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Abstract

Gametogenesis requires coordinated signaling between germ cells and somatic cells. We

previously showed that Gap junction (GJ)-mediated soma-germline communication is

essential for fly spermatogenesis. Specifically, the GJ protein Innexin4/Zero population

growth (Zpg) is necessary for somatic and germline stem cell maintenance and differentia-

tion. It remains unknown how GJ-mediated signals regulate spermatogenesis or whether

the function of these signals is restricted to the earliest stages of spermatogenesis. Here we

carried out comprehensive structure/function analysis of Zpg using insights obtained from

the protein structure of innexins to design mutations aimed at selectively perturbing different

regulatory regions as well as the channel pore of Zpg. We identify the roles of various regu-

latory sites in Zpg in the assembly and maintenance of GJs at the plasma membrane. More-

over, mutations designed to selectively disrupt, based on size and charge, the passage of

cargos through the Zpg channel pore, blocked different stages of spermatogenesis. Muta-

tions were identified that progressed through early germline and soma development, but

exhibited defects in entry to meiosis or sperm individualisation, resulting in reduced fertility

or sterility. Our work shows that specific signals that pass through GJs regulate the transition

between different stages of gametogenesis.

Author summary

Gap-junctions allow neighboring cells to communicate by connecting their cytoplasm.

Gap-junctions play an essential role during sperm development by facilitating communi-

cation between the two cell types found in the testes, the germline which produces sperm,

and the soma, which provides an essential supportive environment to the germline. We

sought to better understand the ways in which gap-junctions help germline and somatic

cells to communicate. We introduced nearly twenty different mutations into a gap-

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010417 September 29, 2022 1 / 36

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pesch Y-Y, Dang V, Fairchild MJ, Islam F,

Camp D, Kaur P, et al. (2022) Gap junctions

mediate discrete regulatory steps during fly

spermatogenesis. PLoS Genet 18(9): e1010417.

https://doi.org/10.1371/journal.pgen.1010417
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junction gene that connects the soma and germline in the fly testes. These mutations were

chosen based on bioinformatics and analysis of the predicted structure of the gap-junction

protein. We replaced the normal version of the gap-junction with the mutated versions in

flies, and analysed how sperm development was affected. Based on this analysis we identi-

fied key parts of the protein that were required for the assembly and maintenance of the

gap-junctions. Moreover, mutations designed to selectively disrupt the passage of specific

materials through the gap-junction blocked different stages of sperm development. Muta-

tions were identified that progressed through early sperm development, but exhibited

defects in later stages, resulting in sterility. Our work shows that specific signals that pass-

through gap-junctions regulate the transition between different stages of sperm

development.

Introduction

In animals two tissue types populate the gonads, the germline, which gives rise to the gametes,

and the soma, which gives rise to all other tissues that support and maintain gamete formation.

Gametogenesis is a complex process that requires the intricate cooperation of the soma and

germline. The soma supports and nourishes the germline [1–4], provides signals for stem cell

niche formation and gamete differentiation [2,5–7], and forms the architectural framework for

gametogenesis [8]. Successful gametogenesis requires ongoing communication between soma

and germline and when this communication is disrupted this results in infertility or tumor for-

mation [2,9,10].

Spermatogenesis in Drosophila has proven to be a versatile, genetically tractable, model sys-

tem for studying soma and germline communication [11–13]. The Drosophila testis is a blind-

ended coiled tube that contains a stem cell niche, called the hub, at its tip [7,14]. The hub, com-

posed of a cluster of 8–15 somatic cells, has two main functions: first, it physically anchors

both germline stem cells (GSCs) and somatic cyst stem cells (CySCs) and second, it secretes

molecules that regulate and keep GSCs and CySCs in an undifferentiated state [4,7,14]. As the

GSCs divide asymmetrically [15], the daughter cell, called a gonialblast, is displaced from the

hub, which enables it to differentiate [7,11] and undergo mitotic transit amplifying divisions

to syncytial spermatogonia [12]. Once clusters of 16 interconnected spermatocytes are formed,

they enter meiotic divisions and initiate a differentiation program, resulting in 64 connected

spermatids [16]. Spermatids undergo dramatic morphological changes, including elongation

and individualization, to form mature sperm, which is then stored in the seminal vesicle [16].

CySCs also divide asymmetrically, giving rise to cyst cells, two of which surround and encapsu-

late each gonialblast [9,10,17,18]. Through encapsulation, the developing germ cells are fully

surrounded by somatic cells, completely isolating them from outside cues [9,19]. This makes

cell communication between soma and germline indispensable for the delivery of regulatory

signals and nutrients to the developing germline.

Gap junctions (GJs) are transmembrane channels encoded by Innexins in invertebrates and

Connexins in vertebrates [20,21], these two protein families share significant structural homol-

ogy, but limited sequence homology [22]. The true vertebrate homologue of Innexins are not

Connexins but rather Pannexins. These are channel forming proteins that do not form GJs but

rather functional hemichannels, and share significant sequence homology with Innexins [23].

While hemichannels do not connect adjacent cells, GJs form when two hemichannels on

neighboring cells link up to form an active channel allowing the passage of directly from the

one cell to another. Although it is known that Innexins form GJ, it is not known whether, like
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Pannexins, their true homologs, they also form functional hemichannels. The linkage between

Connexin or Innexin in neighboring cells, called docking, occurs via disulfide bridges between

cysteine residues located in the extracellular part of the GJ proteins [22,24]. GJs allow the pas-

sage of molecules smaller than 1 kDa, for Connexins, and 3 kDa, for Innexins [25], and known

cargos include ions (Ca2+) and second messengers (IP3, cAMP) [26]. The passage of cargo

through the channel is highly controlled and can be regulated by the opening and closing of

the channel, a function referred to as gating. Gating of Connexins is modulated by changes in

pH, calcium concentration [27–29], and voltage within the channel pore [30]. Connexins,

Innexins, and Pannexins are 4 pass transmembrane proteins with intracellular C- and N-ter-

mini domains [20,22,31]. While the C-terminal intracellular domain of connexins is known to

regulate channel gating, it is also known to have channel independent functions. Specifically,

the C-terminus is an important docking point for cytoplasmic proteins and is also subjected to

post-translational modifications such as phosphorylation, that influence intracellular traffick-

ing and signaling [32–34]. The N-terminal intracellular domain of connexins may also play a

role in channel gating [28,35]. For example, the N-terminus of connexins has been shown to

influence channel conductance, permeability, and voltage-dependent gating [36]. Also, the N-

terminal intracellular domain of Connexin 26 has been shown to undergo a pH dependent

conformational change that controls gating [37]. Mutations in the N-terminal domain of Con-

nexin have been implicated in multiple human diseases, suggesting it plays a key role in dysre-

gulation of connexins and the etiology of gap junction-associated diseases. Human pathologies

associated with mutations in the N-terminal domain of connexin include KID (Keratitis-

Ichthyosis-Deafness) syndrome [38,39], X-linked Charcot-Marie-Tooth disease [40] and

hereditary eye cataracts [41].

Gap junctions are involved in soma-germline communication in many organisms. In C. ele-
gans, different innexin proteins localize to the soma-germline interface and are required for

proliferation and differentiation of GSCs as well as regulation of oocyte maturation [42]. In

mammalian testes, gap junction-mediated soma-germline communication was shown to play

a crucial role for spermatogenesis and fertility [43]. Connexins can be found connecting differ-

ent cell types in the testis, notably the developing germ cells and somatic Sertoli cells [44], as

well as Sertoli cells and hormone producing Leydig cells [45]. The transport of cargo is thought

to occur unidirectionally from somatic Sertoli cells to developing spermatogonia and sper-

matocytes [46]. Loss of Connexin43 (Cx43) from murine Sertoli cells leads to hyperplasia of

Leydig cells indicating crosstalk between the two cell types [45] and subsequently, to arrested

germ cell differentiation at the spermatogonia stage [47,48]. A transcriptomic analysis in

human patients suffering from Sertoli Cell Only (SCO) Syndrome, a severe form of infertility

in men characterized by complete absence of germ cells, showed strongly reduced expression

of Cx26, which in mice regulates crosstalk between Sertoli cells and spermatogonia [49,50].

These examples from different species indicate that soma-germline communication through

gap junctions is a conserved mechanism.

The Drosophila the gap junction protein Zpg (Zero population growth, Inx4) localizes to

the plasma membrane of germ cells and is required for fertility. Male and female flies lacking

Zpg have rudimentary testes and ovaries, respectively, and are sterile [51]. In female flies, Zpg

is required in germ cells for their maintenance as well as for the early stages of their differentia-

tion [51,52]. In the testes, Zpg couples to Inx2 in neighboring somatic cells and forms a chan-

nel composed of two different innexins, known as a heterotypic channel, that is required for

germ cell maintenance and for regulating proliferation and differentiation of both germ and

somatic cells [53]. However, the precise mechanism of action of these gap junctions in soma-

germline communication is not well understood and the nature of the signal that is being

transmitted through the gap junctions is not known.
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To elucidate how Zpg regulates stem cell maintenance and differentiation in the fly testes,

we carried out systematic structure-function analysis of Zpg using information derived from

bioinformatics and structural biology approaches. To this end, we replaced endogenous Zpg

with a collection of mutant versions of the protein, affecting key domains and residues, includ-

ing those predicted to control membrane trafficking, C-terminal phosphorylation, coupling to

Inx2, and channel gating. Our results establish a mechanistic framework for Zpg activity in the

testes, by identifying residues that are indispensable for its trafficking to the membrane and its

coupling to other innexins to produce functional gap junctions. Importantly, a set of point

mutations that were introduced to modulate channel-gating gave rise to unique phenotypes

that act at discrete steps in the developmental sequence of sperm production. This shows that

specific gap-junction mediated signals control the stepwise progression of germ cell differenti-

ation during spermatogenesis.

Results

A genomic rescue construct for zpg allows a detailed structure/function

analysis

In order to carry out a detailed structure-function analysis of the Zpg protein we relied on a

previously identified genomic fragment of approximately 6kb that was shown to be sufficient

for complete rescue of the zpg mutant phenotype [51, 53]. Close analysis of the genomic region

of the zpg gene (Fig 1A) showed that the zpg rescue construct contains the complete coding

sequence of Zpg as well as the annotated 3’ and 5’ UTR regions. Further support for the idea

that the rescue construct contains the entire coding and regulatory regions required for zpg
function comes from the location of the zpg gene within an intron for the gene rexo5 and the

ability of the rescue construct to compensate for the loss of the endogenous zpg gene [53] (see

below). We previously showed that tagging the rescue construct by the addition of a GFP to

the C-terminal domain had no impact on the ability of the construct to rescue zpg null mutants

(see Materials and Methods; [53]). Flies containing this GFP-tagged genomic rescue construct

were introduced into the zpg null mutant background, giving rise to a viable line which we

refer to as zpg::GFP GR (GR for genomic rescue).

Rationale for selecting residues to target in a structure/function analysis

based on sequence conservation and protein structure

Multiple factors were used to identify candidate residues for targeting in a structure function

approach. Specifically, information was derived from three independent sources: sequence

alignments, analysis of a homology-modelling derived protein structure of Zpg, and previous

biochemical and mutational studies of innexins and/or connexins. Gap junction proteins

exhibit similarities in their internal domain arrangement and as well as their structural homol-

ogy [20, 22]. Sequence alignments among the 8 Drosophila innexin proteins as well as between

Drosophila and C. elegans innexins were used to identify residues of interest (see for example

an alignment of the N-terminal domains on fly and worm innexins in Fig 1B). The level of

sequence identity between Drosophila Zpg and C. elegans INX-6, (~30%), was sufficient to

allow homology modelling, a methodology that has been successfully used before for struc-

ture-function studies of gap junction proteins [54]. The C. elegans INX-6 was used for homol-

ogy modelling as it is currently the only known CryoEM structure of an Innexin (see materials

and methods; [55]). The Cryo-EM structure of C. elegans INX-6 [55, 56] provides intriguing

clues about how the passage of cargoes through innexins is regulated. For example, the INX-6

structure showed that the N-terminal region as well as the Extracellular Helix-1 region face
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Fig 1. The genomic locus of zpg, its protein structure, and the identification of residues of interest. (A) Overview of the genetic locus of zpg (inx4) on

chromosome 3L, showing genes (blue), transcripts (orange) and coding sequence (magenta) of Zpg and the neighboring genes. The DNA stretch that is

included in the rescue construct used in this study is indicated by a grey box. (B) Sequence alignment of Zpg (Inx4) with other Drosophila innexins and C.

elegans INX-6, which was used as basis for in silico 3D structure homology modeling. The N-terminal portions of the proteins are depicted (approximately

amino acid 1–80, see numbers on the right) and the degree of conservation is indicated in bar graphs. Polar amino acids are shown in grey, hydrophobic in

yellow, positively charged in magenta and negatively charged in cyan. The residues D21, D50 and D59 and well as the first (C1) and second cysteine (C2) in
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inside the pore and constrict its diameter. The putative structure of Zpg is depicted in Fig 1

(simplified cartoon in Fig 1C, top view in Fig 1C’, side view in Fig 1C”, single subunit in Fig

1C”’). A color-coded version, shown in S1A Fig, was used to represent the per-residue score,

with the most reliable positions in dark blue, intermediate in white, and least reliable in red.

