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The food waste generated by small and medium agro-industrial enterprises

requires appropriate management and valorization in order to decrease

environmental problems and recover high-value products, respectively. In

this study, the Camelina sativa seed by-product was used as a source of

glucosinolates. To begin, the chemical profile of the extract obtained using an

international organization for standardization (ISO) procedure was determined

by UPLC-HRMS/MS analysis. In addition, an extraction method based on

ultrasound-assisted extraction was developed as an alternative and green

method to recover glucosinolates. Main parameters that affect extraction

efficiency were optimized using a response surface design. Under optimized

conditions, the extract showed an improvement in extraction yield with a

reduction in organic solvent amount compared to those obtained using

the ISO procedure. Finally, the extract obtained with the ultrasound-assisted

method was purified, tested on human colorectal cancer cell lines, and

showed promising results.

KEYWORDS
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Introduction

Several epidemiological studies suggest a relationship between cruciferous
vegetable intake and risk of several types of cancer. Higher intakes of cruciferous
vegetables (more than three servings per week) have been associated with significant
reductions in the risk of lung, stomach, and colorectal cancers, and with less
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consistent reductions in the risk of prostatic, endometrial,
and ovarian cancers (1–4). Recent studies indicate that
glucosinolates and their breakdown products including
indoles and isothiocyanates have a beneficial health effect
and may contribute to reduction of neurodegenerative and
cardiovascular diseases when taken as part of the diet [(5–7);
Le (8, 9)]. Glucosinolates (GLSs) are secondary metabolites
produced by cruciferous plants. They accumulate at a high
concentration in many species belonging to the Brassicaceae
family. Nowadays more than 120 different glucosinolates have
been identified in many plants such as mustard, cabbage,
cauliflower, broccoli, and radish. The composition and
concentration of GLSs have been shown to vary from one
species to another and in a single variety depending on plant
environment, crop conditions, age, and health (10–12). GLSs
play an important role in plant protection (13, 14). In fact,
these compounds remainin active unless they interact with an
enzyme called myrosinase, which converts them into glucose
and aglycones first and then into other molecules such as nitriles
or isothiocyanates (15). The glucosinolate-myrosinase system
is used as defense against the aggression of external plants,
and for these reasons GLSs are also used as natural pesticide
and biofumigation agents (16, 17). Different chemical and
biological properties are the reason why these plant secondary
metabolites attract the attention of several researchers (18).
Camelina sativa L. is one of the plants in which GLSs are found.
C. sativa appears to be an interesting agricultural crop because
of its good oil yield with an omega-3 fatty acid content, which
makes it a promising alternative source of essential fatty acids
(19). C. sativa seed-press cake (PC) represents a co-product of
a food chain particularly rich in interesting compounds such
as glucosinolates, which could be used in the pharmaceutical,
cosmetics, and food industries and whose valorization makes
the entire supply chain environmentally and economically
sustainable (19). However, in order to exploit Camelina sativa
PC as a source of bioactive compounds, it is necessary to
develop adequate extraction methods to reduce time, cost, and
environmental pollution (20). Current GLS extraction methods
involve several time-consuming and potentially hazardous
steps. These steps are lyophilization, tissue disruption, and
a long and laborious extraction protocol involving double
extraction with boiling aqueous methanol.

In this study, a green extraction procedure was developed
for recovery of glucosinolate compounds from by-products
of C. sativa seeds. Initially, the international standard method
ISO9167-1 (21) usually used for GLS extraction in order to
obtain a reference extract characterized by ultra-pressure
liquid chromatography (UPLC) coupled with a high-
resolution mass spectrometry (HRMS) detector. After the
chemical characterization, an extraction method based on
ultrasound assisted (USA) technology using green solvents
(water and ethanol) was developed. The main parameters
of ultrasound-assisted solid liquid extraction (USAE) were
carefully optimized using an experimental design to improve

the extraction efficiency and reduce the consumption of
organic solvents. Under optimized extraction conditions,
the developed method demonstrated better efficiency than
those obtained using the ISO procedure. Furthermore, a
rapid procedure based on solid phase extraction (SPE)
was applied on the USA extract to purify and concentrate
glucosinolate compounds. Finally, the anticancer activity
of the purified extract was measured in vitro on human
colorectal cancer cell lines by viability assay to evaluate putative
nutraceutical properties. Enriched glucosinolate fractions
displayed selective cytotoxic activities against tumor cell lines
but not against healthy lines and showed promising results
for future studies.

