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Ventricular Arrhythmias and Sudden Death: 
What Are the Knowledge Gaps and How 
Can Artificial Intelligence Address These?
Sudden cardiac arrest (SCA) is a major public health problem worldwide. 
In the US alone, ~360,000 individuals have SCA every year.1,2 SCA is a 
mostly lethal event, and despite the developments in acute management, 
at least 90% of the cases still lead to death (i.e. sudden cardiac death 
[SCD]).3 Given the low survival rate after an SCA event, accurate long-term 
prediction and prevention of these events are the key components to 
reducing the burden of SCA.

Current guidelines recommend long-term prevention of SCD for those 
with a severely reduced left ventricular ejection fraction (LVEF; <35%, 
primary prevention) or a history of VF or ventricular tachycardia (secondary 
prevention).4 The key limitation of this approach is low sensitivity, given 
that ~70% of SCAs occur in patients who are outside these 
recommendations.5 Moreover, at the present time <5% of ICD recipients 
receive appropriate ICD shocks per year, and the majority do not benefit 
from the device.6–10 Forty years ago, shockable rhythms accounted for the 
majority of SCA events in the general population as well as in hospitalised 
patients.11 However, there has been a major reversal in recent decades, 
and non-shockable rhythms now dominate, comprising 70–80% of the 
cases.12,13 As a consequence, it has become important to deploy artificial 
intelligence (AI) tools that will distinguish the shockable subgroup of SCA. 
There is a critical need to identify novel predictors of SCA in individuals 

with LVEF >35%. Furthermore, given the diminishing returns of the primary 
prevention ICD in those with LVEF <35%, it is important to augment and 
refine risk stratification for this subgroup as well.

In addition to ICD-based long-term prevention of SCD, near-term 
prevention of SCA has been gaining scientific traction.14 Although SCD is 
generally considered a sudden and unexpected event, recent studies 
have demonstrated that more than half of the patients experience warning 
symptoms hours–days before the event.15–17 Although only a minority of 
these patients call emergency medical services, early contact may 
increase the likelihood of survival as much as fivefold.15 Near-term SCD 
prediction has the potential to prolong the window for prearrest 
management as well as shorten the delay for appropriate cardiopulmonary 
resuscitation and defibrillation. AI algorithms have a potentially important 
role in identifying symptom clusters that could improve prediction of near-
term prevention with the promise of improving real-time triage using 
digital health technology.18

Methodology of Artificial Intelligence
AI is a broad term, and in general it refers to the simulation of human 
intelligence in computer systems that are programmed to mimic human 
actions.19 Machine learning (ML) is a subcategory of AI, and ML can be 
further categorised as supervised or unsupervised.20 Supervised ML is an 
iterative process that uses various data transformation algorithms to 
define the relationship between input data and labelled output data (e.g. 
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predicting SCA). Before performing tasks in an unseen dataset, all ML 
models require a learning phase, in which inputs and outputs are used to 
train the model. After the model parameters are set in this learning phase, 
the ML algorithm has been developed and is ready to be applied to a 
previously unseen dataset (i.e. test set). Some of the most used supervised 
ML algorithms include linear regression, logistic regression, support 
vector machines, decision trees, random forests, neural networks and 
extreme gradient boosting. In contrast to supervised ML, unsupervised 
ML does not require labelled output data and the algorithm attempts to 
find patterns and create clusters in unlabelled datasets. The potential 
advantage of the unsupervised approach is that the clustering is not 
biased or forced to predict a specific output, which may enable better 
generalisation. Common unsupervised ML algorithms include k-means 
clustering, k-nearest neighbours, principal component analysis, factor 
analysis and hierarchical clustering.

Deep learning (DL) is a subcategory of ML that uses neural networks in 
more than three layers (deep neural network).21 The training of supervised 
DL algorithms is conducted similarly to supervised ML models. However, 
in contrast to most ML models, DL models may not require as much 
manual feature engineering (extraction and selection of specific features 
from the data before the learning process) as ML models. The strength of 
DL models is the ability to identify novel associations between input 
datasets and output, but DL models usually require larger datasets and 
higher computational power than ML algorithms.

