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Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and the most common form of 

dementia in older adults. Treatment of AD symptoms is very challenging and expensive. 

Appropriate diet as well as mental and physical activity may delay or reduce the occurrence of 

AD. It is unknown whether environmental factors offer potentially protective effects against the 

development of AD. We explored the possible beneficial effects of greenspace (trees and 

herbaceous cover) on the rate of AD in the mid-Atlantic US. Data for initial AD medical claims 

during 2011–2013 were obtained from Medicare records for 2999 ZIP codes. The percentages of 

land cover classes in each ZIP code were calculated based on high-resolution land cover imagery. 

Associations between AD and greenspace, blue space (water), and other variables were examined 

using zero-inflated Poisson models. The rate of AD was negatively associated with greenspace (for 

a greenspace increase of 10%, risk ratio (RR) = 0.91, 95% confidence interval (CI): 0.89–0.94), 

and blue space (for a water area increase of 10%, RR = 0.85, 95% CI: 0.81–0.89). The inverse 

relationships between greenspace and the risk of AD held across season, gender, and race. The rate 

of AD was positively associated with the concentration of fine particulate matter (PM2.5) (RR = 

1.03, 95% CI: 1.02–1.05 for an increase in PM2.5 of 1 μg/m3). Our results suggest that greenspace 

may have protective effects for AD, although potential mechanisms are unclear and require further 

investigation.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disease that gradually impairs 

memory and thinking skills, leading to the loss of independence and the inability to perform 

the basic activities of daily life [1]. The overproduction of the amyloid-β (Aβ) peptides and 

hyperphosphorylation of the Tau protein and its subsequent deposition are hypothesized as 

two major mechanisms to develop AD [2,3]. While its mechanism is unknown, it is the most 

common cause of dementia in older adults and is ranked as the sixth leading cause of 

mortality in the US. More than 5 million people may currently have AD in the US; this 

number is expected to rise rapidly in the next decades [4,5].

AD is irreversible, and while certain drugs may alleviate some symptoms of AD, none can 

cure it or stop its progression [6]. Total costs for health care and long-term care are 

estimated at hundreds of billions of dollars, posing a considerable financial burden on 

families and making it the most expensive disease in the US [4].

AD may have both genetic and non-genetic factors that play roles in its development [1,7]. 

Age is the primary risk factor for AD [8] with nearly 95% of AD patients aged 65 and older 

[1]. Family history is the second largest risk for AD, and genetics may be responsible for 

80% of cases [9]. Polymorphisms in ApoE, SORL1, and GSK3 genes are thought to be the 

major genetic risk factors [10-12]. For non-genetic factors, cerebrovascular disease, high 

blood pressure, Type 2 diabetes, heavy body weight, high plasma lipid levels, metabolic 

syndrome, smoking, and traumatic brain injury have been found to be positively associated 

with AD. Environmental pollutants as a risk factor for AD have also been gradually 

recognized [10]. Studies have found that metals (mercury, arsenic), insecticides/pesticides, 

nanoparticles, and air pollutants might induce AD or AD-like progression in animal and 

human subjects [10,13,14]. Several epidemiological studies have also found that long-term 

exposure to fine particulate matter (PM2.5), one of the major traffic-related air pollutants, 

was positively associated with AD incidence [15-17].

Some factors may offer protection from AD. For example, diet (e.g., Mediterranean food), 

physical exercise, and intellectual activity may reduce AD risk [4,5]. Greenspace, such as 

trees, gardens, and parks, has been found to provide many human health benefits because of 

the filtration of air pollutants, promotion of physical activity and social contact, and 

reduction of stress and depression [18,19]. Recent studies have shown that exposure to 

greenspace may be beneficial to mental health and brain health [20,21]. Greenspace may be 

an environmental protective factor for human health, including for AD. However, the 

relationship between greenspace and AD is unknown. Water views in the landscape have 

frequently been expressed as a human preference (reflected in real-estate values and vacation 

destinations) and a restorative element [22,23]. While research on mental health or cognitive 

benefits of blue space is scarce [24], time spent at the beach has been linked to healthy 

behavioral development in Barcelona schoolchildren [25]. Therefore, this study examined 

the association of green and blue spaces with the rate of AD in the mid-Atlantic US. It also 

sought to replicate previously documented associations between AD rate and PM2.5, and to 

control for PM2.5 in models since PM2.5 has been identified as a possible risk factor for 

AD. Furthermore, by assessing natural infrastructure and air pollution in combination, this 
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study may offer insights into possible protective effects of vegetation on AD through 

particulate entrapment [26].