Materials and methods

Standards and materials

MS-grade solvents used for UPLC analysis, acetonitrile
(MeCN) water (H2O), and formic acid (HCOOH), were
provided by Romil (Cambridge, United States); analytical-
grade solvents methanol (MeOH) and ethanol (EtOH) were
supplied by Sigma-Aldrich (Milan, Italy). Water was purified
using a Milli-Q system (Millipore, Bedford, United States).
Acetic acid (Sigma-Aldrich) and ammonium hydroxide
solution were provided by Sigma-Aldrich (Milan, Italy).
Glucoarabinin potassium salt, glucocamelinin potassium salt,
and homoglucocamelinin potassium salt were purchased from
Extrasynthese (Lyon, France). Stock standard solutions (1 mg
ml−1) of each compound were prepared using methanol and
stored at 4◦C. Diluted solutions and mixtures were made in
MeOH:H2O 1:1, (v:v).

Samples

Camelina sativa PC was supplied by FlaNat Research
srl (Milan, Italy). After cold oil extraction, the PC by-
product was immediately finely blended using a knife mill,
Grindomix GM-200 (Restek GmbH, Germany) operated at
6,000 rpm for about 30 short cycles of approximately 15 s
each to prevent the samples from heating. The ground samples
were sieved through a test sieve in the range of 300–
600 µm to obtain a powder with homogeneous particle size
distribution and stored in the dark at -80◦C in polyethylene
bags until analysis.

Optimization of ultrasound-assisted
extraction

Extraction of GLS compounds from PC was performed
by ultrasound-assisted solid liquid extraction (USAE). For
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each extraction, 1 g of finely ground sample was placed in
a 50-ml polypropylene tube, and an extraction solvent was
added to the sample. Then, the tube was gently shaken by
hands for a few seconds and immersed in an ultrasonic
bath (frequency 35 kHz; power 60–120 W; Sonorex TK 52;
Bandelin electronic, Berlin, Germany). During the extraction,
the temperature of the water bath was continuously monitored
and adjusted to maintain a constant temperature of 30◦C.
At the end of each extraction cycle, lasting 5 min for
each, the samples were centrifuged (ALC centrifuge PK 120;
Thermo Electro Corporation, San Jose, CA, United States)
at 19.8 g. The supernatant was collected with a Pasteur
pipette, filtered (Whatman No. 1 filter), and analyzed by
UPLC-HRMS. To select the best extraction conditions, a
central composite experimental design (CCD) was performed
using Statgraphic Centurion XVI Version 16.1 (Rockville,
MD, United States). The effect of four independent factors
on extraction efficiency and the total amount of EtOH were
studied through an experimental design. The range for each
factor was selected by preliminary experiments. In particular,
a response surface Box-Behnken design 2-factor interaction
was carried out considering three variables at three different
levels (low, medium, and high): solvent volume (vol) at 5,
10, and 15 ml; number of cycles (n◦) 2, 3, and 4; and
composition of solvent (EtOH%) 40, 60, and 80%. Four response
variables were individually considered in the optimization of
the extraction conditions: the extraction yield of each GLS
was expressed as µg g−1of dry matter (ug/g DM) and total
ethanol used (ml). A total of 16 experiments (16 points of

the factorial design, 4 center points, and 6 freedom degrees)
were carried out in a randomized run. Optimal experimental
conditions that independently maximized extraction efficiency
and minimized the total amount of EtOH used were obtained
from a fitted model. Analysis of variance (ANOVA) was
conducted to evaluate the statistical significance of independent
variable contributions and their first-order interactions. The
experimental matrix design, with the experimental conditions of
each independent variables, and the results of experimental GLS
extraction yield (µg/gDM) and total EtOH used (ml) from 16
selected combinations of the independent variables, are reported
in Table 1.