This indicated that the transmembrane region is the most reliable part of the model. The over-

all fold also agrees with an Alphafold2 model (S1B and S1C Fig). According to our modelling

of Zpg, one channel is comprised of 8 subunits which link to each other to form a continuous

round structure within the plasma membrane, leaving an open space between them that con-

stitutes the channel pore. The transmembrane domains consist of highly parallel α-helices,

whereas the other regions of the protein are less ordered. The C-terminus is fully intracellular,

whereas the N-terminus (aa 1–21) is predicted to face inside the pore. As in INX-6, the extra-

cellular domain 1 (E1, aa 43–110) is also partially located within the channel pore. Conserved

residues within the channel pore are marked in magenta in Fig 1C”’. A simplified topological

view is depicted in S2A Fig.

Description of the methodology used for quantifying the level of rescue

obtained by expressing different rescue constructs

Analysis of the rescue conferred by different mutated constructs requires a comprehensive

quantitative measurement of the ability of the wildtype genomic zpg::GFP construct to amelio-

rate zpg mutant phenotypes. As shown previously by us and others [51–53], flies lacking zpg
expression possess small rudimentary gonads and are sterile due to lack of germ cell differenti-

ation and maintenance. When assessing rescue, four general aspects of testes structure and

function were characterized, Zpg expression and localization, germ cell differentiation, soma

development, and fertility.

First, Zpg expression was analyzed in wildtype (wt), zpg null mutant (zpgz-2533 / zpgz-5352)

and zpg::GFP GR testes (a single copy of the zpg::GFP transgene introduced into the zpgz-2533 /

zpgz-5352 background). In the wildtype, Zpg localizes to the soma-germline interface, outlining

the developing cysts (Fig 2A and 2A’). In zpg null mutant testes, no Zpg staining can be

detected, proving the specificity of the antibody (Fig 2B and 2B’). In zpg::GFP GR testes, Zpg

distribution is identical to that seen in wildtype controls (Fig 2C and 2C’), though fluorescence

intensity of Zpg staining is 40.8% lower compared to wildtype flies. The lower expression

observed in zpg::GFP GR testes compared to wildtype flies is in itself not surprising since the

zpg::GFP GR genotype, a zpg mutant rescued with one copy of genomic rescue construct, is

functionally similar to heterozygous zpg mutants (zpg2533/+). Consistent with this idea Zpg lev-

els in heterozygous zpg was 34.4% lower compared to that seen in wildtype testes (S3 Fig). This

is further supported by co-labelling, in a wildtype background, GFP, which tags the rescue

construct (Fig 2D and 2D’), and Zpg. We previously showed that the C-terminal GFP tag

blocks the epitope recognized by the Zpg antibody [53], making it possible to independently

study the localization of either the GFP-tagged Zpg GR (using a GFP antibody, green) and the

endogenous Zpg (using the Zpg antibody, red) and found that the GFP-tagged construct colo-

calized well with endogenous Zpg.

Zpg, which were used as targets for mutagenesis, are part of this stretch of the protein and their location is indicated. Note that D21, D50 and the cysteine

residues show a high degree of conservation among the innexins, whereas D59 does not. (C-C”’) Predicted structure of Drosophila Zpg reveals octameric

arrangement around a central pore. Simplified view in C. Top view in C’. Side view in C”. Each subunit is labeled in a different color. Single Zpg subunit is

depicted in C”’ and as a cartoon in C. The first extracellular domain as well as the entire N-terminus are facing inside the channel pore. Potentially functionally

relevant residues within the channel opening are labeled in magenta (D21, D50, D59). While D21 and D50 are conserved among innexins, D59 was chosen as

target for mutagenesis due to its predicted location at the narrow opening of the channel.

https://doi.org/10.1371/journal.pgen.1010417.g001
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Second, germ cell differentiation was assessed by labelling germ cells and performing cell

counts in wildtype, zpg null mutant, and zpg::GFP GR testes. The protein Vasa is a marker that

labels germ cells from the germline stem cells (GSCs) stage to the spermatocyte stage [57]. In

the wildtype (Fig 2E and 2G), Vasa mostly labels the anterior part of the testis, which harbors

the mitotic-stage germ cells. In comparison, only a few Vasa expressing cells are seen in testes

of mutants lacking Zpg expression (Fig 2H and 2J), which is in agreement with previously pub-

lished data [51,53] and indicates a profound loss of germ cells in the mutants. Furthermore, in

wildtype testes, both Vasa staining (Fig 2E and 2G) and Zpg staining (Fig 2A and 2A’) stain the

Fig 2. Zpg function can be fully restored by introducing a GFP-tagged genomic rescue construct into the zpg null mutant background. Zpg staining

(green in A-C; single channels depicted in grey in A’-C’) is strongly enriched at the soma-germline boundary in the wild type (A, A’), but cannot be detected in

the rudimentary testes of zpg null mutants (B, B’). Wild type like distribution of Zpg can be seen in flies having the zpg::GFP GR (Genomic rescue) construct in

the zpg null mutant background (C, C’). Hubs are marked by DN-Cadherin in red, nuclei are labeled in blue (A-C). Heterozygous expression of zpg::GFP GR

(D, D’) reveals strong colocalization of the transgenic construct (GFP, green) and endogenous Zpg (red). Fas3 labels the hub. D’ shows single channel GFP

signal at germ cell membranes in grey. Compared to wt (E, G), zpg null (H, J) mutants show a strong reduction of mitotic Vasa+ germ cells (green), indicating

an early arrest in germ cell differentiation. In contrast, the number of germ cells (green) in zpg::GFP GR rescue flies (K, M) is indistinguishable from wt. The

number of early somatic cells labeled by markers Zfh-1 (cyst stem cells and immediate daughter cells; magenta) and Tj (grey) is, compared to wt (E, F), greater

in testes of zpg null mutants (H, I), but unaffected in zpg::GFP GR (K, L). Number of cells expressing the late somatic cell marker Eya (magenta) is, compared to

wt (G), lower in zpg null mutants (J), but unaffected in zpg::GFP GR testes (M). Quantification of (N) the number of germline stem cells (GSCs, defined as

single Vasa+ cells contacting the hub), (O) Zfh-1-positive cells, (P) Tj-positive cells, (Q) Eya-positive cells, (R) spermatid bundles, and (S) fertility in wildtype,

zpg null mutant, and zpg::GFP GR rescue flies. Scale bars represent 30–100 μm, as indicated above them. p-values are for difference from wildtype and

indicated by asterisks with �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pgen.1010417.g002
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developing cysts in which germ cells undergo incomplete mitotic divisions (cysts containing 2-, 4-

, 8-, and 16- germline cells, respectively). In zpg null mutants (Fig 2H and 2J), no advanced cysts

can be found, with cysts containing 2-germline cells being the most differentiated stage found in

the majority of testes. In contrast to the zpg null mutants, the Vasa staining pattern in zpg::GFP

GR testes (Fig 2K and 2M) strongly resembles the pattern observed in wildtype controls (Fig 2E

and 2G), with many Vasa expressing cysts in the anterior part of the testis. GSCs are defined as

single Vasa expressing cells that contact the hub. In the wildtype, on average 9.0 GSCs (n = 15) are

found in the anterior tip of the testis. In zpg null mutants, however, the number of GSCs is signifi-

cantly reduced to an average of 1.9 (n = 12; Fig 2N). The number of GSCs in zpg::GFP GR testes is

nearly identical to the wildtype (average 9.2, n = 10; Fig 2N). Rescue was also assessed in late stage

germ cells using the marker Boule, which specifically labels the meiotic germline [58]. In wildtype

controls Boule expression is seen in spermatocytes and developing spermatids in the posterior

part of the testis, with developing spermatid bundles appearing highly parallel (S4A Fig). In zpg
mutants (S4C Fig), no Boule staining can be detected, as germ cells cannot reach meiotic stages.

In zpg::GFP GR testes (S4B Fig) Boule expression is restored. In summary, these results show that

germ cell differentiation is efficiently rescued in zpg::GFP GR flies.

Third, somatic cell differentiation was assessed by using markers to label distinct somatic

populations and performing cell counts in wildtype, zpg null mutant, and zpg::GFP GR testes.

To assess soma development, markers for different stages of somatic differentiation were used.

In particular, we analyzed the expression of the early soma marker Zinc Finger Homeodo-

main-1 (Zfh-1), the intermediate soma marker Traffic Jam (Tj), and the late somatic marker

Eyes Absent (Eya). In wildtype controls, Zfh-1 is expressed in a small population of 36 cells

(on average, n = 18) in close proximity to the hub (Fig 2E). Cell types labelled by Zfh-1 include

CySCs and their immediate daughter cells [59]. Moreover, Tj typically marks a population of

131 cells (on average, n = 20) also in proximity to the hub (Fig 2F; [60]). Finally, the late

somatic cell marker Eya [61] (Fig 2G) labels a population of 174 cells (on average, n = 8) dis-

tributed throughout the testis. In zpg mutants, the average number of both Zfh-1 and Tj posi-

tive cells increased (Fig 2H and 2I, quantified in Fig 2O and 2P; mean 165, n = 20; and 194,

n = 18 for Zfh-1 and Tj, respectively) In contrast, the average number of Eya expressing cells

was reduced in zpg mutant testes (Fig 2J; quantified in Fig 2Q; mean 107, n = 8). These num-

bers are in line with previously published results [53] and demonstrate the misregulation of

somatic cell differentiation, with an increase in the population of early somatic cells and a

reduction in the size of the late somatic population in the zpg null mutants. In zpg::GFP GR

flies, the somatic cell counts for Zfh-1 (Fig 2K, quantified in Fig 2O; mean 30, n = 18), Tj (Fig

2L; quantified in Fig 2P; mean 148, n = 8) and Eya (Fig 2M; quantified in Fig 2Q; mean 189,

n = 8) expressing cells are very similar to those seen in wildtype controls (Fig 2G). In summary,

these results show that somatic cell differentiation is not impaired in zpg::GFP GR flies.

Fourth, flies lacking Zpg expression are unable to produce sperm, rendering male flies ster-

ile [51]. Spermatid bundles appear as arrowhead shaped structures strongly stained with DAPI

(S4F Fig), which are mostly localized within the posterior part of the testis. In the wildtype, on

average 62 sperm bundles can be detected (Fig 2R, n = 10), whereas zpg mutants fail to produce

sperm altogether. Zpg::GFP GR testes appeared to have a slightly lower number of spermatid

bundles compared to wildtype controls (Fig 2R, average 55, n = 20), however this reduction

was not statistically significant and did not have any influence on the fertility of the flies (Fig

2S). About 95% of tested wildtype males (n = 44) were fully fertile compared to 88% of zpg::

GFP GR flies (n = 36), whilst none of the tested zpg null mutant males (n = 54) were able to

produce offspring (Fig 2S). Taken together, these results show that the zpg::GFP construct can

effectively rescue the zpg null mutant phenotype, both in the germline and the soma, demon-

strating the efficiency of our rescue approach.
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The C-terminal domain is essential for Zpg localization

To generate mutant lines for the structure/function analysis we inserted mutations in the Zpg::

GFP construct and generated transgenes containing these modified rescue constructs (see

Materials and Methods; S2B–S2B”’ Fig). To ensure uniform expression, all transgenes used in

this study, including the wildtype rescue construct, were inserted into the same chromosomal

location using the φC31-based integration system [62]; see materials and methods). The C-ter-

minal cytoplasmic domains of gap junction proteins are known for their many important

functions [35]. Loss of the C-terminus of Cx43 leads to lethality due to a defective epidermal

barrier in mice [63], and to oculodentodigital dysplasia in humans [64]. Therefore the role of

the C-terminus domain of Zpg was analyzed by generating a mutant line in which the C-termi-

nus was replaced by a GFP tag (zpg deltaCT::GFP; see Materials and Methods), and studying

its ability to rescue zpg mutants. Overall, testes of zpg deltaCT::GFP mutants appeared rudi-

mentary (Fig 3B, 3B’ and 3J–3L) and resembled the testes of zpg null mutants (compare to Fig

