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Changes of cell type composition across samples can carry biological significance and
provide insight into disease and other conditions. Single cell transcriptomics has made it
possible to study cell type composition at a fine resolution. Most single cell studies
investigate compositional changes between samples for each cell type independently, not
accounting for the fixed number of cells per sample in sequencing data. Here, we provide a
metric of the distribution of cell type proportions in a sample that can be used to compare
the overall distribution of cell types across multiple samples and biological conditions. This
is the first method to measure overall cell type composition at the single cell level. We use
the method to assess compositional changes in peripheral blood mononuclear cells
(PBMCs) related to aging and extreme old age using multiple single cell datasets from
individuals of four age groups across the human lifespan.
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INTRODUCTION

Tissues are composed of heterogenous cell types that demonstrate differences in biological function
(Raj and van Oudenaarden, 2008; Choi and Kim, 2019). Gene expression profiling methods such as
single cell RNA-sequencing (scRNA-seq) have made it possible to profile the genome-wide gene
expression levels for each single cell of a sample, to account for cell-to-cell variability (Chen et al.,
2019; Tanay and Regev, 2017; Choi and Kim, 2019), and to identify and characterize cell types in a
given tissue (Jaitin et al., 2014; Macosko et al., 2015; Zheng et al., 2017). ScRNA-seq has been
extensively applied in multiple research areas to study cell types and states, as well as cell types
compositional changes, across diseases and conditions (Shalek et al., 2014; Baron et al., 2016; Muraro
et al., 2016; Villani et al., 2017; Butler et al., 2018; Schaum et al., 2018; Mathys et al., 2019; Velmeshev
et al., 2019).

Most methods to analyze cell type composition at a single cell level model each cell type
independently from other cell types (Haber et al., 2017; Luecken and Theis, 2019; Hashimoto et al.,
2019; Wilk et al., 2020; Zheng et al., 2020; Zhu et al., 2020). For example, changes of peripheral blood
mononuclear cells (PBMCs) composition observed between supercentenarians and younger age
controls in Hashimoto et al., 2019 were assessed for each cell type independently using a Wilcoxon
rank sum test. Other studies have taken a similar approach when assessing compositional changes
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between groups of samples at the single cell level (Haber et al.,
2017; Luecken and Theis, 2019; Hashimoto et al., 2019; Wilk
et al., 2020; Zheng et al., 2020; Zhu et al., 2020). However, high
throughput sequencing data are in fact compositional (Gloor
et al., 2016, 2017; Lin and Peddada, 2020). The approach we
propose rests on the observation that a sample in scRNA-seq data
is composed of cell abundances across cell types that are in
constrained proportions, given the total number of cells in the
sample (Gloor et al., 2016; Gloor et al., 2017; Lin and Peddada,
2020). In other words, the proportion of cell types within a sample
are in fact dependent on each other: if the proportion of one type
increases, then others need to decrease (Luecken and Theis,
2019). It is thus necessary to account for this dependency
when assessing overall cell type compositional changes across
samples. In addition, there is no method that provides a
numerical summary of a sample overall cell type composition
that can be used to compare samples in different conditions
(Luecken and Theis, 2019).

Here, we introduce a statistic to summarize the distribution of
the proportions of cell types in a sample. Using three single cell
transcriptomic datasets of PBMCs comprising four age groups,
we show the utility of this statistic to describe changes in PBMCs
composition in aging and extreme old age.

MATERIALS AND METHODS

Cell type diversity statistic. The statistic makes three
assumptions: 1) To make different samples of cells
comparable, cell abundances must be normalized based on the
total number of cells in a sample; 2) After conditioning on the
total number of cells in a sample (Gloor et al., 2017), the cell type
composition data is a simplex (Aitchison, 1982), and when the
proportion of one cell type changes, the proportion of the other
cell types must change as well to maintain the total fixed; and 3)
To make the statistic comparable across different cell type
resolutions, the statistic must be normalized. Formally, we
denote by pis � nis

ns
the proportion of cell type i, for i �

1, . . . , k in a sample s with ns cells, so that ∑k
i�1pis � 1.