Purification of glucosinolates by
solid-phase extraction

A solid-phase extraction procedure was developed in order
to obtain an extract rich in GLSs and to perform cellular assays.
Briefly, strong anion exchange (SAX) Mega Bond Elute NH2

cartridges (1 g) were activated with methanol and equilibrated
with 1% acetic acid in water. The ultrasound-assisted solid
liquid extract was loaded onto an NH3

+ cartridge and washed
with 5 ml of MeOH 1% acetic acid; finally, the glucosinolate
fraction was eluted with 10 ml of freshly prepared H2O
2% NH4OH solution. The purified extract was evaporated to
dryness in a vacuum evaporator at 40◦C, dissolved in water at
a concentration of 1 mg ml−1, and filtered with a 22-µm PES
filter before cellular assays.

TABLE 1 Experimental conditions of the response surface design and experimental values of the response variables.

Independent variables Response variables

Experimental
condition

EtOH
(%)

Volume
(mL)

Cycles
(n◦)

Glucoarabinin
(µg/gDM)

Glucocamelinin
(µg/gDM)

Homoglucocamelinin
(µg/gDM)

Tot EtOH
(mL)

1 40 5 3 493 1047 215 6

2 60 5 2 911 1984 387 6

3 80 10 2 832 1900 380 16

4 40 10 4 264 443 178 16

5 80 5 3 981 2234 428 12

6 80 10 4 1268 2981 568 32

7 80 15 3 1417 3240 631 36

8 40 10 2 526 1181 222 8

9 60 15 2 1304 3046 562 18

10 60 10 3 1166 2722 501 18

11 60 10 3 1221 2773 510 18

12 60 10 3 1269 2855 532 18

13 40 15 3 274 408 183 18

14 60 10 3 1142 2649 490 18

15 60 5 4 1180 2553 463 12

16 60 15 4 1354 2910 601 36
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Qualitative and quantitative analyzes
by high-resolution mass spectrometry
(HRMS)/MS analysis

Qualitative and quantitative analyzes of GLSs were carried
out using an acquity UPLC system coupled with a Xevo
G2-XS QT mass spectrometer (Waters Corp., Milford, MA,
United States). The mass spectrometer equipped with an
electrospray ion source (ESI) was used in negative and positive
ionization modes to acquire full-scan MS, and spectra were
recorded in the range of 50–1,000 m/z. The source parameters
were as follows: electrospray capillary voltage 2 kV, source
temperature 150◦C, and desolvation temperature 600◦C. The
cone and desolvation gas flow was 20 and 900 L h−1,
respectively, and a scan time of 0.3 s was employed. Cone
voltage was set at 70 V and source offset at 20. The mass
spectrometer was calibrated with 0.5 M sodium formate, and
100 pg µl−1of standard leucine-enkkephaline at m/z 554.2615
was infused with the flow of column at 5 µl min−1 as the
lock mass and acquired for 1 s every 30 s. The total ion
current (TIC) used for qualitative analysis was acquired, and
an MS/MS spectrum of each compound at different collision
energy was acquired and compared to reference standards on
which GLS identification was performed. A quantitative analysis
was performed using multiple reaction monitoring (MRM)
data acquisition mode and by monitoring three characteristic
fragments for each target compounds of the [M + H]-
ion of glucoarabinin (506.1523 > 442.14, 248.11, and 96.96)
glucocamelinin (520.1684 > 456.16, 262.12, and 96.96), and
homoglucocamelinin (534.1819 > 470.18, 276.14, and 96.96)
and ramping collision energy from 25 to 30 V to produce
abundant product ions before detection. In order to quantify the
GLS compounds in the extracts, an external standard calibration
was conducted six points between 0.01 and 10 µgmL−1.
Each level was acquired in triplicate. An analysis of variance
(ANOVA) was carried out to test the regression curves, and
the linear model was found appropriate over the concentration
range (R2 values > 0.9992). Precision and intraday repeatability
were also estimated in all the concentration levels with a
coefficient of variation lower than 5%. The results of the
quantitative analysis for each analyte were expressed as µg g−1of
dry matter (DM). The Mass Lynx software (version 4.2) was used
for instrument control, data acquisition, and processing.