2. Materials and Methods

2.1 Study Area

Our study area encompassed 2999 postal ZIP codes in the mid-Atlantic United States (all or 

parts of New York, Pennsylvania, Delaware, Maryland, West Virginia, Virginia, and 

Washington, DC, Figure 1). It was selected because the effects of PM2.5 on human 

neurological diseases have been observed here [16]. In addition, a high-resolution (1 m) land 

cover dataset is available for this area. According to the US Census Bureau’s American 

Community Survey for 2009–2013, the area had a population of 26 million.

2.2 Alzheimer’s Disease Data

The AD data were obtained from Medicare enrollees aged ≥ 65 whose medical records are 

held by the Center for Medicaid and Medicare (CMS). The whole dataset contains the 

records from 1999 to 2013. In the CMS dataset, each enrollee has a unique identification 

number and codes to indicate the types of diagnoses according to the International 

Classification of Disease-Ninth Revision (ICD 9). For enrollees with records of AD (ICD 9 

code 331.0) during the study period, we extracted the earliest record for analysis. 

Specifically, we selected the first record of a patient who was diagnosed with the AD from 

the dataset and then selected the data for 2011–2013 to most closely match the high-

resolution land cover data. Information about the date (year, month, and day) of health care, 

residential location (ZIP code, county and state), race, and gender were also available. As 

the specific address for each patient was withheld, we analyzed the data at the ZIP code 

level. The data were also aggregated by month to correspond to the PM2.5 data.

2.3 Land Cover Data

A 2013–2014 classified land cover dataset for the study area was obtained from the 

Chesapeake Bay Innovation Center [27]. This one-meter resolution dataset is derived from 

photography collected by the USDA National Aerial Imagery Program and covers 

approximately 259,000 km2 in and around the Chesapeake Bay watershed. The land cover 

was originally classified into 6 major categories: water, trees (including shrubs), herbaceous, 

barren, impervious, and roads. We combined the tree and herbaceous classes into one 

greenspace class and calculated the percentage of each resulting type of land cover by ZIP 

code using 2010 ZIP code from the US Census Bureau [28].

We also obtained data for major roadways in the study area from NavTEQ™ (Chicago, IL, 

USA, the leading provid er of maps, traffic and location data in North Americ a). Using; 

ArcGIS 10.fr (ESRI, CA, USA), we calculated density of mapr road s (interstate, stare 

highways, and major arterials) by ZIP code using the total length of major roads in a ZIP 

code divided by the total area of that ZIP code.
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2.4 PM2.5 Data

We obtained PM2.5 data for the study area from the U.S EPA [29]. These are estimates at 

the census tract level, which were downscaled from regional models and fused with data 

from field monitors. We assigned these PM2.5 values to ZIP codes using a nearest 

neighborhood method. Specifically, we calculated the distances between census tract and 

ZIP code centroids. A PM2.5 value assigned to a ZIP code was the same as the value of the 

nearest census tract.

2.5 Demographic and Socioeconomic Status Data

We obtained demographic and socioeconomic status data for each ZIP code from the US 

Census Bureau’s five-year American Community Survey for 2009–2013. We restricted the 

population data to age 65 and above because the Medicare data represents primarily this age 

group. Additionally, AD emerges primarily from within this population [1].

We calculated the percentage of this population in each ZIP code by gender and predominant 

race (white and black) for stratified analyses. We used the median annual household income 

to indicate socioeconomic status (SES) by ZIP code. Population density was calculated 

using the total population in a ZIP code divided by its area.

2.6 Statistical Analysis

We used the zero-inflated Poisson model [30] to examine the association between AD and 

exploratory variables since the response variable, the number of earliest-identified AD 

records in each ZIP code during the study period, is count data with excess zeros. The 

exploratory variables included monthly average PM2.5 concentration, percent greenspace, 

percent water area, median annual household income, ZIP code area, population density, and 

road density. The natural-log transformed population (age ≥ 65) data was used as the off-set 

term in the model. We checked for outliers in the response variable and removed extreme 

large values based on the histogram of the data (nearly 1% of observations) from the dataset. 