The statistic is adapted from alpha diversity measures applied
in ecology and microbiome studies (Whittaker, 1972; Olde
Loohuis et al., 2018; Calle, 2019). We measure the overall cell
type composition of a sample by the adjusted entropy

Es �
−∑k

i�1pis log(pis) − log(k)
log(k) � −∑k

i�1pis log(pis)
log(k) − 1

In the formula, log(k) is the maximum value of
−∑k

i�1pis log(pis) that is reached when pi � 1
k for all indexes i,

so that the distribution is uniform. The minimum value of
−∑k

i�1pis log(pis) is 0, which corresponds to a mass-point
distribution with pis � 0 for all indexes i but one. The
adjusted entropy Es therefore ranges between [−1, 0]. A
sample with more uniformity in cell type proportions, and
hence more variability, will result in a greater cell type
diversity statistic and Es � 0 in a sample with equal
proportions of all cell types. A sample with cell type

proportions that are skewed towards specific cell types, and
less variability, will have a lower statistic and Es � −1 when all
cells are of one type.

Data. To demonstrate the utility of the cell type diversity
statistic, we analyzed three single cell transcriptomic datasets of
PBMCs representing regular aging and extreme old age. One
dataset comprised samples of 7 centenarians from the New
England Centenarian Study (NECS) (Sebastiani and Perls,
2012) and 2 younger age controls. We downloaded a publicly
available scRNA-seq dataset of PBMCs from 45 younger age
controls (van der Wijst et al., 2018), which we will refer to as
NATGEN, and a publicly available scRNA-seq dataset of PBMCs
from 5 younger age controls and 7 supercentenarians, which we
will refer to as PNAS (Hashimoto et al., 2019). We integrated
these datasets and stratified the samples into four age groups of
the human lifespan: 12 subjects of younger age (20–39), 26
subjects of middle age (40–59), 14 subjects of older age
(60–89), and 14 subjects of extreme longevity (100–119). Data
processing steps and identification of the 12 cell types are
described in the Supplement.

Application of cell type diversity statistic.We integrated the
datasets to generate a matrix of cell type abundances across
samples from all three datasets. We calculated the cell type
proportions for each sample such that the sum of the cell type
proportions for a particular sample equals to 1. We applied the
cell type diversity statistic to different cell type resolutions: 1)
based on the proportions of lymphocytes and myeloid cells; and
2) based on the proportions of the 12 lymphocyte and myeloid
subpopulations that were detected in the data. For both
resolutions, we measured the cell type diversity statistic per
sample and compared the differences of the statistics between
the four age groups using ANOVA and pairwise T-tests with
significance level 0.05.

RESULTS AND DISCUSSION

We applied the cell type diversity statistic to the cell type
proportions from the three scRNA-seq datasets of younger age
individuals and centenarians to assess overall compositional
changes across four age groups: younger age (20–39), middle
age (40–59), older age (60–89), and extreme old age
(100–119 years of age). We first calculated the cell type
proportions for each sample across the four age groups
(Figure 1A, Supplementary Table S1) and we observed a shift
in the distribution of cell proportions from lymphocyte and
myeloid cell types from younger ages to centenarians
(Figure 1A).

We then calculated the cell type diversity statistic to measure
the variability of the proportion of lymphocyte and myeloid cells
in each sample (Supplementary Table S2). Comparing the cell
type diversity statistics across the four age groups, we found a
significant difference in the distribution of the statistics across the
four age groups (F-test p-value = 0.0001873) (Figure 1B). The
increased value of the cell type diversity statistic in the extreme
old age group is consistent with the shift in abundances from
lymphocytes to myeloid cells, which is an expected change in the
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immune system with aging (Geiger et al., 2013). We also applied
the cell type diversity statistic to measure the variability of the
proportions of 12 lymphocyte and myeloid subpopulations in
each sample (Supplementary Table S3). We again found a
significant difference in the distribution of the statistic in the
four age groups (F-test p-value = 0.0001875) (Figure 1C).
Specifically, centenarians had significantly increased cell type
diversity statistics compared to each younger age control
group: younger age group (t-test p-value = 0.00115), middle
age group (t-test p-value = 0.00016), and older age group
(t-test p-value = 0.00363) (Figure 1C). The pattern of the cell
type diversity with age groups suggests that centenarians have a
more uniform distribution of cell types compared to individuals
of younger ages even at a finer resolution of cell types.