Cell cultures

CCD841 (ATCC R© CRL-1790TM) healthy human mucosa cell
lines and CaCo-2 (ATCC R© HTB 37TM) human colorectal cancer
cells were grown in an EMEM medium supplemented with heat
inactivated 10% fetal bovine serum (FBS), 2 mM L-glutamine,
1% non-essential amino acids, 100 U ml−1penicillin, and 100 µg
ml−1 streptomycin. E705 (kindly provided by Fondazione

IRCCS Istituto Nazionale dei Tumori, Milan, Italy) and SW480
(ATCC R© CCL-228TM) human colorectal cancer cells were grown
in an RPMI 1640 medium supplemented with heat-inactivated
10% FBS, 2 mM L- glutamine, 100 U ml−1penicillin, and
100 µg ml−1streptomycin. All the cell lines were maintained
at 37◦C in a humidified 5% CO2 incubator. ATCC cell
lines were validated by short-tandem repeat profiles that are
generated by simultaneous amplification of multiple short-
tandem repeat loci and amelogenin (for gender identification).
All the reagents for cell cultures were supplied by Lonza (Lonza
Group, Basel, Switzerland).

Viability assay

Cell viability was investigated using an MTT-based in vitro
toxicology assay kit (Sigma, St. Louis, MO, United States)
according to the manufacturer’s protocols. The different cell
lines were seeded in 96-well microliter plates at a density
of 1 × 104 cells/well, cultured in a complete medium,
and treated after 24 h with 400 and 800 µg ml−1of
glucosinolate purified extract. After 48 h at 37◦C, the medium
was replaced with a complete medium without phenol red
containing 10 µl of 5 mg ml−1MTT [3-(4,5-dimethylthiazol-
2-yl)-2.5-diphenyltetrazolium bromide]. After 4 h of additional
incubation for CCD841 and 2 h for CRC cells lines, formazan
crystals were solubilized with 10% Triton X-100 and 0.1 N HCl
in isopropanol, and the absorbance was measured at 570 nm
using a microplate reader. Cell viabilities were expressed as a
percentage against the untreated cell lines used as controls. Two
types of statistical analyzes were used using R (version 4.0.0)
and GraphPad Prism 8. A general linear model (GLM) was
used to evaluate the dose-dependency of the cell lines, while
a 2-way ANOVA with Tukey multiple comparison test was
conducted to understand differences between the lines at the
same concentration of the extract. The significance threshold
was set at p = 0.05.