Then, we examined multicollinearity among exploratory variables using correlation analysis 

and variance inflation factors (VIF) [31]. If two or more variables were highly correlated 

(i.e., r > 0.6), only one variable was included in the model. We also selected the exploratory 

variables based on the value of the Akaike information criterion (AIC). A smaller AIC 

suggests a model with a better fit. The statistical analysis was conducted with SAS 9.4 (SAS 

Institute, Inc, Cary, NC, USA).

We used risk ratios (RRs) to assess the strength of associations between AD and the 

exploratory variables. If an RR was above 1.00, a positive association was assumed, while if 

it was below 1.00, a negative or inverse association was assumed. We chose the significance 

level at 0.05. Greenspace and water were modeled in 10% increments to reflect more 

meaningful land cover change, as the effects of 1% changes in greenspace and water are 

trivial [21]. Thus, the RRs for greenspace and water indicate the changes in the risk of AD 

when these land cover variables increase by 10%. To evaluate seasonal effects on the 

associations, we stratified the monthly data into spring (March, April, and May), summer 

(June, July, and August), autumn (September, October, and November) and winter 
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(December, January, and February), and then ran the model for each season. We also 

stratified the model by gender and race.

3. Results

3.1 Description of AD Data and Explanatory Variables

Monthly AD by ZIP code ranged from 0 to 5, with a mean value of 0.067 and a standard 

deviation of 0.29 (Table 1). Monthly average PM2.5 concentration by ZIP code was 9.073 ± 

2.252 μg/m3 (Table 1). Greenspace was the major land cover type, accounting for 85.01 ± 

17.51%. Water area accounted for 3.74 ± 9.25% (Table 1). The median annual household 

income was $29,315 ± 11,805 and the mean population density was 5.3 ± 18.96 persons/km2 

(Table 1). The percentages of males and females were approximately equal (Table 1). In the 

study area, the major race was white, accounting for 85.63% of the population. The black 

population accounted for 9.34%.

The results of Pearson correlation analysis showed that both monthly AD and AD rate were 

positively correlated with PM2.5, median income, population density, percentages of female 

and black populations, road density, and ZIP code area (r > 0.0, p < 0.01), but they were 

negatively correlated with the percentage of greenspace and water area, and the percentages 

of male and white populations (Table 2).

3.2 Modeled Associations

The results from the final zero-inflated Poisson model are presented in Table 3. Five 

explanatory variables were included in the final model, which are PM2.5 concentration, the 

percentage of greenspace, the percentage of water, median income, and population density. 

The results showed that AD rate was positively associated with PM2.5 (for a 1 μg/m3 

increase in PM2.5 concentration, RR = 1.03, 95% confidence interval (CI) = 1.02–1.05) 

(Table 3). In contrast, AD rate had a negative association with greenspace (RR = 0.91, 95% 

CI = 0.89–0.94) and with water area (RR = 0.85, 95% CI = 0.81–0.89) (Table 3). Both 

median annual household income and population density had significant negative 

associations with AD rate (RR = 0.90 and 0.91, respectively) (Table 3).

3.3 Seasonal Effects on the Associations

AD was positively associated with PM2.5 across seasons. The association was slightly 

stronger in the summer (RR = 1.08, 95% CI = 1.05–1.10) and weaker in the winter (RR = 

1.04, 95% CI = 1.02–1.06) (Figure 2). Negative associations were observed for greenspace, 

water, median income, and population density for all four seasons (Figure 2). The 

association with greenspace was slightly stronger in spring and autumn but slightly weaker 

in winter. Similarly, the association with water was slightly stronger in autumn but slightly 

weaker in winter. Overall, the associations in winter were slightly weaker than those in other 

seasons, but the differences were not statistically significant (Figure 2).

3.4 Association Stratified by Gender and Race

The gender and race stratified models showed that associations between AD rate and 

exploratory variables were similar across strata (Figure 3). However, the association with 
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PM2.5 was extremely significant (p < 0.01) in white subjects but only slightly significant (p 
= 0.05) in black subjects. The AD rate had a significant negative association with median 

income for white patients but not for black patients (Figure 3).