The analyses illustrate how the cell type diversity statistic can
be used in combination with visualizations of cell type
proportions to provide a numerical summary of the
distribution of cell types in different conditions. We showed
an application of this metric in the context of aging to summarize
changes of the distribution of cell types across different age
groups, at different resolutions. The metric showed a
significant change of the distribution of 12 cell types in
extreme old age compared to younger age groups, as well as a
significant change of the proportion of lymphocytes and myeloid

cells that are biologically relevant to aging (Geiger et al., 2013).
Although in our analysis the distribution of the cell type
diversity statistics did not change with different cell type
resolutions, in other applications the statistic could change
since the distribution of the proportions of subpopulations of
cells can be very different.

One major challenge in the analysis of single cell
transcriptomics data is in the identification and annotation of
cell types. There are varying methods to identify cell types
(Andrews et al., 2021; Adil et al., 2021; Shekhar and Menon,
2019; Luecken and Theis, 2019) and the resolution of cell type for
analysis should be selected based on the biological question of
interest (Luecken and Theis, 2019). Another challenge of this type
of analyses is accounting for cell types that are not detectable
under specific conditions. Other metrics are needed to account
for cell types that are not detected in all conditions.

The cell type diversity statistic is applied as a global summary
of cell type composition, and additional analyses are required to
quantify individual cell type changes and to adjust this analysis
for additional covariates. The recent method scCoda uses a
Bayesian Dirichlet regression model to examine individuals
cell type changes and accounts for the constrained proportions
in single cell composition data is particularly promising (Büttner
et al., 2021).

FIGURE 1 |Cell type diversity statistic to summarize PBMCs composition across age groups. (A). Proportions of 12 cell types discovered in scRNA-seq of PBMCs
from different age groups. Each bar represents the proportions of lymphocyte (blue-green gradient) and myeloid (red-yellow gradient) cell types (y-axis) in a sample. (B).
Each boxplot represents the distribution of the diversity statistic of the proportions of lymphocyte and myeloid cells in younger, middle, older, and extreme old age
individuals (x-axis). The differences of the statistics across age groups were statistically significant (F-test p-value = 0.0001873) (C). Each boxplot represents the
distribution of the diversity statistic of the proportions of the 12 cell types grouped by younger, middle, older, and extreme old age (x-axis). The differences of the statistics
across age groups were statistically significant (F-test p-value = 0.0001875). The diversity statistic was significantly higher, in the extreme old age group compared to
each younger age control group: younger age group (t-test p-value = 0.00115), middle age group (t-test p-value = 0.00016), and older age group (t-test p-value =
0.00363).
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Entropy as a metric to study composition level data has been
applied in many fields including analyses of microbiome data
(Whittaker, 1972; Olde Loohuis et al., 2018; Calle, 2019). The
importance in applying this metric to single cell transcriptomics
is that it accounts for the constrained proportions of cell types in
each sample, and ignoring these constraints can results in
inconsistencies when assessing compositional changes (Gloor
et al., 2016; Gloor et al., 2017; Calle, 2019; Luecken and Theis,
2019).

CONCLUSION

We present the cell type diversity statistic, an entropy-based
measure to assess and summarize the overall cell type
composition of samples in single cell gene expression data.
The diversity statistic allows for the investigation of global cell
type compositional changes applicable to studying disease and
other conditions at the single cell level. We demonstrate the utility
of this method by its application to single cell datasets of aging
and extreme old age, and show that it can reveal novel changes in
composition in aging at different resolutions.
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