SCA is a complex trait that can involve multiple underlying substrates and 
maintainers of ventricular arrhythmia (e.g. inherited conditions, coronary 
artery disease [CAD], diabetes etc.) and acute triggers (e.g. ischaemia, 
electrolyte imbalance). Such diverse and complex pathophysiology in 
which there may not be linear relationships between multiple data 
domains can create significant challenges for conventional SCA risk 
stratification methodology. In contrast, ML algorithms may provide the 
ability to identify novel patterns and clusters of SCA-defining variables in 
large datasets. At the present time, AI tools are deployed in single 
domains, for example ECGs or echocardiogram datasets. In the future, the 
development of multimodal AI tools that could potentially combine data, 
images and signals remains an exciting prospect to advance SCA risk 
stratification.22

Special Considerations When Using 
Artificial Intelligence for SCA Prediction
Sample Size
A common challenge in the development and training of an AI model is 
the availability of a sufficiently large and diverse dataset for training, 
which is crucial to achieving good model accuracy and generalisability. 
Overfitting is an important problem in which a complex model learns the 
training dataset too well and achieves perfect performance in the training 
set but performs poorly in the unseen testing dataset (poor generalisability). 
Common reasons for overfitting are small training sample size and 
complex algorithms that can learn all of the details/noise and fit the 
training data exactly but do not generalise to new data. Possible ways to 
overcome overfitting include increasing training data size and diversity, as 
well as reducing the model complexity. The goal is to develop and train a 
model that has good generalisability.

AI models are usually internally evaluated and validated in held-out test 
sets, which are part of the same original dataset from which the training 
set was drawn (e.g. data from one hospital). However, institutional and 
demographic factors may affect the generalisability. Hence, internal 

validation does not guarantee good external validation, and models 
should ideally be validated in an independent dataset that is collected 
separately (e.g. data from a different hospital).

Assembling a dataset with a sufficient number of SCA events suitable for 
the training of AI systems is challenging. Although SCA is a devastating 
condition, it affects approximately 50 per 100,000 in the general 
population. As a result, event rates are too small in cohort studies and the 
use of studies of existing cohorts with a low prevalence of SCA may lead 
to imbalanced datasets.2 Although the goal is to predict the minority class 
(SCA), data imbalance could introduce a bias towards non-events, 
potentially reducing the sensitivity for SCA detection. The problem of low 
event incidence and imbalanced data can be solved with a case–control 
approach. When collecting a valid control group, it is important to 
recognise that SCA patients are not healthy patients but instead have an 
underlying cardiac disease that ultimately led to SCA. Hence, it would be 
ideal to compare SCA cases to controls with underlying heart disease, 
especially CAD, instead of comparisons with healthy controls. If an AI 
model is developed for screening patients at high risk for SCA, the profile 
of control subjects is important in determining the target population.

Model Performance
Model performance metrics may also require special interpretation in the 
SCA context. Although an AI model may have a good discriminative value 
for SCD, a relatively low SCA event rate in the general population usually 
leads to a low positive predictive value. Moreover, good discrimination 
does not necessarily translate into good calibration, which is important for 
avoiding false interpretations and poor clinical decisions. For example, if 
a model correctly predicted SCA with a probability of 90% and another 
model predicted the same SCA event with a probability of 70%, both may 
be considered to be correct (with a 50% threshold), but the first model has 
better calibration. High SCA risk often correlates with a high non-sudden 
death risk as well, and identifying patients at a high risk of SCA without a 
similarly elevated risk of competing modes of death is important for 
accurate prediction and prevention.23

Phenotyping
Another key consideration in AI-based SCA prediction models relates to 
the definition of SCA. It is important to recognise that SCA is not a single 
disease and that affected individuals tend to have a combination of 
conditions such as coronary disease, heart failure, hypertension and 
diabetes. Although cardiac aetiologies are responsible for most sudden 
deaths (i.e. SCD), a proportion of sudden deaths are due to non-cardiac 
causes (e.g. aortic dissection, stroke, pulmonary embolism).24,25 This is an 
especially important aspect of in-hospital cardiac arrests.2 Moreover, 
given the differences in the treatment of shockable and non-shockable 
SCA, more specific SCA prediction based on presenting rhythm would be 
clinically useful in guiding preventive ICD implantation and preparing an 
appropriate first response to impending SCA.