Enzyme assays

To evaluate the effect of glucosinolates on enzymatic
activities, CRC cell lines and healthy cell lines were seeded
at 1 × 106 cells/100 mm dish and treated for 48 h with the
extract at 400 and 800 µg ml−1. The cells were rinsed with
ice-cold PBS and lysed in 50 mM Tris-HCl (pH 7.4), 150 mM
NaCl, 5 mM EDTA, 10% glycerol, and 1% NP-40 containing
protease inhibitors (1 µM leupeptin, 2 µg ml−1aprotinin, 1 µg
ml−1pepstatin, and 1 mM PMSF). Homogenates were obtained
by passing the cells 5 times through a blunt 20-gauge needle
fitted to a syringe and then centrifuging them at 15,000 g for
30 min at 4◦C. Enzyme activities were assayed on supernatants.
Glutathione S-transferase (GST) was measured as reported in
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Habig (Habig et al., (22)) using 1 mM reduced glutathione
(GSH) and 1 mM 1-chloro-2,4-dinitrobenzene (CDNB) as
substrates in the presence of a 90-mM potassium phosphate
buffer (pH 6.5),and the reaction was monitored at 340 nm.
Superoxide dismutase (SOD) was measured using an indirect
method according to Vance [Vance et al., (23)]. This technique
is based on the ability of SOD to compete with ferricytochrome
c for superoxide anions generated by the xanthine oxidase
system and, thus, to inhibit the reduction of ferricytochrome
c. Briefly, the protein samples were incubated with 0.01 mM
ferricytochrome c in 10 mM HEPES-Tris (pH 7.5), 0.1 mM
EDTA, 0.01 mM xanthine in 1 mM NaOH, and xanthine
oxidase at a final concentration of 0.006 U/ml. Under these
conditions, one unit of SOD is the amount of enzyme able to
yield a 50% decrease in the rate of ferricytochrome c reduction
followed at 550 nm. All the assays were performed in triplicate at
25◦C with a Jasco V-550 spectrophotometer and analyzed with
the Spectra Manager (version 1.33.02) software of Windows.
A linear model was chosen for statistical analyzes of enzymatic
assays to evaluate differences against a control set at fold = 1.
The significance threshold was set at p = 0.05.

Results and discussion

Initially, a chemical characterization of phytochemical
compounds in the Camelina seed by-product was performed
by UPLC-HRMS. The full ms chromatograms are shown
in Supplementary Figure 1, and a list of the tentatively
identified phytochemicals numbered according to elution
order is shown in Supplementary Table 1. The untarget

analysis in negative ion mode allowed for identification of 11
metabolites belonging mainly to two classes, polyphenols and
glucosinolates. The results of the qualitative analysis was in
accordance with literature data (24–27). However, among all
the compounds found in the extract, our attention was focused
on glucosinolates. The analysis of chromatogram in full MS
and MS/MS mode allowed for us to identify the presence of
three main glucosinolates in the extract, which were assigned as
glucoarabinin, glucocamelinin, and homoglucocamelinin. The
identification was based on retention time and UV and MS/MS
spectra and finally confirmed with commercial standards. The
results of the qualitative analysis were in accordance with
literature data (25, 28, 29). The individual and total GLS
contents in Camelina sativa seeds were investigated using an
international standard method (ISO 9167-1) with some slight
modifications and avoiding the desulfation step. A quantitative
analysis of the ISO method was carried out using a selective
MRM method, and the results showed that the amount of
glucoarabinin, glucocamelinin, and homoglucocamelinin was
304.3± 62, 403.3± 23, and 262.6± 87 µg g−1DM, respectively.

Optimization of glucosinolate
extraction

Selection of solvent composition
Given the interesting content of GLSs in the extract of

C. sativa PC, especially considering that the matrix used is
an industry by-product, we decided to develop and optimize
a green extraction method based on ultrasound-assisted
extraction (USAE) to improve extraction yield and reduce the

FIGURE 1

Glucosinolate peak area vs. organic solvent percentage, ethanol (solid line) and methanol (dashed line).
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TABLE 2 Analysis of variance of the regression model.

Sum of squares Mean square

Glucoarabinin Glucocamelinin Homo glucocamelinin Tot EtOH Glucoarabinin Glucocamelinin Homo glucocamelinn Tot EtOH