2). As expected, since our Zpg specific antibody recognizes the C-terminus [53] no Zpg anti-

body staining could be detected in zpg deltaCT::GFP mutants (Fig 3B and 3B’), illustrating the

specificity of the antibody. The GFP tag, however, enables detection of the C-terminal deletion

construct in the zpg null mutant background (Fig 3E and 3E’) and the GFP signal was seen

within the germ cells where it appeared to be mostly cytoplasmic. In heterozygous flies having

one copy of zpg deltaCT::GFP and one copy of endogenous zpg (Fig 3F and 3F’), the GFP-

tagged protein was located intracellularly, where it accumulated in the cytoplasm, whereas the

endogenous Zpg (marked by the Zpg antibody) localized to the soma-germline interface as

expected. This shows that the deltaCT::GFP transgene is expressed, but is not capable of local-

izing to the plasma membrane, indicating that the C-terminus is required for trafficking of

Zpg to, and/or maintenance of Zpg at, the plasma membrane. As a consequence of the inability

of the Zpg deltaCT::GFP protein to localize, severe defects in germ cell and somatic cell differ-

entiation were observed when it was used to rescue zpg mutants. Few early germ cells were

observed in the testes of zpg deltaCT::GFP mutants (Fig 3J and 3L) compared to wildtype con-

trols (Fig 3G and 3I) and germ cell differentiation was arrested before or at the 4 cell cyst stage

(Fig 3G and 3I for wt,3J, 3L for mutant). Quantification of the number of GSCs in zpg del-

taCT::GFP mutants (Fig 3S; mean 3.4, n = 11) showed a significant loss of stem cells compared

to wildtype, but a slightly higher number compared to zpg null mutants. Since germ cell devel-

opment was arrested early on in zpg deltaCT::GFP mutants, the germ line did not differentiate

to the meiotic stages. Similarly, somatic cell phenotypes in zpg deltaCT::GFP mutants resem-

bled those seen in zpg null mutants (Fig 3T–3V). In zpg deltaCT::GFP mutants, the number of

cells stained with the early somatic cell markers Zfh-1 and Tj was increased compared to wild-

type (Fig 3G, 3H, 3J, 3L, 3T and 3U; mean of 162.2 and 202.3, n = 9 and 7, respectively). In

contrast, the number of cells expressing the late somatic cell marker Eya was reduced com-

pared to wildtype to a similar extent to that seen in zpg null mutants (Fig 3J, 3L and 3U; mean

88.3, n = 8). Finally, no spermatid bundles were found in zpg deltaCT::GFP mutants (Fig 3W),

resulting in sterility (Fig 3X, n = 19). In summary, our data shows that the loss of the C-termi-

nus disrupts Zpg delivery to, and/or maintenance at, the membrane, and that C-terminal dele-

tion mutants give rise to null-like phenotypes.

Conserved phosphorylation sites in the C-terminal domain are not

essential for Zpg function

Phosphorylation of key conserved residues in the C-terminal domain of gap junction proteins

is known to regulate their assembly, turnover, channel conductance, and cargo selectivity

[35,65,66]. Zpg has only two conserved putative phosphorylation sites in its C-terminus, Y352
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Fig 3. The C-terminus of Zpg is crucial for protein function, while C-terminal phosphorylation sites are dispensable. Zpg staining (green in A-D; single

channels in grey in A’-D’) is absent in zpg mutants rescued with Zpg containing a C-terminal deletion (zpg deltaCT::GFP) (B, B’), as the antibody binding site is

deleted. zpg deltaCT::GFP mutant testes are severely reduced in size and the hub (DN-Cadherin, red) is enlarged. In zpg mutants expressing a genomic rescue

construct containing mutations in phosphorylation sites (C, C’: zpg Y352F, D, D’: zpg Y352F/S356A), Zpg staining normally localizes to the germline-soma

boundaries (as indicated by arrows). Wt control is shown in A, A’. Nuclei are highlighted in blue. (E-F) localization of the GFP tag in testes when zpg deltaCT::

GFP is expressed in the null mutant background (E-E’) and in flies with one copy of endogenous zpg (F-F’). In testes of both genotypes, the GFP signal

accumulates intracellularly. Compared to wt (G, I), significantly less Vasa+ early germ cells (green) can be detected in testes of zpg deltaCT::GFP flies (J, L),

whereas no difference to wt was seen in zpg Y352F (M, O) and zpg Y352F/S356A mutants (P, R). The number of Zfh-1+ cells (wt shown in F) and Tj+ cells (wt

shown in H) was higher in zpg deltaCT::GFP testes (J, K), but not in the phospho mutants (M-Q). Less cells expressing the late somatic marker Eya were

detected in testes of zpg deltaCT::GFP flies (L) than in wt (I), but no change was found in the phosphorylation mutants (O, R). This indicates defective germ cell

and somatic cell differentiation in zpg deltaCT::GFP flies, but not in the two phosphorylation mutants. Quantification of (S) germline stem cells (GSCs), (T)

Zfh-1-positive cells, (U) Tj-positive cells, (V) Eya-positive cells, (W) spermatid bundles, and (X) fertility, shows loss of function upon deletion of the C-

terminus, but no defects in phosphorylation mutants. Scale bars represent 30–50 μm, as indicated above them. p-values are for difference from wildtype and

indicated by asterisks with �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pgen.1010417.g003
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and S356, and both were mutated to determine their contribution to Zpg function. Two differ-

ent mutants were generated: zpg Y352F and a double mutant (zpg Y352F/S356A) that knocks

out both of the conserved putative phosphorylation sites. Both Zpg Y352F (Fig 3C and 3C’)

and Zpg Y352F/S356A (Fig 3D and 3D’) could localize to the membrane of germ cells but

their localization was somewhat patchy and less contiguous compared to wildtype controls.

Vasa staining in zpg Y352F (Fig 3K and 3O) and zpg Y352F/S356A mutants (Fig 3P and 3R)

was indistinguishable from wildtype controls (Fig 3G and 3I), with an abundance of large Vasa

expressing cysts in the anterior part of the testis, indicating that germ cell differentiation was

not impaired. Accordingly, the number of GSCs was not altered in either Y352F or Y352F/

S356A mutants (Fig 3S; averages of 8.0 and 8.6 GSCs/testis, n = 9 and 8, for the Y352F, and

Y352F/S356A mutants, respectively). Moreover, Boule staining (S4D and S4E Fig) was similar

to that seen in wildtype controls for both zpg Y352F and Y352F/S356A mutants, meaning that

germ cells entered meiosis normally. Similarly, somatic differentiation was not perturbed in

the zpg Y352F and Y352F/S356A mutants compared to wildtype controls (Fig 3T–3V). Specifi-

cally, the number and distribution of cells expressing the early somatic markers Zfh-1 (Fig 3M

and 3P, quantified in Fig 3T; mean of 31 cells/testis for Y352F and 28 cells/testis for Y352F/

S356A, n = 8 for each genotype) and Tj (Fig 3N and 3Q, quantified in Fig 3U; mean of 131.6

cells/testis for Y352F and 122.3 cells/testis for Y352F/S356A, n = 8 and 9, respectively), as well

as the late somatic cell marker Eya (Fig 3O and 3R, quantified in Fig 3T; means of 186 cells/tes-

tis for Y352F and 202 cells/testis for Y352F/S356A, n = 8 and 7, respectively), were all indistin-

guishable from wildtype controls (Fig 3I). Consistent with these observations the number of

spermatid bundles was wildtype for the Y352F/S356A mutant (Fig 3W, 62.4 vs. 62 in wt,

n = 10 for each genotype), near wildtype for the zpg Y352F mutant (avg. of 50.7 spermatid bun-

dles, n = 10), and both zpg Y352F (n = 33) and the Y352F/S356A mutants (n = 47) were fully

fertile (Fig 3X). Overall, we did not detect any meaningful phenotypic defects or reduced fertil-

ity in the phosphorylation site mutants.

Zpg function requires coupling to other GJ proteins in neighboring cells

The vertebrate homologs of the innexins are pannexins, which are known to predominantly

function as hemichannels, rather than cell to cell channels, enabling the passage of cargo

between the cytoplasm and the extracellular space [24]. It is currently unclear how much of

innexin function, if any, can be due their capacity to form hemichannels versus gap junctions

and we used our rescue methodology to explore this question. The formation of gap junctions

requires the docking of a Connexin or Innexin multimeric hemichannel (so called Connexons

or Innexons) to another hemichannel in a neighboring cell via a set of extracellular cysteine

surface residue, an interaction that is mediated by disulfide bridges [22, 23]. The Zpg protein

has a clearly defined set of 6 surface cysteine residues in its extracellular loops, identified by

structure, location, and sequence conservation, that can mediate these disulfide bridges.

Exchanging the cysteine residues to other amino acids would disrupt the ability of Zpg to form

disulfide bridges with an innexin present of the surface of adjacent somatic cells. We generated

three zpg mutants in which different cysteine residues were replaced with serine residues. Spe-

cifically, and following the convention of numbering the 6 surface cysteine residues of Zpg

from 1 to 6 starting at the C-terminal end, we generated the mutants (see Materials and Meth-

ods): zpg C6S (6th cysteine mutated to serine), zpg C145S (1st, 4th and 5th cysteine mutated to

serine), and zpg C236S (2nd,3rd and 6th cysteine mutated to serine). Initial assessment of the

testes in the three mutant lines showed a significant size reduction compared to wildtype con-

trols (Fig 4A–4D). Zpg was not observed at the cell membrane in germ cells in the Cysteine

mutants (Fig 4A’–4D’) but instead appeared as diffuse cytoplasmic specks. In order to better
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visualize the localization of Zpg upon mutation of cysteine residues, we generated two GFP-

tagged cysteine mutant fly lines, C6S::GFP (6th cysteine replaced by serine) and C26S::GFP

(2nd and 6th cysteine replaced by serine). In the zpg null mutant background the localization of

Zpg CS6::GFP and Zpg C26S::GFP in germ cells also appeared cytoplasmic. We again took

advantage of the fact that the C-terminal GFP tag blocks the epitope recognized by the Zpg

antibody [53], and using the GFP antibody (green) combined with the antibody staining the

endogenous Zpg (red) (S5Q–S5T Fig). These experiments were carried out in heterozygous

flies containing one copy of the mutated Zpg CS6::GFP or Zpg C26S::GFP, respectively, and

one copy of the endogenous Zpg. We observed low levels of colocalization, measured by calcu-

lating the Pearson colocalization coefficient, between the endogenous and the mutated Zpg

(average r = 0.41 in both zpg CS6::GFP (n = 11) and zpg C26S::GFP (n = 14) compared to the

average r = 0.8 (n = 11) in zpg::GFP GR, S5U and S9 Figs). Specifically, the mutated proteins

were expressed but remained cytoplasmic. This suggests a possible role for the surface cysteine

residues in membrane localization but could also indicate possible issues with protein stability,

though, being surface residues, mutations in the surface cysteines are unlikely to impact pro-

tein folding or packing.

In line with the small testis size and absence of Zpg at the plasma membrane, fewer, and

seemingly undifferentiated germ cells, were observed in all three Cysteine mutants (Fig 4I and

4K for zpg C6S, 4L, 4N for zpg C145S, 4O, 4Q for zpg C236S). Quantification of GSC numbers

revealed a significant loss of stem cells in all cysteine mutants (Fig 4R, with wt average of GSCs

per testis at 9 (n = 15), compared to 2.6 in zpg C6S (n = 8), 3.1 in zpg C145S (n = 8), 2.1 in zpg
C236S (n = 9)). The severe germ cell differentiation defect meant that the germline in zpg cys-

teine mutant testes did not reach the meiotic stages. In all three zpg cysteine mutant fly lines,

somatic cell differentiation defects manifest in a similar way as in zpg null mutants. Cells stain-

ing positive for the early somatic cell markers Zfh-1 (Fig 4F, 4I, 4L and 4O, quantified in Fig

4S; means of 178.4 for C6S, 127.5 for C145S and 171.3 for C236S compared to 35.9 in wt,

n = 9, 8, 8, 20 respectively) and Tj (Fig 4G, 4J, 4M and 4P, quantified in Fig 4T; means of 193.4

for C6S, 190.4 for C145S and 182.7 for C236S compared to 130.6 in wt (Fig 4G) n = 10, 13, 11,

20 respectively) were significantly more abundant than in wildtype controls. The late somatic

cell marker Eya, in contrast, was found to label significantly less cells in the cysteine mutants

than in wildtype controls (Fig 4H, 4K, 4N and 4Q, quantified in Fig 4U; means 89.6 for C6S

(n = 7), 92.6 for C145S (n = 8) and 94.1 for C236S (n = 8) compared to 173.7 in wt (n = 8)).