Input Data
AI model performance is strongly dependent on data quality. In the 
medical field, input data can include tabular data from electronic health 
records (EHRs), images, or physiological signals. Each data type has 
specific strengths and weaknesses. Tabular EHR data may be noisy 
(having many errors and irrelevant data), have missing data, and require 
substantial preprocessing and feature engineering before it can be 
provided to an ML model. However, tabular EHR data-based ML models 
have good explainability, which refers to uncovering the underlying rules 
or importance of specific features for individual patients.
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Deep neural networks can analyse more complex high-dimensional data 
such as images and physiological signals.26–29 There is less need for 
feature engineering, and deep neural networks can detect novel data 
indices that may lead to better model performance. However, data 
preprocessing is often needed, which refers to preparing raw data in a 
format that can be supplied to the model (e.g. resizing images). Deep 
neural networks are often called ‘black boxes’ because the data features 
that DL models select to predict the output may not be fully comprehensible 
to users. This reduces model explainability, which is important for 
enhancing users’ trust in DL models by understanding the models’ 
vulnerabilities as well as identifying novel pathophysiological mechanisms 
linking the input and output datasets. However, recent studies have 
aimed to improve the explainability of DL models by creating novel 
methods to identify image and signal features that have the highest 
impact on the DL models’ decisions.30

Prediction of Ventricular Arrhythmia 
and Sudden Cardiac Arrest
Broad Prediction Algorithms
There are emerging published data on the utility of AI techniques for the 
long-term prediction of ventricular arrhythmia and SCA (months–years 
before the event), using various input data and ML algorithms. However, 
most published studies are hampered by low event numbers, which may 
be a significant source of overfitting and poor generalisability despite 
good internal validation. The majority of studies also focused on patients 
with severe left ventricle dysfunction and/or an ICD, who are likely to be a 
poor surrogate for individuals who experience SCA in the general 
population.5 For example, appropriate ICD shocks may not be effective 
surrogates given that a significant proportion of ICD-treated ventricular 
arrhythmias can spontaneously terminate without ICD intervention. 
Additionally, patients with primary prevention ICD mostly have LVEF <35%, 
and findings are not generalisable to the majority of SCA cases that occur 
in the general population (LVEF >35%). However, several published 
studies have reported findings that represent proof of concept and pave 
the way for further investigation.

A recent study by Rogers et al. estimated the cellular phenotypes of 42 
CAD patients with EF ≤40% by measuring their monophasic action 
potentials during steady-state pacing in the electrophysiology laboratory.31 
They trained and tested an ML model that achieved a sensitivity of 85% 
and a specificity of 86% in predicting ventricular arrhythmia in 3 years of 
follow-up. Interestingly, those with recurrent ventricular arrhythmia had 
prolonged duration and augmented height of the phase II plateau, and 
action potential simulation suggested that this was due to increased 
L-type calcium current or enhanced sodium–calcium exchange. This 
study design is an interesting proof of concept. Given that the sample size 
is relatively small and included only 13 patients with sustained ventricular 
arrhythmia, it would be worth evaluating in a larger number of patients.

Cardiac MRI-based Models
Another study by Popescu et al. developed a DL model to predict SCD in 
10 years using cardiac MRI images and clinical covariates in 156 patients 
(41 events) with ischaemic heart disease.32 The model was externally 
validated in 113 patients (22 events) and achieved an AUC (area under the 
receiver operator characteristic curve) of 0.87 and 0.72 and 10-year 
integrated Brier scores of 0.12 and 0.14 for internal and external datasets, 
respectively. That study used an interesting approach of combining 
cardiac images with clinical covariates to predict SCD. Given that the 
number of SCD events is relatively low, further evaluation in additional 
larger sample sizes is warranted.