A: EtOH% 10801.6 66195.2 1826.8 286.8 10801.6 66195.2 1826.8 286.8

B: Volume 769.3 3988.1 293.5 836.4 769.3 3988.1 293.5 836.4

C: Cycles 303.7 749.0 83.3 187.2 303.7 749.0 83.3 187.2

A2 7626.5 40568.0 961.2 6.8 7626.5 40568.0 961.2 6.8

B2 31.6 4.2 4.9 5.5 31.6 4.2 4.9 5.5

C2 66.0 539.9 10.4 5.8 66.0 539.9 10.4 5.8

AB 1073.6 6761.8 137.5 34.2 1073.6 6761.8 137.5 34.2

AC 1218.4 8271.0 135.3 20.3 1218.4 8271.0 135.3 20.3

BC 119.0 1241.9 3.5 109.2 119.0 1241.9 3.5 109.2

Lack of fit 309.1 2120.5 42.0 27.0 103.0 706.8 14.0 9.0

Pure error 97.1 224.9 9.9 0.1 32.4 75.0 3.3 0.0

Total 22415.9 130665.0 3508.2 1519.2

R2 98.2 98.2 98.5 98∼=0.2

Adj. R2 95.5 95.5 96.3 95.5

F-value P-value

Glucoarabinin Glucocamelinin Homoglucocamelinin Tot EtOH Glucoarabinin Glucocamelinin Homoglucocamelinin Tot EtOH

A: EtOH% 333.6 882.9 550.8 7821.9 0.0004a 0.0001a 0.0002a 0.0000a
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use of chemicals and environmental impact. As commonly
reported in the literature, one of the most important parameters
that affect the extraction efficiency in USAE process is the
composition of the extraction solvent. For this reason, to
replace methanol with a green solvent such as EtOH (generally
recognized as safe) and to select a solvent composition to be used
in the further experimental design, preliminary experiments
were carried out by increasing from 0 to 100 the organic
solvent percentage (ethanol and methanol) in water, and GLS
content was monitored. The other parameters of USAE, namely,
solvent volume, extraction cycle, and extraction time were
kept constant at 10 ml, 2 cycles, and 5 min, respectively. The
results indicate that an extraction solvent with water content
higher than 80% formed a mucilaginous agglomerate that makes
injection in the chromatographic system impossible. However,
as shown in Figure 1, the quantitative trend of monitored GLSs
is comparable using both methanol and ethanol. GLS content
increases proportionally to the increase in organic solvent from
20 to 60%, but beyond this value it begins to decrease. Based
on these results and considering that the behavior of methanol
and ethanol was comparable, EtOH in the range of 40 to 80%
was selected as extraction solvent in the next optimization step
because of its lower environmental impact and toxicity.

Response surface design
After the preliminary experiments were carried out to

select the organic solvent and its content, a response surface
methodology (RSM) was used to maximize the extraction of
GLSs and at the same reduce the consumption of the organic
solvent. In this study, the influence of the three independent
variables (solvent volume, solvent composition, and extraction
cycles) on the extraction efficiency of each glucosinolate and
on total EtOH consumption was simultaneously evaluated

by a Box-Behnken 2 factor interaction design. GLS contents
(µgg−1DM) were considered as response variable to be
maximized and total consumption of EtOH (ml) as variable to
be minimized considering that reduction of the organic solvent
has a positive influence on the cost of the analysis and on
environmental impact. Table 1 reports the total volume of EtOH
used and the amount of glucosinolates for each run provided by
the CCD used as a response variable. The statistical parameters
of the experimental design are summarized in Table 2.

Based on the results, the model showed a high correlation
(R2 ∼= 98%), indicating a slight variance of the data and a
good prediction of the model with respect to all the considered
response variables. Two independent variables, percentage of
EtOH and its volume, had a significant influence on both
GLS extraction and volume of total EtOH (p < 0.05) while
the extraction cycles had a significant influence only on
the extraction efficiency of homoglucocamelinin and on the
volume of EtOH. Moreover, the quadratic effect of multiple
parameters as well as the interaction among many parameters
was statistically significant (p < 0.05) for the response
variables considered (Table 2). As shown in the desirability
plot (Figure 2), the volume of the extraction solvent linearly
influences the desired effect; in fact, by increasing the extraction
volume from 5 to 15 ml, there is an increase in desirability.
Regarding the percentage of EtOH, the desirable effect increases
proportionally to the increase in organic solvent from 40 to
∼=70%, but beyond this value it begins to decrease. This result
was also in agreement with those obtained in our preliminary
results. Finally, the optimized conditions to maximize the
extraction of glucosinolate compounds and at same time reduce
the consumption of organic solvents were calculated as EtOH
65%, cycles 2, and solvent volume 5 ml. After selecting the
optimized extraction conditions to evaluate the improvement