Moreover, no spermatid bundles were found in any of the three cysteine mutant fly lines (Fig

4V, n = 10 per fly line), ultimately resulting in complete sterility (Fig 4W, n> 44 per fly line).

For all three cysteine mutant lines, the hubs appeared enlarged compared to wildtype controls,

and even in comparison to zpg null (Fig 4A–4D). In support of this analysis, similar overall

phenotypes were obtained in analysis of the GFP tagged version of CS6 or C26S mutants (zpg
CS6::GFP or zpg C26S::GFP; see S5 Fig). We conclude that the zpg cysteine mutant behave, for

the most part, indistinguishably from null alleles of zpg suggesting that Zpg activity requires an

ability to form viable gap junctions, with the mutation of even a single disulfide bridge-form-

ing cysteine residue leading to complete loss of Zpg function.

Identification and mutagenesis of key residues within the Zpg channel pore

that modulate the interaction with cargo and pore configuration

Gap junctions can allow the passage of many different cargos, to determine the role of cargo

specificity in gap junction-mediated communication in the testes we set out to generate muta-

tions that would modulate the passage of various cargos without blocking channel function. It

has been proposed that the N-termini of GJ proteins, which can reside inside the channel pore,
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most likely play a role in channel gating and selectivity [55,56,67]. To determine if the N-ter-

minal of Zpg could play such a role, we utilized the C. elegans INX-6 based homology-model

(Fig 1). The model suggested that both the N-terminus (NT) as well as first stretch of the Extra-

cellular Domain 1 (E1) face inside the channel pore. Moreover, alignment of Drosophila

Fig 4. Zpg does not function as a hemichannel. (A-D) zpg mutants rescued with genomic rescue constructs in which one or more cysteine residues were

mutated, hindering the formation of gap junctions, have rudimentary testes and no Zpg is detected by antibody staining (green in A-D; single channels

depicted in grey in A’-D’; wt in A-A’; zpg C6S, B-B’:, zpg C145S, C-C’; zpg C236S, D-D’). Hubs are marked with DNCad in red, nuclei are highlighted in blue.

(E-E”’) In testes of zpg mutants expressing GFP-tagged versions of the cysteine mutation constructs (zpg C6S::GFP in E, E’, zpg C26S::GFP in E”, E”’), a strong

intracellular accumulation of the GFP signal can be detected, while Zpg antibody staining is very weak. Cysteine mutations in zpg cause a strong defect in early

stages of germ cell differentiation as detected by Vasa staining (F, H: wt; I, K: zpg C6S, L, N: zpg C145S; O, Q: zpg C236S). Compared to wt (F, G), the

expression of the early somatic markers Zfh-1 (magenta; I, L, O) and Tj (grey; J, M, P) was increased in all three cysteine mutants, whereas the number of cells

expressing the late marker Eya (K, N, Q) was decreased. Quantification of (R) germline stem cells (GSCs), (S) Zfh-1-positive cells, (T) Tj-positive cells, (U) Eya-

positive cells, (V) spermatid bundles, and (W) fertility shows null mutant-like phenotypes in cysteine mutants, leading to complete sterility. Scale bars represent

30–50 μm, as indicated above them. p-values are for difference from wildtype and indicated by asterisks with �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pgen.1010417.g004
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innexin amino acid sequences (Fig 1B) identified three conserved aspartate residues, which are

positioned in key locations within the channel pore: D50 (see Fig 5A), D59 (see Fig 6A), and

D21 (see Fig 7A). The highly conserved aspartate 21 (D21) residue was located at the end of

the N-terminal helix inside the pore. Although the exact side chain conformation cannot be

unambiguously assigned from homology modeling, its overall location near the pore suggests

that it may interact with cargo that passes through the pore (Fig 7A’). A second aspartate at

position 50 (D50) is found close to the narrowest constriction of the pore (Fig 5A). Although

this residue is only partially conserved between innexins and connexins, it is found in a num-

ber of connexins, and a mutation in the D50 residue in human Cx26 (D50N) is implicated in

keratitis-ichthyosis-deafness (KID) syndrome (Sanchez et al., 2013) [68]. Our homology

model suggests that D50 may interact with glutamine 46 (Q46) of the adjacent subunit of Zpg

(Fig 5A’), thereby contributing to the conformation and stability of the pore. A third conserved

aspartate at position 59 (D59) is also situated at the narrowest part of the channel pore, con-

stricting its diameter (Fig 6A for top view). This residue is also near an intersubunit interface,

and may make interactions with lysine 58 (K58) of a neighboring subunit of Zpg (Fig 6A’).

Due to its location near the narrowest part of the channel, the interactions mediated by D59

may affect the structural configuration of the pore and contribute to cargo selectivity.

Although the precise interactions of these three Asp residues will have to await experimen-

tal verification, their overall locations suggest they play important roles in channel function.

We therefore further explored their role using site-directed mutagenesis. Three different types

of point mutations were introduced in the D21, D50 and D59 residues to alter amino acid

polarity, modify their interaction with positively charged cargo, and change the nature of

hydrogen bonds that can be formed, respectively. First, as D is a polar and negatively charged

amino acid, replacing it with a polar, positively charged amino acid (arginine (R), lysine (K),

or histidine (H)) directly reverses the charge. While these positively charged residues could

still form hydrogen bonds, this would be with a different residue, thereby altering channel con-

formation. Second, as alanine (A) is a hydrophobic amino acid, introducing a D to A point

mutation impinges on the formation of hydrogen bonds or, in the case of D21, the interaction

with positively charged ions. Therefore, D to A mutations would be predicted to be the most

significant functional change within our mutagenesis approach. Third, a milder type of muta-

tion was introduced by mutating D to asparagine (N). Such a change to a polar but uncharged

residue is predicted to modulate the strength and nature of hydrogen bonds that can form in

the pore. In addition to these point mutations, a more drastic mutation was generated in

which the first four amino acids of Zpg excluding the methionine were deleted (zpg delta2-5).

Schematic models of the residues that were targeted in our mutagenesis are depicted in Figs

5A”, 6A” and 7A”.

Channel pore mutations in Zpg localized to the Plasma Membrane

To study the localization of channel pore mutants they were GFP-tagged at their C-terminus.

Since the GFP fusion at the C-terminal prevents recognition by the Zpg antibody this allows us

to distinguish the localization of the Zpg encoded by the rescue construct (GFP positive and

Zpg antibody negative) from the endogenous Zpg (GFP negative but Zpg antibody positive).

Using this approach, we observed normal membrane localization of the Zpg protein encoded

by the rescue construct containing either of 3 different mutations in the D50 residue, D50A,

D50R or D50K (see Materials and Methods, Figs 5B–5F, S6, Table 1). Similarly, the Zpg pro-

tein encoded by the rescue construct containing either of 3 different mutations in the D59 resi-

due, D59A, D59N, or D59H localized normally to the surface of germ cell (Figs 6B–6F, S7,

Table 1). In comparison, the Zpg protein encoded by the rescue construct containing either of
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Fig 5. Mutations in the Zpg D50 channel pore residue result in germ cell differentiation defects. (A) Homology model of Zpg showing the position of aspartate

50 (D50) within the channel pore. (A’) D50 is predicted to form a hydrogen bond with glutamine 49 (Q49) of the adjacent Zpg subunit. (A”’) Simplified model

highlighting the location of D50 (marked in pink) in the first extracellular loop. (B-F) Colocalization of wildtype endogenous Zpg and GFP-tagged, mutated Zpg.

Flies heterozygous for a null allele of zpg but also containing one copy of the wildtype genomic zpg rescue construct (zpg GFP::GR; B-B’), no rescue construct (C-C’),
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2 different mutations in the D21 residue, D21A or D21N, showed substantial cytoplasmic

localization though some protein was able to localize to the plasma membrane (Figs 7B–7F, S8,

Table 1). Finally, the Zpg protein encoded by the rescue construct containing the N-terminal

delta2-5 truncation (Figs 7F, and S8, Table 1) also exhibited a wildtype pattern of localization

to the plasma membrane.

Quantifications of the Pearson colocalization coefficient between the endogenous and the

mutated Zpg also reveals weak colocalization in both zpg D21 mutants (average r = 0.44 in zpg
D21A (n = 11) and r = 0.58 in zpg D21N (n = 12) compared to average r = 0.8 (n = 11) in zpg::

GFP GR (Figs 7G and S9), whereas all other mutant constructs showed very strong colocaliza-

tion with endogenous Zpg (average r = 0.82 in zpg D50A (n = 10), r = 0.81 in zpg D50R

(n = 10), r = 0.82 in zpg D50K (n = 12), r = 0.81 in zpg D59A (n = 10), r = 0.75 in zpg D59H

(n = 10), r = 0.84 in zpg D59N (n = 10) and r = 0.84 zpg delta2-5 (n = 12) compared to average

r = 0.8 (n = 11) in zpg::GFP GR (Figs 5G, 6G and 7G and S9). These results show that Zpg pro-

teins containing mutations in the channel pores were, for the most part, able to stably localize

to the plasma membrane.

Channel pore mutations in Zpg exhibit a range of phenotypes

In terms of general testes morphology and overall fertility, a range of phenotypes was seen

when channel pore mutations were used to rescue zpg null flies (Table 1). Testes from both the

zpg D50A and zpg D50R mutants appeared morphologically wildtype if slightly smaller than

controls, produced spermatid bundles, and were fertile, though less fertile than wildtype con-

trols (Fig 5H and 5I for wt, 5L–5O for mutants, 5V, 5W). In comparison, the zpg D50K

mutants had rudimentary testes that resembled those of zpg null flies (Fig 5J and 5K for null,

5P, 5Q for D50K, 5V, 5W), no spermatid bundles were produced, and flies were sterile. Testes

from zpg D59N, and zpg D59H mutants also appeared morphologically wildtype but exhibited

a smaller size, lower number of spermatid bundles, and reduced fertility compared to the con-

trols (Fig 6H and 6I for wt, 6N–6Q for mutants, 6V, 6W). A stronger reduction in size, and

severe reduction in both the number of spermatid bundles and fertility, was seen in zpg D59A

mutant testes (Fig 6L,6M, 6V and 6W). Testes from zpg D21A, zpg D21N, or N-terminal

delta2-5 truncation mutants all showed a rudimentary testis phenotype that resembled that of

zpg null flies, no sperm bundles were observed and the flies were sterile (Fig 7H and 7I for wt,

7L–7Q, 7V and 7W, Table 1).

To analyze germ cell differentiation in channel pore mutants they were stained for the germ

cell markers Vasa and Boule. In wildtype controls Vasa staining is prominent in the anterior

third of the testis (Fig 5H), whereas Boule (Fig 5I) labels the germline in later-stages and is

enriched towards the posterior end of the testis where it highlights the parallel, highly orga-

nized, arrangement of spermatid tails. In zpg null mutants the number of Vasa positive germ

one copy of the zpg D50A mutant rescue construct (D-D’), one copy of the zpg D50R mutant rescue construct (E-E’) and one copy of the zpg D50K mutant rescue

construct (F-F’), the GFP-tagged D50 mutants show strong colocalization with the endogenous Zpg at the membrane. This high degree of colocalization is also

revealed by the quantification of the Pearson coefficient between the GFP and Zpg antibody staining (G). (H-Q) Staining for the mitotic germ cell marker Vasa and

the late-stage germ cell marker Boule. In the wildtype, Vasa staining is mostly concentrated in the apical part of the testis (H), whereas Boule marks meiotic cysts and

long, parallel bundles of spermatids (I). In zpg null mutant testes little Vasa (J) and no Boule (K) signal is detected. In both zpg D50A (L) and zpg D50R (N) testes, the

Vasa signal is strong and broadly localized. However, in zpg D50A testes, Vasa-positive cysts are abnormally found throughout the entire testis (L), and defective

cysts can be observed in both mutants (circled in L, arrowhead in N). In addition, Boule staining in testes of zpg D50A (M) and zpg D50R (O) mutants reveals

disorganized spermatid bundles. While zpg D50K mutant testes have a larger number of germ cells and larger mitotic cysts compared to zpg null mutants (P), they

fail to reach meiosis (Q). Quantification of (R) germline stem cells (GSCs), (S) Zfh-1-positive cells, (T) Tj-positive cells, (U) Eya-positive cells, (V) spermatid bundles,

and (W) fertility data. The data indicates late germ cell differentiation defects in zpg D50A and zpg D50R mutants and a stronger phenotype closer to the null mutant

in zpg D50K mutants. Hubs are either encircled or indicated by asterisks. Scale bars represent 50 μm, as indicated above them. n>30 single crosses per genotype for

fertility tests. p-values are for difference from wildtype and indicated by asterisks with �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pgen.1010417.g005
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Fig 6. Mutating the residue D59 of Zpg in the channel pore results in late-stage defects in germ cell differentiation. (A) Homology model of Zpg showing the

position of Aspartate 59 (D59) at the narrowest part of the channel pore, constricting its diameter. (A’) D59 is predicted to form a hydrogen bond with lysine

(K58) of the neighboring Zpg subunit. (A”) Simplified model highlighting the location of D59 in the first extracellular loop of Zpg, facing inside the pore. (B-F)

Colocalization of wildtype endogenous Zpg and GFP-tagged, mutated Zpg. Flies heterozygous for a null allele of zpg but also containing one copy of the wildtype

genomic zpg rescue construct (zpg GFP::GR; B-B’), no rescue construct (C-C’), one copy of the zpg D59A mutant rescue construct (D-D’), one copy of the zpg
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cells (Fig 5J) is low, few early-stage cysts are seen, and no Boule staining was detected due to

the early arrest of germ cell differentiation (Fig 5K).