Other studies have also developed and trained cardiac MRI-based ML 
models to predict recurrent ICD therapies and SCA in the long term. 
Okada et al. used a substrate spatial complexity profile that was derived 
from gadolinium-enhanced cardiac MRIs to train and test an ML model 
that would predict appropriate ICD firings and SCD at 5  years in 122 
patients with ischaemic cardiomyopathy and EF <35% (40 events). Their 
model achieved a moderate AUC of 0.72.33 Somewhat similarly, another 
study used a DL-derived cine risk score from cardiac MRI images that 
achieved an AUC of 0.69 for predicting appropriate ICD therapy in 7.1 years 
in 350 ICD recipients (96 events).34

Other Clinical Phenotyping Models
A recent study reported that an ML model using cardiac sympathetic 
function assessed with 123I-metaiodobenzylguanidine single-photon 
emission CT and clinical characteristics (e.g. age, sex, EF, New York Heart 
Association class) was able to separately predict arrhythmic events and 
heart failure death in 526 patients with chronic heart failure.35 Another 
study used demographics combined with clinical characteristics (including 
laboratory values and cardiac image indices) of 382 ICD recipients (with 
EF ≤35%) to predict appropriate ICD therapy or SCD during a follow-up 
time of 5.9 ± 2.3 years. Their ML model achieved an AUC of 0.88 and 
outperformed the Seattle Proportional Risk Model (AUC of 0.57).36 
However, these latter two studies did not use independent datasets for 
external validation. Given that patients with recurrent ventricular 
arrhythmia and/or ICD shocks may need to undergo catheter ablation, 
models predicting recurrent ventricular tachycardia after ablation could 
potentially support clinical decision-making in the future.37

In summary, these studies have trained and tested AI models to predict 
ventricular arrhythmia and/or SCA in the long term with moderate–good 
accuracy and represent an initial step. For reference, previous studies 
have estimated that the AUC for LVEF in the long-term prediction of SCD 
is only 0.59–0.68 in various populations, and a recent study demonstrated 
that this can be improved with the addition of AI-based ECG analysis.38–40 
The current literature suggests that AI algorithms have the potential to 
improve long-term ventricular arrhythmia and SCA risk stratification. 
However, additional studies with larger sample sizes, external validation, 
more diverse patient samples and carefully adjudicated endpoints will be 
needed to assess the clinical utility of ML models in improving long-term 
ventricular arrhythmia and SCA prediction (Figure 1).

Prediction in Specific Ventricular 
Arrhythmia/Sudden Death Syndromes
The vast majority of all SCAs in middle-aged and older individuals occur in 
association with CAD.24,41 In younger individuals (<35  years) there is a 
higher likelihood of detecting non-ischemic cardiac conditions such as 
hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), long 
QT syndrome (LQTS) and Brugada syndrome (BrS).42 These patients have 
different clinical characteristics and cardiac phenotypes from CAD 
patients, and hence it is important to have a specific focus on developing 
distinct risk stratification tools for patients with non-ischaemic 
arrhythmogenic cardiomyopathies.

Smole et al. used multiple variables (e.g. demographics, physical 
examination, genetics, imaging, medications) in 2,302 HCM patients to 
train an ML model to predict the 5-year risk of SCD.43 Their model achieved 
an AUC of 0.70 for SCD and outperformed a previously established 
conventional SCD risk calculator for HCM patients (AUC of 0.63).44 Two 
other studies aimed to develop and train ML models in the identification 
of HCM patients at high risk of ventricular tachycardia and VF.45,46 Another 
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study used cardiac MRI features as model input data and achieved an 
AUC of 0.91, while yet another used 22 clinical covariates (including 
clinical history, cardiac imaging, and medication) and achieved an AUC of 
0.83.45,46 Additionally, Lyon et al. used an unsupervised ML approach to 
identify high-risk ECG phenotypes in HCM patients and found that primary 
T wave inversion with normal QRS was associated with the highest SCD 
risk score.47 Relatively small studies on BrS, LQTS, DCM and tetralogy of 
Fallot have also demonstrated that ML models may be useful and can 
outperform conventional statistical methods to predict ventricular 
arrhythmia and SCD.48–52

Although these models use diverse study designs and input data, these 
are universally trained and tested on small numbers of endpoints and 
events (<100), which is a potential limitation for model generalisability. 
Therefore, significantly larger sample sizes would be ideal for future 
studies. Compared with complex traits such as coronary disease and 
heart failure, inherited ventricular arrhythmia and SCA syndromes are 
more homogeneous but the incidence in the overall population is low. 
Acquired cardiac diseases have a more complex phenotype consisting of 
multiple heterogeneous clinical conditions, and thereby create a different 
kind of challenge for model generalisability.