4. Discussion

We conducted a large-scale ecological analysis to explore the connection between AD rate 

and exposure to greenspace and blue space in the mid-Atlantic US. By analyzing AD from 

Medicare records and land cover measured by high-resolution imagery, we found a 

significant inverse relationship between AD rate and the percentages of greenspace and 

water area. The results were consistent when we stratified the model by season, gender, and 

race and controlled for confounding variables including income and population density. Our 

study is the first to investigate the possible protective effects of greenspace and blue space 

on AD rate. Findings from this study suggest that exposure to greenspace and blue space 

may reduce the risk of developing or delay the onset of AD, providing a new insight to 

mitigate the high incidence of the disease.

The negative association between greenspace and AD rate in the study area may be due to 

air pollutant filtration by frees and other vegetation [32,33]. It was estimated that nearly 

17,400 million kg of air pollutants were removed by forests and trees in the conterminous 

United States in 2010 [34]. Herbaceous cover has also been found to take up air pollutants, 

including PM2.5 [35]. Previous studies have shown that air pollutants are one of the major 

environmental risk factors for AD, especially traffic-related air pollutants such as PM2.5 

[15-17]. Our previous study also suggested that greenspace may have a benefit to brain 

health through buffering traffic-related air pollution [21]. Generally, air pollution is more 

serious in urban than in rural areas. However, rural areas can have elevated vehicular air 

pollutant levels due to diesel highway trucks and farm vehicles.

Greenspace may also reduce the risk of AD by promoting physical activity such as jogging, 

walking, and biking. Physical exercise may support the maintenance of brain volume, and 

mitigate obesity, hypertension, stroke, and other AD risk factors [36]. Physical activity has 

been negatively associated with dementia and is generally regarded as protective [37]. 

Greenspace (e.g., greenway trails, parks, and gardens) provides attractive and safe places for 

physical activities, and as such, it may confer substantial health benefits [38-40]. 

Furthermore, greenspace may play a protective role in the risk of AD through depression 

reduction. The connection between depression and AD has long been recognized [41,42]. 

For example, one study has shown that depressed patients were more cognitively impaired 

and more disabled in daily activities [42]. A systematic review and meta-analysis concluded 

that late-life depression has positive associations with the risk for Alzheimer’s disease and 

all-cause dementia [43]. Exposure to tree canopy, which is best associated with perceived 

greenspace [44], may reduce the risk of dementia such as AD through stress reduction. A 

large study in Australia showed exposure to tree canopy was associated with a lower risk of 

dementia [45]. Meanwhile, an inverse association between neighborhood greenspace and 

depression has been observed in several studies [46-48], suggesting that greenspace may 

improve neurological health. Greenspace also provides a setting for social interaction 
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[49,50] and engagement with nature, both of which have been associated with mood [51,52] 

and are beneficial particularly for the elderly [53].

Similarly, we observed a negative association between water and AD rate. The beneficial 

effects of proximity to blue space may also be related to the promotion of physical activities 

and social interaction, and stress reduction [22,24,53]. Relative to PM2.5, water does not 

filter air pollutants directly; however, surrounding wetlands may decrease concentrations of 

air pollutants, including particulate matter [54]. In addition, pollutants and particulates are 

more likely to be suspended in the air when it is very dry; near water areas with higher 

humidity, air pollutants may be reduced [55].

Our results also revealed that the risk of AD was negatively associated with household 

median income and population density. It is possible that the causal mechanisms involved in 

AD differ in urban versus rural occupations, and that air filtration, physical activity, and 

other benefits of greenspace vary across urban and rural landscapes and vegetation types.

One major strength of this epidemiological analysis is that we used high-resolution classified 

land cover to measure greenspace. Many previous studies used the normalized difference 

vegetation index (NDVI) to quantify average “greenness” or used medium-resolution 

remotely sensed images to calculate greenspace. The 1-m land cover data provide more 

accurate measures of greenspace than those in other studies. Second, our study was 

conducted across a large spatial extent. Since factors associated with AD are expected to be 

subtle, the larger spatial extent of the data may allow better discrimination of potential 

associations, thus potentially increasing the significance of the association between 

greenspace and the risk of AD.