Mutations in the D50 residue. In both zpg D50A and zpg D50R mutants Vasa staining

was irregular, filling the entire testis, and multiple large mitotic cysts were seen (Fig 5L and

5N) even in the posterior testis, where mitotic germ cells are not usually found. Boule staining

(Fig 5M and 5O) in both zpg D50A and zpg D50R mutant testes was reduced and spermatid

bundles did not appear to be as organized and parallel as in wildtype controls. The zpg D50K

germline phenotype was similar to that seen in zpg null testes, though more early cysts were

found compared to zpg null testes (Fig 5P and 5Q compared to zpg null in 5J, 5K). While both

zpg D50A and zpg D50R had wildtype numbers of GSC, zpg D50K flies were similar to zpg null

mutants in having only few GSCs (average 3.3, 9.0, 9.3 GSCs compared to 9.0 in wt, n = 9, 8,

10 in D50K, D50A and D50R mutants, respectively). It should be noted that the D50A pheno-

type was quite variable as indicated by the different phenotypes shown in the representative

testis shown in Fig 5L, which contains mostly pre-meiotic germ cells, and the testis shown in

Fig 5M which contains many elongating spermatids.

Mutations in the D59 residue. The early germline phenotype of zpg D59N (Fig 6N) and

zpg D59H (Fig 6P) mutant testes was, in general, wildtype, though on occasion unusual, poste-

rior cysts were seen in zpg D59H mutant testes. Late germline stages in D59N and zpg D59H

mutants also appeared, for the most part, wildtype (Fig 6O and 6Q) with Boule labelling large

meiotic cysts and spermatids exhibiting their characteristic ordered arrangement. In contrast

zpg D59A mutants did not appear wildtype and exhibited Vasa positive cysts abnormally

located throughout the testes with only a few late spermatid stage cysts (Fig 6L and 6M). None-

theless, GSC maintenance was not impacted by any of the D59 mutants, zpg D59N, zpg D59H,

or zpg D59A (average 8.2, 8.7, 10.1 GSCs compared to 9.0 in wt, n = 15, 9, 15 in D59N, D59H

and D59A mutants, respectively).

Mutations in the D21 residue and N-terminal truncation. Testes from flies expressing

mutations in the D21 residue in Zpg, zpg D21N and zpg D21A, as well as the N-terminal trun-

cation mutants, zpg delta 2–5, appeared rudimentary with few Vasa positive germ cells (Fig 7L,

7N and 7P) and no detectable Boule staining (Fig 7M, 7O and 7Q), consistent with a strong

loss of function or null zpg phenotypes. Quantification of GSCs showed reduced numbers,

similar to zpg null mutants, in zpg D21N and zpg D21A mutants, as well as the N-terminal

truncation mutants, zpg delta 2–5 (Fig 7R, average 2.4, 4.0, 2.1 GSCs, n = 8, 20, 18 in D21N,

D21A and delta 2–5 mutants, respectively).

Overall, as summarized in Table 1, we observe a complex spectrum of germline phenotypes

in our channel pore mutants, some behave like zpg null mutants while others behave as nearly

wildtype with a range of intermediate phenotypes in between. This is in line with our initial

expectation and goal of generating mutations that would modulate the passage of various car-

goes and therefore impinge on different aspects of spermatogenesis.

D59N mutant rescue construct(E-E’), and one copy of the zpg D59H mutant rescue construct (F-F’). The GFP-tagged D59 mutants show strong colocalization

with the endogenous Zpg at the membrane. This high degree of colocalization is also revealed by the quantification of the Pearson coefficient between the GFP and

Zpg antibody staining (G). (H-Q) Staining for the mitotic germ cell marker Vasa and the late-stage germ cell marker Boule. In the wildtype, Vasa staining is mostly

concentrated in the apical part of the testis (H), whereas Boule marks meiotic cysts and long, parallel bundles of spermatids (I). In zpg null mutant testes little Vasa

(J) and no Boule (K) signal is detected. Early germ cell differentiation defects are detected in zpg D59A (L, M), but not in zpg D59N (N, O) or zpg D59H (P,Q)

mutants. Impaired entry to meiosis is seen in testes of zpg D59A mutants, since the Vasa signal (L) takes up the entire testis and the Boule signal mostly labels late-

stage GC cysts, with very few spermatids (M). Weaker phenotypes are seen in testes of zpg D59N and zpg D59H mutants, with wildtype Vasa staining (N, P,

respectively). However, abnormal cysts are occasionally seen (for example see P, arrowhead). Although Boule staining is rescued in zpg D59N and zpg D59H

mutants they show some disorganization of sperm bundles (O, Q). Quantification of (R) germline stem cells (GSCs), (S) Zfh-1-positive cells, (T) Tj-positive cells,

(U) Eya-positive cells, (V) spermatid bundles, and (W) fertility reveals late germ cell differentiation defects in all mutants, with the strongest phenotype seen in zpg
D59A. Hubs are either encircled or indicated by asterisks. Scale bars represent 50 μm, as indicated above them. n>30 single crosses per genotype for fertility tests.

p-values are for difference from wildtype and indicated by asterisks with �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pgen.1010417.g006
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Fig 7. Mutations in the channel-gating N-terminus of Zpg lead to loss of function. (A) Homology model of Zpg showing the position of Aspartate 21 (D21)

residue within the Zpg channel reveals a localization within the channel pore. (A’) The side chains of D21 are not in proximity to any other amino acids. This

makes a direct interaction with the cargo likely. (A”) The introduced N-terminal mutations are highlighted in pink in a schematic view of the Zpg protein

structure. In the deletion mutant zpg delta2-5, the highly flexible N-terminal domain was shortened, while D21 sits at the hinge between the N-terminal chain

and the first transmembrane domain. Due to the limited number of germ cells in the N-terminal mutants, which makes it hard to assess subcellular

localization, the localization of Zpg (GFP-tagged; green in B-F, single channels in B’-F’) was analyzed in testes of flies harboring one copy of the respective
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Diverse somatic phenotypes observed in Channel pore mutations in Zpg

To explore links between specific disruptions of cargo transport through the gap junctions and

somatic differentiation, the expression of various somatic markers was studied in channel pore

mutants:

Mutations in the D50 residue. In testes of zpg D50A and zpg D50R mutants, early

somatic cell differentiation was mildly dysregulated, with a higher number of cells positive for

the early marker Zfh-1 at the apical tip (Figs 5S, S6L and S6O; means of 84 and 50, n = 10 and

8 for the D50A and D50R mutants, respectively) but normal staining patterns and cell counts

for Tj (Figs 5T, S6M and S6P; mean 149 and 152, n = 10 and 12 for D50A and D50R mutants,

respectively). The number of cells positive for the late marker Eya however, was significantly

mutation and once copy of endogenous Zpg (red in B-F). In the control (zpg::GFP GR, B-B’), the mutated and endogenous Zpg colocalize at the plasma

membrane. In non-rescued flies heterozygous for zpg (C-C’), Zpg localizes to the membrane and no GFP-tagged construct is expressed. Testes of zpg D21A

(D-D’) and zpg D21N (E’E’) mutants display weak membrane localization of the mutated proteins (see arrows), while the majority of the signal is cytoplasmic.

In contrast, strong colocalization is found in zpg delta2-5 mutants (F-F’). (G) Measurement of the Pearson coefficient for colocalization of Zpg and GFP in

testes of heterozygotes with one copy of endogenous and one copy of mutated Zpg. Strong colocalization in zpg delta2-5 mutants, similar to the zpg::GFP GR

control, is observed, but only weak colocalization in zpg D21A and zpg D21N mutants. (H-Q) Staining for the mitotic germ cell marker Vasa and the late-stage

germ cell marker Boule. In the wildtype, Vasa staining is mostly concentrated in the apical part of the testis (H), whereas Boule marks meiotic cysts and long,

parallel bundles of spermatids (I). In zpg null mutant testes little Vasa (J) and no Boule (K) signal is detected. Testes of zpg D21A (L-M), zpg D21N (N-O), and

zpg delta2-5 (P-Q) mutants exhibit a zpg null mutant-like phenotype. Quantification of (R) germline stem cells (GSCs), (S) Zfh-1-positive cells, (T) Tj-positive

cells, (U) Eya-positive cells, (V) spermatid bundles, and (W) fertility reveals null mutant-like phenotypes in all three N-terminal mutants, the exception being

partial rescue in the number of Zfh-1 positive cells in zpg D21A mutants. Hubs are either encircled or indicated by asterisks. Scale bars represent 50 μm, as

indicated above them. n>30 single crosses per genotype for fertility tests. Unless otherwise indicated p-values are for difference from wildtype and indicated by

asterisks with �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pgen.1010417.g007

Table 1. Summary of the mutants generated in this study.

Mutant Target Localization Rescue? Additional remarks

zpg::GFP rescue (genomic

rescue)

No mutation (rescue construct) at membrane full rescue Full length rescue construct (proof of principle)

zpg deltaCT::GFP C-terminus cytoplasmic none detected Deletion of the entire C-term

zpg Y352F Phosphorylation site at membrane full rescue

zpg phospho dead Both phosphorylation sites (Y352 and

S356)

at membrane full rescue

zpg C6S Docking to another Inx cytoplasmic none detected

zpg C236S Docking to another Inx to form GJ cytoplasmic none detected

zpg C145S Docking to another Inx to form GJ cytoplasmic none detected

zpg C6S::GFP Docking to another Inx to form GJ cytoplasmic none detected

zpg C26S::GFP Docking to another Inx to form GJ cytoplasmic none detected

zpg D50A::GFP Channel pore at membrane partial rescue Germ Cell differentiation defects during meiosis

zpg D50R::GFP Channel pore at membrane partial rescue Germ Cell differentiation defects during meiosis

zpg D50K::GFP Channel pore at membrane minimal

rescue

zpg D59A::GFP Channel pore at membrane partial rescue Germ Cell differentiation defects during meiosis

zpg D59H::GFP Channel pore at membrane partial rescue Germ Cell differentiation defects during

individualization

zpg D59N::GFP Channel pore at membrane partial rescue Germ Cell differentiation defects during

individualization

zpg D21A::GFP Channel pore Both membrane &

cytoplasmic

none detected D21 predicted to directly interact with cargo

zpg D21N::GFP Channel pore Both membrane &

cytoplasmic

none detected D21 predicted to directly interact with cargo

zpg delta2-5::GFP Channel pore at membrane none detected N-terminal deletion (amino acid 2–5)

https://doi.org/10.1371/journal.pgen.1010417.t001

PLOS GENETICS Gap junction function during fly spermatogenesis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010417 September 29, 2022 20 / 36

https://doi.org/10.1371/journal.pgen.1010417.g007
https://doi.org/10.1371/journal.pgen.1010417.t001
https://doi.org/10.1371/journal.pgen.1010417


reduced (Figs 5U, S6N and S6Q; mean 111 and 132, n = 8 and 7, for D50A and D50R mutants,

respectively). Stronger somatic phenotypes, comparable to a null zpg mutant, were observed

for the D50K mutation, both Zfh-1 (Figs 5S and S6R; mean 194, n = 10) and Tj (Figs 5T and

S6S, mean 200, n = 8) counts were elevated, whereas the number of Eya positive cells was

reduced compared to controls (Figs 5U and S6T; mean 98, n = 8).