Prediction of Imminent Ventricular 
Arrhythmia and Sudden Cardiac Arrest
Broad Prediction Algorithms
Hospital Setting
In-hospital cardiac arrest (IHCA) is a fatal event in the majority of patients. 
The incidence is dependent on the study population and is estimated to 
be 1–17 events per 1,000 hospital admissions with a higher than 70% 
mortality rate.2 In most of the cases, the patients have abnormal vital signs 
during the preceding 4 hours.53 The total number of annual IHCAs is lower 
than out-of-hospital cardiac arrest (OHCA) (~290,000 versus ~360,000 in 
the US, respectively). Compared with OHCA, IHCA is considered to be a 
distinct event with unique opportunities and challenges and a higher 
likelihood of non-cardiac aetiologies.2 Hence, ML models that predict 
IHCA may not apply to the prediction of OHCA.

One of the leading causes of hospitalisation in the US is heart failure (HF), 
which accounts for approximately 1  million hospital admissions each 
year.54 A recent study focused on hospitalised HF patients and used 
demographics, medical history data, laboratory values, physiological 
measurements and medication in 2,794 hospitalised HF patients. The 
authors trained and tested an ML model that predicts malignant 
arrhythmias (117 events) during the hospital stay with an AUC of 0.867.55

Kwon et al. developed a DL-based early warning score, which included 
four basic vital signs (systolic blood pressure, heart rate, respiratory rate, 
and body temperature).56 Their study sample consisted of 52,131 patients 
admitted to two hospitals (419 IHCAs), and their model achieved an AUC 
of 0.850, which significantly outperformed the modified early warning 
score (MEWS) (AUC of 0.603). Later, the authors extended this DL model 
by adding diastolic blood pressure, age and the recorded time of each 
vital sign in 173,368 hospitalised patients from general wards of five 
hospitals (224 events), and divided the data into internal and external 
datasets. This model also had a performance that was superior to MEWS 
in both the internal (AUC: 0.860 versus 0.754, respectively) and external 
(AUC: 0.905 versus 0.785, respectively) datasets.57 Although the number 
of IHCAs remains relatively small, other slightly smaller studies in 
hospitalised patients have also suggested that ML models can achieve 
good discriminative values and outperform conventional prediction 
models using clinical record data, vital signs and laboratory values.58–62

Emergency Department Setting
In addition to hospitalised patients, ML models may assist with the triage 
of patients in emergency departments (EDs), given that high-risk patients 
may require early coronary intervention or intensive cardiac monitoring. A 
study by Ong et al. used heart rate variability parameters and vital signs 
to train and test an ML model for the prediction of cardiac arrest within 
72 hours in 925 ED patients (43 events).63 Their model achieved an AUC of 
0.78, which outperformed the conventional MEWS score (AUC of 0.68). 
That study had a small number of endpoints and no external validation, 
but subsequent studies have also suggested that relatively simple ML 
models based on vital signs can outperform MEWS in ED patients.64–66 

Current approach for long-term
SCA prediction and prevention

in individuals at high risk

Yes No

Yes No

Future individualised approach 
for comprehensive SCA risk 

assessment

AI-based first-stage SCA risk
stratification

•     Physical examination, cardiac
       imaging, laboratory tests,
       genetic

EF <35%

ICD implantation

•     Minority (~20–30%) of SCAs
•     Low annual rate (~5–10%)
       of appropriate ICD shocks

No ICD implantation

•     Majority (~70–80%) of SCAs
•     No e�ective SCA risk
       stratification tools

Comprehensive multimodal AI-
assisted SCA risk stratification Usual care

High risk

Figure 1: Current Approach and Potential Future Perspectives in Long-term Sudden Cardiac Arrest Prediction

AI = artificial intelligence; EF = ejection fraction; SCA = sudden cardiac arrest.
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However, in addition to the lack of external validation, one limitation of 
these papers is the diversity of clinical conditions in the ED patients. To 
overcome this, Wu et al. used 20 clinical features from 166 acute coronary 
syndrome (ACS) patients with IHCA and 521 ACS controls to develop 
various ML algorithms that predict cardiac arrest within 24 hours. Their 
best model achieved a promising AUC of 0.958, which outperformed 
commonly used risk prediction models such as GRACE, NEWS and MEWS 
(AUCs 0.67–0.73).67 However, this model was not externally validated.