FIGURE 2

Desirability plot for total glucosinolate extraction as functions of ethanol percentage and total solvent volume.
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FIGURE 3

UHPLC full MS chromatograms of ultrasound-assisted solid liquid extraction (USAE) under optimized conditions before (black line) and after (red
line) purification by solid phase extraction (SPE).

in extraction efficiency, these results have been comparted with
those obtained using the ISO method. A quantitative analysis
of the three glucosinolates was carried out by UPLC-HRMS
using the external standard method. The calibration curve of
glucosinolates in the concentration range of.1–10 µg ml−1

were used to quantify their content in both extracts. The
external standard calibration curves for all the analytes provided
good linearity within the investigated concentration range with
correlation coefficients (R2) ranging from 9993 and 9998. The
quantitative analysis of the extract obtained by using USAE
shows that the content of glucoarabinin, glucocamelinin, and
homoglucocamelinin were 1,525.6 ± 53, 3,544.6 ± 209, and
615.5 ± 68 µg g−1DM, respectively. This result highlights a
huge increase in extraction efficiency for all target compounds,
in particular, the recovery of glucoarabinin, glucocamelinin,
and homoglucocamelinin increased by 501, 878 and 234%,
respectively. These results can be explained by the increased
chemical stability of glucosinolates under the milder extraction
conditions of the developed USAE method, compared to the
ISO procedure which uses methanol at 75◦C as extraction
solvent. These conditions can cause thermal degradation of
glucosinolates as highlighted by some authors (30–33).

Purification of glucosinolates

Given the high content of GLSs in Camelina sativa PC,
we decided to develop an efficient protocol based on solid
phase extraction (SPE) to obtain a purified extract and test
cell activity while preventing other compounds from interfering
with results. USA extract 140 mg of was diluted in 10 ml H2O

and 1% HCOOH and loaded into an SPE column. After the
loading, a washing solution using 10 ml H2O and 1% HCOOH
was passed through the SPE cartridge to remove non-retained
compounds, while the GLSs were eluted using 10 ml of H2O and
2% NH4OH.

Both wash and elution fractions were collected, and each
one was analyzed by UPLC-HRMS-DAD to detect the presence
of GLSs and verify the purity of the SPE extracts. The
results of HRMS chromatographic profiling of elution fractions,
crude extract, and reference standard compounds are shown
in Figure 3. The chromatographic analysis suggests that the
developed SPE procedure allowed to selectively purify the
GLSs, avoiding losses of compounds of interest in the washing

FIGURE 4

MTT viability assays on four cell lines treated with Camelina
sativa extracts at two concentrations by 2-way analysis of
variance (ANOVA) statistical analysis (ns, not significant,
* = p < 0.05, ***p < 0.001, and ****p < 0.0001).

Frontiers in Nutrition 08 frontiersin.org

https://doi.org/10.3389/fnut.2022.901944
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-09-901944 July 15, 2022 Time: 18:16 # 9

Pagliari et al. 10.3389/fnut.2022.901944

FIGURE 5

Fold increase in (A) superoxide dismutase (SOD) and (B) glutathione S-transferase (GST) activity after 48 h of treatment. The statistical analysis
used a linear model against a fold control equal to 1 (*p < 0.05, ***p < 0.001, and ****p < 0.0001).

step. In general, the results show that USAE coupled with
the SPE procedure allow to obtain a high purity of GLS
molecules from Camelina sativa PC. An overall balance in the
extraction, isolation, and purification processes suggests that
approximately 800 mg of purified GLS extract can be recovered
from 10 g of PC used.