Mutations in the D59 residue. A similar mix of early and late phenotypes was seen with

different mutations targeting the D59 residue in the channel pore. Both the zpg D59N and zpg
D59H mutant fly lines, exhibit relatively normal early somatic differentiation, as judged using

the somatic markers Zfh-1 (Figs 6S, S7O, S7RR; means of 45 and 46, n = 11 for both zpg D59N

and zpg D59H), and Tj (Figs 6T, and S7P, S7S; mean 114 and 120 for n = 10 and 8 for zpg
D59N and zpg D59H, respectively). In comparison, later somatic development, analyzed using

the late marker Eya, was disrupted, though not as severely as in null zpg mutants (Figs 6U, and

S7Q, S7T; mean 120.8 and 125.5, n = 10 and 11, for zpg D59N and zpg D59H, respectively).

Stronger phenotypes closer to zpg null mutants were obtained in zpg D59A mutant testes with

a higher number of both Zfh-1 positive cells (Figs 6S, and S7L; mean 81, n = 20) and Tj positive

cells (Figs 6T and S7M; mean 208, n = 24), and a lower number of Eya positive cells (Figs 6U

and S7N; mean 111, n = 9) compared to controls.

Mutations in the D21 residue and N-terminal truncation. Mutations in the D21 channel

pore residues, as well as the N-terminal delta2-5 truncation, gave rise to strong zpg null-like

somatic phenotypes. Specifically, there were higher numbers of both Zfh-1 positive cells (Figs

7S, and S8L, S8O, S8R; mean 150, 99, and 156, n = 8, 14, and 10 for D21N, D21A, and the

delta2-5 mutations, respectively) and Tj positive cells (Figs 7T, and S8M, S8P, S8S, mean 197,

180, and 207, n = 10, 13, and 10 for D21N, D21A, and the delta2-5 mutations, respectively),

and a corresponding decrease in the number of Eya positive cells (Figs 7U, and S8N, S8Q, S8T;

mean 136, 100, and 96, n = 7, 13, and 13 for D21N, D21A, and the delta2-5 mutations, respec-

tively). Overall, as summarized in Table 1, these results show that mutations that selectively

disrupt signals that move through the gap junction channel pore from the germline to the

soma produce distinct somatic phenotypes.

Intermediate alleles of channel pore mutations identify a function for gap

junction in sperm individualization

A number of the channel pore mutants reached the late stages of spermatogenesis yet exhibited

noticeably reduced fertility. These included the largely wildtype appearing zpg D50A, zpg
D50R, and zpg D59N mutants, as well as the more severe zpg D59A mutant (Figs 5V, 5W, and

6V, 6W).

Since these phenotypes were consistent with late arising spermatogenesis defects, we ana-

lyzed the spermatid stages in greater detail. Phase contrast microscopy was used to analyze

“onion stage” spermatids, and in particular nuclear phenotypes and nebenkern numbers (Fig

8A–8F). With the exception of zpg D59N mutant testes (Fig 8F) which appeared wildtype, zpg
D50A, zpg D50R, zpg D59A, and zpg D59H mutants all exhibited multinucleation defects and

abnormal nucleus to nebenkern ratios in some of their spermatids. To study individualization,

we looked at the sperm actin caps in intermediate strength channel pore mutants (Fig 8G–8L).

While in the wildtype there is tight association between the actin caps in freshly dissected

sperm (labelled with phalloidin) and the nuclei (labelled with TO-PRO-3) in all intermediate

strength channel pore mutants, we observed abnormal actin caps that had only loose associa-

tion between actin and nucleus. To quantify this phenotype, we measured the angle between

the actin filaments and the nuclei to determine the degree of organization of the spermatid

bundles (Fig 8M, n = 45 for all genotypes except for zpg D59A (n = 20)). In wildtype controls
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there is typically a 180-degree angle between the actin filaments and the nuclei, indicating a

linear alignment. In comparison, all the intermediate channel pore mutants, and in particular

the zpg D59A and the zpg D50A mutants, exhibited a smaller angle indicating various degrees

of disorganization. Taken together this data shows that mutations that selectively disrupt sig-

nals that move through the gap junction channel pore from the germline to the soma can dis-

rupt specific signals in late-stage spermatogenesis that are required to organize actin and

facilitate sperm individualization.

Fig 8. Defects in the spermatid stage are detected in a subset of zpg channel pore mutants. (A-F) Phase contrast imaging of “onion stage” spermatids in live

testes in wt and in the subset of zpg mutants that show intermediate germline differentiation defects. In the wildtype (A), spermatids appear as round cells with

large nuclei with a small nebenkern (black dot inside nuclei). Major defects such as multinucleation and abnormal nucleus-to-nebenkern ratios are seen in

spermatids of zpg mutants rescued with the D50A (B), D50R (C), D59A (D), and D59H (E) mutant zpg genomic rescue constructs, as indicated by red arrows.

Spermatids of zpg D59N mutants (F) do not show nuclear defects. (H-L) Spermatid individualization complexes (ICs) in testes of freshly eclosed flies were stained

with rhodamine phalloidin (labels actin cones, magenta) and TO-PRO-3 (labels nuclei, green). In the wildtype (H), the actin cones are tightly associated with the

elongated nuclei of 64 developing spermatids. In testes of zpg D50A (H), zpg D50R (I), zpg D59A (J), zpg D59H (K) and zpg D59N (L) mutants, the association of

actin can be disrupted and the overall IC structure appears disorganized. Scale bars indicate 10 μm. (M) Quantification of the angle of association between the actin

cones and the nuclei in ICs. The wildtype has a 180˚ angle between the actin and the nuclei due to the linear organization of the IC. In all analyzed mutants, but in

particular in zpg D50A and zpg D59A, the angle is smaller, indicating disorganization. n = 45 for all mutants except zpg D59A (n = 25 due to lower abundance of

spermatid bundles). (N) Simplified model summarizing of the function of Zpg during spermatogenesis. Zpg is required for all major developmental transitions in

fly spermatogenesis. Schematic depicts the process of spermatogenesis starting at stem cell the stem cell niche at the apical tip of the testis and ending at

differentiated mature sperm (GSCs, dark green; CySCs and cyst cells, magenta; hub; pink). The gap junction (cyan) consisting of Zpg and Inx2 is found at the

soma-germline interface and allows bi-directional passage of cargo (yellow arrows) between soma and germline. Soma-germline communication is required for the

first, mitotic steps of germ cell division, as zpg null mutants fail to enter the transit-amplifying stages. Zpg-mediated soma-germline communication is also required

in later stages of germ cell differentiation, since germ cells in hypomorphic zpg mutants generated in this study failed to enter and properly execute meiosis and/or

spermatid individualization. The different stages of spermatogenesis are indicated by a colour code (Green: early stages, yellow: mid stages, red: late stages).

https://doi.org/10.1371/journal.pgen.1010417.g008
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Discussion

In this study, we took advantage of the powerful genetic tools of Drosophila and the relatively

small size of the genomic DNA region required to fully rescue zpg to perform what is, to our

knowledge, the most comprehensive structure function analysis of a gap junction protein in an

in vivo context. Taking advantage of the large body of biochemical and functional studies of

gap junction proteins, we were able to identify and disrupt specific key regulatory and func-

tional sites within zpg and define their role in soma-germline communication during sper-

matogenesis. Spermatogenesis is particularly suitable for this type of structure function, as

encapsulation of the germ cells by somatic cells completely isolates the germline from the envi-

ronment [9,19]. This means that the germline is fully reliant for its survival on gap junction-

mediated transport of external cues required for cell differentiation and/or nutrients and

metabolites. Our analysis provides several key insights into how Innexins work as well as into

how spermatogenesis is regulated. First, we show that the C-terminal of zpg is required for its

transport and/or stabilization at the plasma membrane but that C-terminal phosphorylation

sites are not essential for function. Second, we provide strong in vivo evidence that Innexin

function requires gap junction formation similar to connexins but not to the more closely

related pannexins, which function as hemichannels. Third we observe that mutations that are

designed to target the channel pore, and selectively alter the passage of regulatory molecules

through the gap junctions, produce a range of phenotypes spanning from early to late stages of

spermatogenesis. This identifies an important role for N-terminal mediated cargo selectively

which suggests that different gap-junction mediated cargoes regulate specific stages of sperm

differentiation. More broadly, these results identify roles for gap junction-mediated soma-

germline communication in multiple stages of spermatogenesis, consistent with the continu-

ous role for gap junctions throughout sperm development.

A general obstacle for mechanistic studies of gap junctions is the difficulty in identifying

the specific cargoes that pass through the channel pore This task is made even more difficult

by noting that, multiple gap-junction cargoes can be used simultaneously to control a specific

biological outcome. As a partial workaround to this issue we used structural and biochemical

insights to selectively alter the channel pore with the hope of identifying mutations that selec-

tively inhibit specific cargoes. This would allow us to study the role of gap junctions in diverse

processes without the need to identify the entire set of cargoes that are required in every such

process. We propose that some of the mutations we tested indeed fulfill the criteria for such

alterations. For example, the zpg D50A, zpg D50R, and zpg D59N go through a fairly normal

early spermatogenesis, in terms of both somatic and germline development, but exhibit spe-

cific defects when they reach the key late developmental process of sperm individualization.

The D50 and D59 residues are located in the narrowest part of the channel pore and changes

in these residues would be predicted to alter the ability of different cargos to pass through the

channel. In comparison, two, more drastic mutations, zpg D59A and zpg D59H, exhibit stron-

ger phenotypes that are a mixture of early and late spermatogenesis defects. These results are

in line with a model in which specific disruptions in the passage of different types of cargoes

impinges on spermatogenesis in distinct ways and illustrates how unique cargoes are required

to modulate early versus later stages of sperm development.

Analysis of the phenotype in mutants lacking zpg expression [51–53] has shown that in zpg
mutants, the early stages of germ cell differentiation were blocked. This early and severe phe-

notype of zpg null mutants made the analysis of the function of Zpg in later stages of spermato-

genesis impossible. In a number of the hypomorphic mutants we generated in the present

study, germ cell differentiation defects were more complex. In particular our data suggests

defects in the ability of some channel pore mutants to enter and properly execute meiosis.
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Mutants such as zpg D50A and zpg D50R, produce a version of the Zpg protein that localized

to the plasma membrane, and exhibited early somatic and germline phenotypes that are, based

on our analysis, wildtype. However, they develop defects during the germline’s transition from

mitosis to meiosis. There are examples in the literature of gap junction-mediated signaling ini-

tiating or regulating meiosis, such as oocyte maturation in rodents [69,70]. Oocyte maturation

is inhibited by cAMP through a kinase cascade and high levels cAMP are maintained using

inhibition of the activity of cAMP phosphodiesterase through gap junction derived cGMP

[71–73]. Upon exposure to LH (luteinizing hormone), cGMP diffuses out of the oocyte

through gap junctions, causing lower levels of cAMP and triggering the reentry to the meiotic

cell cycle [74]. Similarly, gap junction mediated signals seem to be essential for the proper

assembly and/or maintenance of actin caps during late spermatogenesis, an intricate process

that requires close coordination between the soma and the germline [75]. In sum, the identifi-

cation of new, late acting alleles of Zpg provides an opportunity to identify and study novel

roles and mechanisms of action of soma germline communication.

The intracellular C-terminus domain is a an important binding site for interacting proteins

and plays a role in channel gating [34,35]. The functional diversity of the C-termini of innexins

[20] and connexins [33] is reflected by the observation that these domains vary greatly in

length and constitute the least conserved domain among innexins and connexins. A truncated

version of Zpg lacking the C-terminal domain, deltaCT::GFP, failed to localize to the mem-

brane of germ cells and became trapped intracellularly, resulting in complete loss of function.

This implies that the C-terminus might be required for either delivering or stabilizing Innexins

at the membrane, potentially through facilitating interactions with binding partners. Though

it is possible that protein folding is impaired by the truncation, truncating the C-terminal

domain in other gap junction does not affect the ability of the protein to fold properly. For

example, in mouse cardiomyocytes, truncation of the C-terminus of the Connexin CX43 did

not prevent it from either localizing to the membrane or transmitting current between cells

[76]. Intriguingly though, this truncation did exhibit phenotypes consistent with changes in

CX43 stability and turnover, namely, fewer, but larger gap junction plaques were observed.

Complicating this picture is the observation that different tissues react differently to C-termi-

nal truncations, for example, in contrast to cardiomyocytes in the mouse neocortex or epider-

mis, C-terminal truncations in CX43 resulted in loss of function [77,63]. Analyzing the

function of the C-terminus of Zpg in additional tissues as well as the identification of potential

interaction partners remains an important subject for future investigations.