Although simple vital signs can be used to train an ML model with a good 
performance, a multimodal AI approach combining vital signs with images 
or ECG waveforms could provide additional accuracy to unimodal ML 
models. The potential for using ECG waveforms in predicting IHCA within 
24 hours was demonstrated by a recent study that used demographics 
and ECGs of 25,672 patients who were admitted to two hospitals.68

Prediction of Specific Ventricular Arrhythmia 
and Sudden Death Syndromes
While the aforementioned short-term prediction models are trained and 
tested on broad patient groups, a specific focus on high-risk conditions is 
also warranted. A few studies have trained and tested ML models in ICD 
patients, and achieved good accuracy: Shakibfar et al. used nine ICD 
variables from 19,935 ICD patients to predict electrical storm (ES) within 
1  day (2,367 ES events occurred in 1,410 patients).69 Their ML model 
achieved an AUC of 0.80 and the most relevant variables were the 
percentage of ventricular pacing and daytime activity. Another study used 
heart rate variability data from 788 ICD patients (from the SCD-HeFT trial) 
to predict ICD shocks within 10  seconds and 5  minutes (6,660 regular 
rhythms and 230 pre-shock rhythms).70 Their ML model reached a good 
AUC of 0.81 for a 5-minute prediction and an AUC of 0.87 for a 10-second 
prediction of shock. Predicting an impending ICD shock may be important 
in alerting healthcare providers as well as guiding patients in the 
avoidance of situations in which an ICD shock may cause substantial harm 
(e.g. driving, risk of falling).

Patients undergoing dialysis have been recognised to be at a significantly 
increased risk of SCA.71 However, there is still a significant gap in the 
knowledge of risk factors and mechanisms of haemodialysis-related SCA, 
and no accurate risk prediction models exist. Goldstein et al. used 
comprehensive EHR data (demographics, dialysis-specific factors, 
laboratory values, physiological measurements, medications) from a large 

sample of dialysis sessions (22 million sessions, 1,697 SCDs) to train and 
test an ML model to predict SCD within 1 day of a dialysis session. Their 
model achieved a good performance (AUC of 0.799), which illustrates the 
potential of using large EHR data to develop short-term risk prediction 
models for relatively rare events.72

The Future of AI for Ventricular 
Arrhythmia and SCD Prediction
Published studies have demonstrated proof of concept regarding the 
utility of ML models for the detection of individuals who are at high risk of 
ventricular arrhythmia and SCA in the short and long term. However, some 
limitations and knowledge gaps should be addressed in future studies.

Although most ML models in previous studies have shown good 
discriminative value in internal validation, small sample sizes and the lack 
of external validation tend to reduce the generalisability of these models. 
In small sample sizes, ML models are prone to overfitting, which may lead 
to poor performance in independent and heterogeneous datasets. 
Moreover, while previous studies have successfully developed ML models 
for specific SCA risk groups (e.g. patients with ICD, severely reduced EF, 
HCM, LQTS, BrS), future studies are needed to develop models that can 
be applied to predict SCA in broader groups. Although severely reduced 
EF and rare SCA syndromes are important risk factors for SCA, most of the 
cases occur in subjects without these conditions.5

The current literature lacks ML models that would predict pre-hospital 
SCA in the near term. Although previous studies have demonstrated that 
ML models using simple vital signs have the potential to outperform 
conventional risk stratification tools in predicting IHCA, it is important to 
recognise that IHCA is considered to be a separate entity from OHCA and 
that these short-term models are developed with considerably different 
settings compared with long-term models of out-of-hospital ventricular 
arrhythmia and SCA.2 These models may not apply to out-of-hospital 
settings. Given that a significant proportion of SCAs is preceded by 
warning symptoms and that there are no broad short-term prediction 
models for pre-hospital OHCA, there is room to improve short-term SCA 
prediction (Figure 2).