Antiproliferative effect of purified
glucosinolate extract

Initially, screening was performed to define the
concentrations of purified extract to be used in MTT viability
tests. Among the concentrations tested in the range of 100
to 1,000 µg ml−1, the experimental results suggested to
select a concentration range of 400–800 µg ml−1 for further
experiments. Four different cell lines were selected to perform
MTT assays and evaluate cell viability after a 48-h treatment
through mitochondrial activity. The cell lines chosen were
healthy colorectal mucosa CCD841 cell lines and three
colorectal cancer cell lines with peculiar mutations or behaviors.
In particular, CaCo-2 and E705 show no hyperactivating
mutations in the KRAS, NRAS, BRAF, and PIK3CA genes, with
the E705 cell line carrying a silent mutation in the PIK3CA
gene, whereas SW480 carries a hyperactivating mutation in
exon 2 of the KRAS gene. The Caco-2 and SW480 cell lines do
not respond to cetuximab, a MoAbs against EGFR, while the
E705 cell line is sensitive to cetuximab (34). A general linear
model analysis on MTT assays demonstrated that the purified
extract had a significantly dose-dependent antiproliferative
effect on the three tumor cell lines (p < 0.001), and that
no significant effect (p > 0.07) on the healthy cell lines was
found, demonstrating specific selectivity against the tumor
cell lines. The 2-way ANOVA analysis (Figure 4) using the
healthy cell lines as control showed a strong effect at the 800 mg
ml−1 concentration on the E705 and SW480 cells, where the
viability dropped to 40%. Subsequently, to clarify the possible

mechanisms involved, two enzymes involved in reactive oxygen
species (ROS) detoxification, superoxide dismutase (SOD), and
glutathione S-transferase (GST) were assayed. SOD converts
the superoxide radical (O2·

−) into hydrogen peroxide (H2O2),
while GST is an enzyme that transfers glutathione to xenobiotic
substrates. We hypothesize that the extract acts as a stressor
element by increasing oxidative metabolism. Upon extract
addition, the healthy cells respond physiologically by increasing
the activity of the enzymes, but the tumor cell lines do not.
Figure 5 shows the increase in both enzymes’ activity: at the
highest extract concentration, SOD is increased by 4-fold
(p < 0.05) and GST by 2-fold (p < 0.05) in healthy CCD841
cells. Caco-2 and SW480 maintain the basal level of these
enzymes after treatment with both extract concentrations
(p > 0.05). E705 shows an opposite behavior: the activity of the
two enzymes is decreased by 0.5 fold already at 400 µg ml−1of
extract for SOD (p < 0.05) and 800 µg ml−1for GST (p < 0.05).

Conclusions

For the first time, a green methodology based on the use
of the USAE method with green solvents has been developed
to obtain glucosinolates with high purity from Camelina sativa
seed by-product. The effect of extraction parameters on GLS
content in the raw extract and the reduction of organic
solvent were optimized using an experimental design. The
volume of the solvent and the percentage of ethanol show
the main effect on the selected response variables. Under
optimized conditions, the procedure allowed for enormous
recovery of compounds compared to the ISO method. Based
on our results, approximately 800 mg of enriched GLS
extract can be obtained from 10 g of Camelina sativa PC
subjected to USA extraction followed by SPE purification. The
purified extract, rich in glucoarabinin, glucocamelinin, and
homoglucocamelinin, showed an interesting chemopreventive
action against different colorectal cancer cell lines without
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affecting the healthy cell lines. However, the exact mechanism
of action of the purified extract on the tumor cell lines
needs further studies to be clarified with a view to developing
new sustainable treatments for patients with cancer refractory
to conventional chemotherapy. Moreover, the glucosinolate
extract can increase the activity of two of the most important
enzymes involved in cell defense against oxidative stress,
SOD and glutathione S-transferase, thus showing antioxidative
properties, which could be exploited in cancer and oxidative
stress prevention. The developed method can be considered a
suitable green protocol to obtain nutraceutical products with
interesting and promising anticancer activities from a natural
and cheap food by-product.
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