Gap junction proteins couple to each other via disulfide bridges formed between cysteine

residues in their extracellular domains [22,23]. Vertebrate pannexins, which are closely related

to invertebrate innexins, only form hemichannels, thereby allowing the flow of small molecules

between cytoplasm and extracellular space [24]. Several human connexins can form hemi-

channels as well, and though there has been speculation innexins can also function as hemi-

channels this has not been directly tested [25,78]. Our data shows that Zpg is very sensitive to

disruptions in the Cysteine-residue coupling that mediates gap junction formation as mutating

even a single Cysteine residue severely disrupt protein function. This strongly supports the

assertion that Zpg functions during spermatogenesis predominantly by forming gap junctions

between the soma and the germline. Furthermore, this observation allowed us to ask how

mutations that affected gap junction gating modulated soma-germline communication. Based

on our predicted 3D structure, and in line with studies using C. elegans INX-6 [55], the short

N-terminal domain and the first part of the Extracelullar Domain 1 of Zpg are located inside

the channel pore. We focused on three residues, D21, D50 and D59, located inside the pore,

that are predicted to either directly interact with positively charged cargo passing through the

channel (D21) or to regulate pore permeability by forming hydrogen bonds with other amino
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acids at the narrowest, size-limiting part of the pore (D50, D59). All channel pore mutants

were able, to varying extents, to localize to and be retained at the membrane, suggesting that

mutating residues within the channel pore does not substantially interfere with protein folding

and trafficking to the membrane. It has been shown for several human connexins that the pas-

sage of cargoes through the channel is regulated by amino acids found within the pore, as

these residues form a network of stabilizing hydrogen bonds [41]. The interactions that occur

within the channel pore are complex, and it is hard to predict the behavior of the mutants. For

example, it was surprising that while K and R are not greatly different in size or charge, the

germ cell differentiation phenotype of zpg D50K mutants was more severe than the one in

D50R mutants. This highlights the usefulness of the kind of trial-and-error approach we were

able to adopt for Zpg structure/function analysis, where we could study multiple mutations

due to the relative ease of generating mutant rescue constructs.

Another of the N-terminal mutants we generated, a deletion of the first four amino acids,

excluding the methionine, provided additional mechanistic insight into Zpg function. In other

gap junction proteins the N-terminal helix is a highly flexible structure that is actively involved

in opening and closing the channel [67,39,55,56]. If this was the case for Zpg than a deletion of

the first part of the helix would result in constitutive opening of the channel. Alternatively, the

deletion of the four amino acids might critically interfere with the gating mechanism and dis-

turb the structure of the channel, thereby impairing the gating mechanism and blocking the

passage of cargo through the channel. For the zpg delta2-5 deletion mutant, we observed a loss

of function phenotype supporting the latter model. This result is consistent with structural

studies showing that the N-terminus forms a funnel-like pore structure of a specific size and

electrostatic charge, that is a central regulator of channel conductance and cargo selectivity

[41,55,56,79].

Based on the data we obtained as well as previous studies of Zpg function we propose the

following model (Fig 8N). Soma-germline communication, mediated by gap junction channels

consisting of Zpg on the germ cell membrane and Inx2 on the somatic cell membrane, is

required at multiple stages of germ cell differentiation. Once the developing early germ cells

are encapsulated by somatic cells and are closed off from their environment [9,19], they fully

rely on signals passed through the gap junction channel, which regulate their differentiation,

nourish them, and are required for their survival. Only when soma-germline communication

is intact, can the germ cells proceed to differentiate and divide, first entering the transit ampli-

fying stages of mitotic divisions. As the cysts grow larger, Zpg is still required for further divi-

sions. In this study we, for the first time, demonstrate the function of soma-germline

communication at the transition to meiosis, as hypomorphic zpg mutants show defects in the

initiation of meiotic divisions, resulting in reduced fertility. Finally, we identify a role for gap

junction-mediated soma-germline communication in sperm individualization. This implies

that Zpg-mediated soma-germline communication plays a crucial role not only in initiating

the first round of divisions, but also in triggering the switch to meiotic divisions and in the

normal progress through sperm individualization, which makes Zpg a central regulator of

developmental transitions at multiple points during spermatogenesis. In this regard our study

may have potential implications to an important question in the field of mammalian spermato-

genesis. Specifically, it is not currently known how Sertoli cells, which encapsulate the germ

cells through all stages of mammalian spermatogenesis can have essential regulatory roles in

all the different steps of germ cell differentiation. It is remarkable that at each developmental

transition of mammalian spermatogenesis, from spermatogonia to spermatocytes and then to

spermatid, Sertoli cells have a major and clearly defined contribution [80]. Since it is known

that gap junction proteins, most notably the Sertoli cell specific connexin 43, are required for

multiple stages of spermatogenesis [48], we can envision a similar mechanism to that we
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observe in the fly testes. In particular, it may that distinct gap-junction mediated signals, each

acting at a specific stage of spermatogenesis, regulate each sequential step in mammalian

spermatogenesis.

Materials and methods

Fly lines and husbandry

The following lines were used: zpgz-2533, st/TM3, Sb; zpgz-5352/TM6B; multibalancer lines as

well as the fly lines generated in this study (see below). Flies were kept on a standard diet.

Crosses were set up at room temperature, were kept at 25˚C and transferred to fresh food

every other day. To generate zpg null mutant flies, zpgz-2533/TM3, Sb, YFP flies were crossed to

zpgz-5352/TM3, Sb, YFP flies. For the wild type control, zpgz-2533/TM3, Sb, YFP flies were

crossed to w1118.

All newly generated mutant genomic rescue fly lines (zpg GR) were crossed into the zpgz-

5352 background, generating the following genotype: +/y; zpg GRMut/CyO; zpgz-5352/TM6B.

Males of these lines were crossed to virgins of zpgz-2533/TM3, Sb, YFP. The offspring was

selected for markers and the following genotype was chosen for analysis: +/y; zpg GRMut/+;

zpgz-2533/zpgz-5352. For the analysis of heterozygous flies that still have one copy of the endoge-

nous zpg, but also one copy of the respective mutant rescue construct, the following genotype

was chosen: +/y; zpg GRMut/+; zpgz-2533/TM6B.

Generation of fly lines

All fly lines generated in this study were based on the rescue construct described in Smendziuk

et al., 2015 [53]. Briefly, a 6.15kb genomic fragment including the zpg locus [51] and an addi-

tional 1.5kb both upstream and downstream were cloned into the pAttB vector. This was used

as template for site directed mutagenesis to introduce deletions and point mutations to the zpg
gene. Many of the generated constructs (see Table 1) contain an additional a GFP cassette pre-

ceded by a short linker sequence (LAAA).

For site directed mutagenesis, the Q5 Mutagenesis Kit (NEB) and the QuikChange XL

Mutagenesis Kit (Agilent) were used according to the manufacturers’ instructions. Plasmids

were purified using the PureLink HiPure Plasmid Midiprep Kit (ThermoFisher). Constructs

were verified by Sanger sequencing prior to injection (Bestgene) and inserted into the fly

genome via the attP40 integration site on the second chromosome. Transformants were

selected by eye colour and crossed to flies of a multi-balancer line to generate stable, balanced

stocks. A list of generated mutants can be found in Table 1.

Homology modeling

Sequences of Drosophila and C. elegans innexins were aligned using CLC Workbench Software

and Protein BLAST. For protein homology modeling, the protein structure of Zpg (Uniprot

Q9VRX6) was modeled onto the previously published structure of C. elegans INX6 ([55]; PDB

entry 5H1Q) using SWISS-MODEL. The 3D protein structure model was assessed and figures

were generated using Pymol software.

Fertility assays

For assessing fertility of male flies, three w1118 virgin females, 4–5 days post eclosion (dpe)

were mated with a 1dpe male for two days. Afterwards, mated flies were transferred to fresh

food for 24 h and kept at 25˚C. The number of offspring from this 24 h period was counted
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and categorized as follows: Fertile: more than 30 offspring/day; Subfertile: less than 30 off-

spring/day; Infertile: 0 offspring/day.

Immunostaining and confocal imaging

Dissection of testes of adult male Drosophila was performed as previously described [53].

Briefly,<1dpe males were vivisected in 1x PBS pH 7.4 and fixed in 4% PFA for 20 min. Sam-

ples were washed and antibody solutions were prepared in 1x PBS supplemented with 0.5%

BSA and 0.3% Triton X-100. Samples were incubated with primary antibodies overnight at

4˚C. See Table 2 for a list of primary antibodies used in this study. Secondary antibodies (Jack-

son Immuno; coupled to A488, Cy3, or A647/Cy5) were diluted 1:500 and incubated in the

dark for 2 hours at room temperature or overnight at 4˚C.

Samples were mounted in Vectashield H-1200 with DAPI or in Vectashield H-1000 (from

Vector Laboratories). For nuclear labelling, either Vectashield H-1200 was used or the nuclear

dye TO-PRO-3 (1:500, ThermoFisher) was incubated together with the secondary antibodies.

For labelling of individualization complexes, testes were dissected, fixed in PFA, washed

and then incubated in a solution containing Rhodamine Phalloidin (1:100, abcam) and

TO-PRO-3 (1:500, ThermoFisher) for 2h. After a 15 min wash in PBS, samples were mounted

in Vectashield H-1000 and immediately subjected to imaging.

Confocal images were taken using an Olympus FV1000 inverted confocal microscope with

an UplanSApo 20x0.75, an UplanFL N 40×, 1.30NA oil objective, and an UplanSApo 60×, 1.35

NA oil objective. Image analysis was performed in Olympus Fluoview and in FIJI, cell counts

were performed in MatLab. Figures were assembled in Adobe Illustrator 2020.

Image analysis

Cell counting was performed in MatLab using a script optimized for 3D cell counting. Briefly,

Z-stacks are combined into a tensor to filter and perform a 3D distance transform and water-

shed to identify and count cells. Each 2D Z-stack is also counted to see cell density. The script

can be found at GitHub: (https://github.com/Tanentzapf-Lab/GapJunction_Spermatogenesis_

Pesch). GSCs and Zfh-1-positive cells were counted manually using the Cell Counter plugin in

FIJI. For cell counts, GSCs were defined as Vasa-positive single cells contacting the hub.

CySCs were defined as Zfh-1-positive cells in direct proximity (<10μm) to the hub. Fluores-

cent intensity quantifications were performed in FIJI. For determining the degree of

Table 2. Antibodies used in this study.

Antibody/Dye Source Species Dilution

Zpg Smendziuk et al., 2015 [53] rabbit 1:20000

GFP Abcam, ab13970 chicken 1:1000

Vasa R. Lehmann rabbit 1:5000

Boule S. Wasserman rabbit 1:1000

Zfh-1 J. Skeath guinea pig 1:500–1:1000

Traffic jam (tj) D. Godt guinea pig 1:5000

Eya DSHB, 10H6 mouse 1:250–1:500

Fasciclin III (Fas3) DSHB, 7G10 mouse 1:500

DN Cadherin DSHB, DN Ex #8 mouse 1:50

TO-PRO-3 Thermo Fisher 1:500

Rhodamine Phalloidin Abcam, ab235138 1:100

DSHB = Developmental Studies Hybridoma Bank

https://doi.org/10.1371/journal.pgen.1010417.t002
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colocalization between the endogenous Zpg and the GFP-tagged mutant Zpg in heterozygous

fly testes, the JACoP plugin [81] in FIJI was used to determine the Pearson colocalization coef-

ficient. For quantifying the degree of organization of individualization complexes, the angle

between F-actin and nuclei was measured in FIJI using the angle tool. For imaging of sperma-

tid bundles, testes were stained with DAPI or TO-PRO-3 to visualize the needle shaped nuclei

of elongated spermatids (S4F Fig). Each of the clusters of 64 syncytial nuclei was counted as

one spermatid bundle using the Fiji Cell counter plug-in. GraphPad Prism 9 was used for sta-

tistical analysis.

Imaging of live spermatocytes and spermatids

For live imaging of late-stage germ cells, freshly eclosed male flies were vivisected in 1x PBS

pH 7.4 and the testes were transferred into drops of PBS on microscope slides. A coverslip was

added and the samples were gently squished. For brightfield imaging, a phone attachment

(Smartphone Digiscoping Adapter, Gosky Optics) was mounted onto an Olympus CKX53

microscope and pictures were taken using the 20x objective and 4x zoom.

Statistical analysis

Mean and standard error of the mean (SEM) are shown. All statistical analysis was performed

in GraphPad Prism 9 using one-way ANOVA with multiple comparisons test (Tukey) or

using unpaired t-tests with Welch’s correction, respectively. P-values indicated are �p<0.05,
��p<0.01, ���p<0.001.