Accurate SCA prediction will be likely to require a combination of 
biomarkers. However, previously established SCA risk factors are usually 
not specific to SCA but instead predict non-sudden cardiac death as 

Figure 2: Future Artificial Intelligence-powered Approaches for  
Near-term Sudden Cardiac Arrest Prediction and Prevention

AED = automated external defibrillator; AI = artificial intelligence; CPR = cardiopulmonary resuscitation; EMS = emergency medical services; SCA = sudden cardiac arrest.
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well.23 This is an important and sometimes overlooked limitation in SCA 
risk calculators. The benefit from preventive treatment with an ICD is not 
only dependent on the absolute SCA risk but also on the relative sudden 
versus non-sudden death risk.73–75 Competing modes of death complicate 
accurate SCA risk stratification, and this aspect becomes even more 
relevant due to ageing of the general population and the increasing mean 
age of SCA patients. There is room for AI-guided identification of patients 
with a high proportional SCA risk.39

The creation of SCA prediction models requires careful adjudication of the 
cause and mechanism of the event. This includes the exclusion of non-
cardiac acute events that may also manifest as cardiac arrest and sudden 
death (e.g. pulmonary embolism, aortic dissection, stroke). Furthermore, 
classification of SCA events based on underlying mechanisms into 
shockable and non-shockable SCAs has important clinical implications. 
Given that the proportion of non-shockable SCAs has significantly 
increased in recent decades, and that the long-term prevention of SCA is 
mostly based on ICD implantation and terminating shockable rhythms, a 
renewed focus on predicting specifically shockable SCAs is warranted.38 
Given that most of the SCAs manifest with non-shockable presenting 
rhythm, achieving good prediction accuracy for overall SCA does not 
necessarily mean that these high-risk patients would benefit from primary 
prevention ICD implantation.

Most published AI models use tabular EHR data (e.g. demographics, 
clinical variables), and the potential of simultaneously using raw image 
and physiological signal data has not been realised. For example, several 

ECG variables and conventional ECG-based risk scores have been 
associated with an increased risk of SCA in the long term, but the 
usefulness of the ECG waveform-based DL model is yet to be 
investigated.76–78 Current AI models mostly use unimodal input data. 
However, in the future, multimodal and explainable AI are likely to unlock 
many opportunities in the field of ventricular arrhythmia and SCA 
prediction by using and integrating multidimensional patient data such as 
by combining EHR data with ECG, other signals, and imaging modalities 
as well as genomic and proteomic information (Figure 3).22  

Combining multiple data
domains to develop
multimodal AI-based SCA
risk prediction models

Recent progress

Several ML algorithms have
been developed to predict SCA

Some were trained and tested
in a variety of patient groups

Some ML models have
outperformed conventional
risk stratification tools

Limitations in current literature

Sample sizes remain small
and external validation is
mostly lacking

ML models are trained and
tested mostly on small
subgroups of overall SCA
cases

Most ML models utilise clinical
record data, and the potential of
images or physiological signals
has not been fully realised

Future perspectives

Collection of large datasets
to improve model performance
and generalisability

Development of AI-based
SCA risk stratification tools
for broad patient populations

Figure 3: Recent Progress, Limitations and Future Perspectives in Artificial 
Intelligence-based Sudden Cardiac Arrest Risk Prediction

AI = artificial intelligence; ML = machine learning; SCA = sudden cardiac arrest.

Clinical Perspective
• Lethal ventricular arrhythmias resulting in sudden cardiac death 

(SCD) is a major cause of mortality worldwide.
• Conventional SCD risk stratification tools are increasingly 

recognised as being inadequate.
• Recently published studies have demonstrated the potential of 

machine learning models to improve the detection of individuals 
at high risk of SCD.

• Some limitations in methodology need to be overcome so that 
important knowledge gaps in the field could benefit from 
deployment of artificial intelligence tools for long-term as well as 
near-term prediction and prevention of SCD.

• Future studies will benefit from the usage of unimodal, 
multimodal and explainable artificial intelligence in large 
databases with consistent definitions of SCD.
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