Our study has a few limitations. First, we do not have any information about where, when, or 

how long residents were exposed to greenspace. Therefore, the exposure is unclear and is 

represented only by the percentage of greenspace in the residential Zip code. Second, 

because of the scarcity of high-resolution imagery, we investigated only three-year data, 

which is a relatively short period for studying AD. Furthermore, our study was observational 

rather than experimental, and it was conducted at the ZIP code level instead of the individual 

level due to the shortage of finer spatial resolution of the Medicare data. The associations at 

the ZIP code level are more likely subject to confounding bias if the background rate of the 

disease is correlated with those confounding factors. This study design cannot confirm a 

causal relationship between greenspace or blue space and AD rate. Although this ecological 

study has many limitations due to data availability and the difficulty of the question, this 

work is the first to explore potential health benefits of green space on AD. Given the high 

rate of AD, exposure to greenspace and blue space may be a feasible way to delay or 

mitigate the development of AD, thus reducing the cost of AD health care and the suffering 

of AD patients and their families.

5. Conclusions

We observed a lower AD rate associated with increasing greenspace and water area in the 

mid-Atlantic US. This relationship remained when our model was adjusted for PM2.5, 
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income, and population density, and it was consistent across seasons, gender, and race. The 

possible benefits of greenspace and blue space may occur through multiple pathways, but as 

of yet, these are unclear and require further investigation.
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Figure 1. 
Rate of initial Alzheimer’s disease claims in the study area during 2011–2013.
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Figure 2. 
Association between the risk of Alzheimer’s disease and exploratory variables in different 

seasons.
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Figure 3. 
Association between the risk of Alzheimer’s disease and exploratory variables in different 

gender and race.
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Table 1.

Descriptive statistics of key variables by ZIP code.

Variables No. Observations Mean Standard
Deviation Minimum Maximum

Medicare claims data

Initial AD claims/month 106,763 0.067 0.290 0 5

Monthly claim rate 106,763 2.6 × 10−6 1.3 × 10−6 0 3.98 × 103

Environmental data

PM2.5 μg/m3) 106,763 9.073 2.252 4.485 0.053

Greenspace (%) 106,763 85.013 17.508 7.08 99.77

Water (%) 106,763 3.735 9.248 0 85.73

Covariates

Median income ($) 105,073 29315 11805 2542 135865

Male population (%) 106,763 50.028 7.753 0 100

Female population (%) 106,763 49.972 7.753 0 100

White population (%) 106,763 85.623 19.828 0 100

Black population (%) 106,763 9.338 16.976 0 100

ZIP code area (km2) 106,763 80.564 100.716 0.007 872.515

Population density (1000/km2) 106,763 5.300 18.961 0.001 712.326

Road density (km/km2) 109,405 0.789 1.711 0 58.555

Medicare claim: An application for Medicare coverage of a medical visit or procedure. Monthly rate: monthly initial AD records/population aged 
65 and above.
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Table 2.

Pearson correlation between monthly initial records and rates of Alzheimer’s disease and exploratory 

variables.

Variables (Unit) Monthly Initial Records Monthly Rate

r p r p

PM2.5 μg/m3) 0.069 <0.001 0.050 <0.001

Greenspace (%) −0.099 <0.001 −0.057 <0.001

Water (%) −0.002 <0.001 −0.021 <0.001

Median income ($) 0.030 <0.001 0.027 <0.001

Population density 0.059 <0.001 0.060 <0.001

Male population (%) −0.047 <0.001 −0.026 <0.001

Female population (%) 0.0465 <0.001 0.026 <0.001

White population (%) −0.125 <0.001 −0.076 <0.001

Black population (%) 0.104 <0.001 0.061 <0.001

Road density (km/km2) 0.031 <0.001 0.025 <0.001

ZIP code area (km2) 0.062 <0.001 0.062 <0.001
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Table 3.

Association between Alzheimer’s disease and exploratory variables.

Exploratory Variables (Unit) RR 95% CI p

PM2.5 (μg/m3) 1.03 1.02–1.05 <0.001

Greenspace (10%) 0.91 0.89–0.94 <0.001

Water (10%) 0.85 0.81–0.89 <0.001

Median income ($10,000) 0.90 0.88–0.92 <0.001

Population density (1000/km2) 0.91 0.88–0.93 <0.001
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