the ARC kisspeptin neurons responsible for 
physiological restriction of GnRH/gonadotropin secretion during the 
prepubertal and lactation periods are still poorly understood. Our recent 
study demonstrates that kisspeptin neurons integrate the stimulatory 
inputs of glutamatergic and noradrenergic neurons to stimulate 
GnRH secretion in rats [54]. Thus, such stimulatory inputs may be 
suppressed or inhibited during the prepubertal and lactation periods, 
and besides, particular inhibitory inputs to kisspeptin neurons, if any, 

may mediate GnRH/gonadotropin suppression under the adversity.
In contrast to the intra-hypothalamic roles of kisspeptin, little is 

known about the physiological significance of kisspeptin produced 
in the extra-hypothalamic tissues as mentioned in the last part of the 
present review. So far, the results obtained from the Kiss1 or Gpr54 
knockout animal models demonstrated that a central defect of Kiss1 
expression accounts for a large portion of the hypogonadotropic 
hypogonadism. These results, however, cannot eliminate the possibility 
that extra-hypothalamic kisspeptin serves as an autocrine/paracrine 
factor in order to exert its physiological role in the peripheral tissues. 
Further investigation is needed in order to uncover the peripheral 
mechanisms controlling reproduction in mammals, in which kisspeptin 
plays a role.
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