Supporting information

S1 Fig. Homology modelling of the Zpg/Inx4. a) Model of a single subunit of D.melanogaster
Inx4, color coded according to reliability on a scale from dark red (0% Swiss Model score) to

dark blue (70% or higher). This shows that the transmembrane region is the most reliable. Of

note, a very similar model is obtained through Alphafold (B, C), adding further confidence to

the overall fold and general location of the three Asp residues investigated in this study. The

positions of Asp21, Asp50, and Asp59 are indicated via purple sticks. (B) Superposition of

models for D.melanogaster Inx4 derived from homology modeling (cyan) and through Alpha-

fold2 (red), showing excellent agreement in the fold, especially for the transmembrane region.

(C) model for one subunit of Inx4 obtained through Alphafold2, color coded according to reli-

ability score (from 40% in red, to 100% in dark blue). The areas with lowest reliability include

the N-terminus and C-terminus, and a small extracellular loop (circled). As expected, these

areas also show the largest divergence between the two models.

(TIF)

S2 Fig. Schematics representation of the Zpg protein showing key sites for structure-func-

tion analysis. (A) 2D plot of the topology of Zpg marking residues and domains of interest for

our structure-function analysis. The Zpg gap junction is a 4-pass transmembrane protein with

intracellular N- and C-termini. While the N-terminus and the first extracellular helix are pre-

dicted to face inside the channel pore where they likely regulate channel gating, the C-terminus

likely has a channel-independent function and contains two phosphorylation sites for potential

phospho signaling. It is known from other innexins that cysteine residues in the extracellular

region mediate the coupling of two hemichannels in adjacent cells. Here, Zpg in the germ cell

membrane couples to Inx2 in the soma cell membrane. (B-B”’) Simplified schematics of the

Zpg protein showing the site of GFP-tag insertion for the wildtype (zpg::GFP GR rescue flies,

B), and C-terminal deletion mutant (zpg::GFP deltaCT; B’). Also shown are sites of residues
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altered in the phosphorylation mutants (zpg Y352F and zpg Y352F/S356A; B”) and three differ-

ent mutations of extracellular cysteines (zpg C6S, zpg C145S, zpg C236S; B”’).

(TIF)

S3 Fig. A single copy of Zpg::GFP GR results in expression levels that are similar to those

seen in zpg heterozygous mutant flies. (A) Fluorescence intensity quantification (n = 12

images measured per genotype; mean fluorescence intensity in arbitrary units) of Zpg anti-

body staining in testes of wildtype control, flies heterozygous for the zpg2533 null allele (zpg2533/
+) and zpg mutants rescued with one copy of the genomic rescue construct (zpg::GFP GR).

Similar levels of expression are observed in testes of zpg mutants rescued with zpg::GFP GR

and zpg2533 heterozygotes. (B-B’) Representative images showing expression levels for wildtype

(B) and zpg mutants rescued with zpg::GFP GR (B’). Hubs are marked by asterisks. Scale bars

represent 50 μm. p-values are indicated by asterisks with �p<0.05, ��p<0.01, ���p<0.001.

(TIF)

S4 Fig. The late germ cell marker Boule is expressed in testes of zpg::GFP GR and phospho

mutant flies, indicating normal germ cell differentiation. (A-D) Testes stained for the mei-

otic germ cell marker Boule (red) and nuclei (blue). In testes of wildtype flies (A) or from zpg
mutants rescued with zpg::GFP GR (B), which show a complete rescue of the zpg null pheno-

type, Boule signal is found in late germ cell cysts as well as in long and parallel spermatid bun-

dles. In zpg null mutants (C), meiotic stages are not reached hence no Boule signal is detected.

Testes of both phosphorylation site mutants (zpg Y352F in D, zpg Y352F/S356A in E) show

strong Boule signal and the parallel organization of spermatid bundles. Hubs are marked by

asterisks. (F) Testes stained for nuclear marker (white), arrows indicate elongated spermatid

bundles. Scale bars represent 50 μm.

(TIF)

S5 Fig. Strong defects and absence of membrane localization is observed in testes of GFP-

tagged zpg cysteine mutants. (A-L) Immunostaining for germ and somatic cells in wild type

(A-C), zpg null mutant (D-F), zpg null mutant rescued with zpg::GFP C6S (G-I) and zpg null

mutant rescued with zpg::GFP C26S (J-L). Both C6S::GFP and C26S::GFP rescue exhibit a phe-

notype that is indistinguishable from the zpg null mutant with a decreased number of germ

cells (Vasa+) and late somatic cells (Eya+) as well as an increased number of early-mid somatic

cells (Zfh-1+ and Tj+). The immunostainings, as well as the quantification of (M) germline

stem cells (GSCs), (N) Zfh-1-positive cells, (O) Tj-positive cells and (P) Eya-positive cells

reveals a strong, nearly null-mutant like phenotypes in zpg::GFP C6S and zpg::GFP C26S res-

cued testes, indicating a strong loss of function. This is consistent with the absence of the

mutated Zpg::GFP C6S and Zpg::GFP C26S proteins from the plasma membrane (S-U). (Q-T)

Colocalization of endogenous, unmutated Zpg and GFP-tagged, mutated Zpg in flies with one

copy of endogenous Zpg. zpg GFP::GR and zpg heterozygous controls are depicted in B-B’ and

C-C’, respectively. In testes expressing the zpg::GFP C6S (S-S’) and zpg::GFP C26S (T-T’)

mutant constructs, the GFP-tagged mutated Zpg accumulates intracellularly, while endoge-

nous Zpg mainly localizes to the plasma membrane. This results in low Pearson colocalization

coefficients (U) upon quantification of the colocalization of endogenous and mutated Zpg tes-

tes of flies with the zpg::GFP C6S and zpg::GFP C26S mutant transgenes compared to the zpg::

GFP GR control.

(TIF)

S6 Fig. Analysis of Zpg localization and somatic cell development in zpg D50 point

mutants. (A-E) The subcellular localization of mutant Zpg proteins is revealed by staining for

GFP (green) as all rescue transgenes contain a GFP tag at the C-terminus of Zpg, Fas3 (red) is
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used to mark the hub and nuclei are stained with DAPI (blue). GFP single channel is depicted

in in white (A’-E’). zpg::GFP GR rescue control (A-A’) shows GFP localization at the mem-

brane. Zpg null mutants (B-B’) do not express GFP. In testes of zpg mutants rescued with the

zpg D50A (C-C’) or zpg D50R (D-D’) rescue constructs, which show mild germ cell differentia-

tion defects, the GFP signal is strongly enriched at the plasma membrane, indicating normal

localization of the mutant GJ proteins. The low number of germ cells in testes of zpg mutants

rescued with the zpg D50K mutant rescue construct (E-E’) makes it hard to determine the

localization of the GFP-tagged mutant Zpg protein. Therefore, localization of this mutant was

analyzed in a heterozygous background, containing one copy of the endogenous zpg, this data

is shown in Fig 5. (F-T) Analysis of germ cell and somatic cell markers in the N-terminal

mutant rescue constructs. Staining for Vasa (mitotic germ cells, left and right panel; green)

and the somatic markers Zfh-1 (early soma, left panel; grey), Tj (early-mid soma, middle

panel; magenta) and Eya (late soma, right panel; magenta). Hubs are marked with Fas3 in

grey, nuclei are labelled in blue. Wild type control depicted in F-H, zpg null mutant in I-K.

The number of early somatic cells (Zfh-1+, Tj+) in the testes of zpg mutants rescued with

either zpg D50A (L, M), zpg D50R (O, P) or zpg D50K rescue constructs (R, S). All analyzed

mutants have a lower number of Eya+ cells than wt (right panel). Associated quantifications

are shown in Fig 5. Hubs are marked with dashes. Scale bars represent 50 μm.

(TIF)

S7 Fig. Analysis of Zpg localization and somatic cell development in zpg D59 point

mutants. (A-E) The subcellular localization of mutant Zpg proteins is revealed by staining for

GFP (green) as all rescue transgenes contain a GFP tag at the C-terminus of Zpg, Fas3 (red) is

used to mark the hub and nuclei are stained with DAPI (blue). GFP single channel is depicted

in in white (A’-E’). zpg::GFP GR rescue control (A-A’) shows GFP localization at the mem-

brane. zpg null mutants (B-B’) do not express GFP. The low number of germ cells in testes of

zpg mutants rescued with the zpg D59A mutant rescue construct (E-E’) makes it hard to deter-

mine the localization of the GFP-tagged mutant Zpg protein. In testes of zpg null mutants res-

cued with the zpg D59N (D-D’) or the zpg D59H (E-E’) rescue transgenes, the GFP signal is

mainly concentrated at the membrane. Therefore, localization of these mutants was analyzed

in a heterozygous background, containing one copy of the endogenous zpg, this data is shown

in Fig 6. (F-T) Analysis of germ cell and somatic cell markers in the N-terminal mutants. Stain-

ing for Vasa (mitotic germ cells, left and right panel; green) and the somatic markers Zfh-1

(early soma, left panel; grey), Tj (early-mid soma, middle panel; magenta) and Eya (late soma,

right panel; magenta). Hubs are marked with Fas3 in grey, nuclei are labelled in blue. Wildtype

control is depicted in F-H, zpg null mutant in I-K. In testes of zpg null mutants rescued with

the D59A rescue construct a strong somatic cell differentiation defect was seen with elevated

cell counts for the early somatic markers Zfh-1 (L) and Tj (M), whereas these cell counts

appear wildtype for zpg nulls mutants rescues with either the zpg D59N (O, P) or zpg D59H

(R, S) rescue construct. All analyzed mutants have a lower number of Eya+ cells compared to

wt (right panel). Associated quantifications are shown in Fig 6. Hubs are marked with dashes.

Scale bars represent 50 μm.

(TIF)

S8 Fig. Analysis of Zpg localization and somatic cell development in N-terminal mutants.

(A-E) The subcellular localization of mutant Zpg proteins is revealed by staining for GFP

(green) as all rescue transgenes contain a GFP tag at the C-terminus of Zpg, Fas3 (red) is used

to mark the hub and nuclei are stained with DAPI (blue). GFP single channel is depicted in in

white (A’-E’). zpg::GFP GR rescue control (A-A’) shows GFP localization at the membrane.

zpg null mutants (B-B’) do not express GFP. The low number of germ cells in testes of zpg
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mutants rescued with either the zpg D21A (C-C’), zpg D21N (D-D’), or zpg delta2-5 rescue

constructs (E-E’) makes it hard to determine the localization of the GFP-tagged mutant Zpg

protein. Therefore, localization of these mutants was analysed in a heterozygous background,

containing one copy of the endogenous zpg, this data is shown in Fig 7. (F-T) Analysis of germ

cell and somatic cell markers in the N-terminal mutants. Staining for Vasa (mitotic germ cells,

left and right panel; green) and the somatic markers Zfh-1 (early soma, left panel; grey), Tj

(early-mid soma, middle panel; magenta) and Eya (late soma, right panel; magenta). Hubs are

marked with Fas3 in grey, nuclei are labelled in blue. Wild type control depicted in F-H, zpg
null mutant in I-K. Testes of zpg mutants rescues with the zpg D21A (L-N), zpg D21N (O-Q)

or zpg delta2-5 (R-T) mutants show a lower number of Vasa-positive germ cells and Eya-posi-

tive late somatic cells, while at the same time the number of early somatic cells (Zfh-1- and Tj-

positive) is increased. This phenotype, seen in all three N-terminal mutants is indistinguishable

from that of the zpg null. Associated quantification are shown in Fig 7. Hubs are marked with

dashes. Scale bars represent 50 μm.

(TIF)

S9 Fig. Colocalization of endogenous and mutant Zpg proteins. Representative scatter plots

generated with the JaCoP plugin in FIJI, one shown per genotype. The signal intensity for

endogenous Zpg is plotted against the signal intensity of the GFP-tagged mutated Zpg in flies

that have one copy of endogenous and one copy of mutated protein. A linear relationship

between endogenous and GFP-tagged signal intensity, like in zpg::GFP GR flies (A) indicates

strong colocalization of mutated and endogenous Zpg at the membrane. For zpg D21A (B)

and zpg D21N (C) a weak colocalization is detected. Strong colocalization, similar to the con-

trol in A, is found in heterozygotes of zpg delta2-5 (D), zpg D50A (E), zpg D50R (F), zpg D50K

(G), zpg D59A (H), zpg D59H (I) and zpg D59N (J), whereas colocalization is minimal for zpg
C6S::GFP (K) and zpg C26S::GFP (L).

(TIF)
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