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Abstract: Pollen development plays crucial roles in the life cycle of higher plants. Here we
characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited
smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal
hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous
mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts
the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins.
PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with
plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP
repeat-containing protein, which has seven β-sheets and putative Ca2+-binding motifs and is broadly
conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α
FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on
intronic splice donor site selection.

Keywords: RNA splicing; PL1; rice (Oryza sativa L.); anther; pollen; male sterility; integrin-α FG-GAP
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1. Introduction

Pollen, as the male gametophyte, plays key roles in flowering plant fertilization for giving rise to
fruits and seeds [1]. Pollen development begins with pollen mother cells (PMCs) that differentiated
from sporogenous cells in developing anthers [2]. After two steps of meiosis, PMCs develop into
microspores [3]. At this stage, microspores are surrounded with a thin primexine, and the depositions
of sporopollenin precursors on undulated PM for exine formation initiate thereafter [4,5]. As the
microspores go through vacuolation and two rounds of mitosis afterwards, the formation of mature
pollen grains, which are coated by two-layered exine and fulfilled of inclusions, is completed [6–8].

The developmental processes of pollen occur inside of the anther, which consists of four somatic
cell layers, namely, the tapetum, middle layer, endothecium and outer epidermis [6,9,10]. The tapetum
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is the innermost cell layer of the anther wall and directly contacts with the developing microspores and
secrets enzymes, nutrition, sporopollenin precursors and developmental signals [11,12]. During the
late pollen development, tapetal cells trigger an apoptosis-like programmed cell death (PCD), which
is pivotal for viable pollen formation [13,14]. In addition, as a skin of anther, cuticle locates on the
surface of anther epidermis and acts as a barrier to protect pollen development from external biotic or
abiotic stress [15,16].

Several genes involved in these processes have been identified. For example, during meiosis,
the tapetal cells are highly vacuolated in undeveloped tapetum 1 (udt1) mutant [17]. Mutant of
Tapetum Degeneration Retardation (TDR) had incorrect degeneration of tapetum and middle layer,
and its microspores rapidly degraded after being released from the tetrads, resulting in complete
male-sterility [18]. Loss-of-function of Eternal Tapetum 1 (EAT1) causes delayed PCD of tapetal cells
and aborted pollen development [19]. These three genes encode basic helix–loop–helix (bHLH)
transcription factors. TDR and EAT1 directly regulate expression of cysteine protease and aspartic
protease encoding genes, respectively, to control the timing of tapetal PCD [18,19]. Besides, another
bHLH-like transcription factor, TDR Interacting Protein 2 (TIP2), is also involved in developmental
regulation of tapetum [20]. Both TIP2 and TDR are located upstream of EAT1, and they are able to
regulate EAT1 transcription by forming a heterodimer that binds to the promoter of EAT1 [20,21].
Persistent Tapetal Cell 1 (PTC1) encodes a putative PHD-finger transcription factor that also interacts
with TIP2 [22]. Mutation of PTC1 leads to abnormal tapetal proliferation and defective formation of
Ubisch bodies and pollen wall [23].

In addition to the role of tapetum PCD controlling, the tapetal development related transcription
factors also regulate the expression of key genes in secondary metabolism and transport of materials to
affect the formation of pollen and pollen wall. The outer pollen wall, exine, is mainly composed of
sporopollenin [5]. In rice, several genes involved in sporopollenin precursors synthesis and shipping
have been found, such as CYP703A3 [24], CYP704B2 [25], Acyl-CoA Synthetase 12 (OsACOS12) [26,27],
Polyketide synthase 1/2 (OsPKS1/2) [28–31], Tetraketide α-pyrone reductase 1 (OsTKPR1) [31,32], ATP
Binding Cassette G 15 (OsABCG15) [16,33,34], and OsC4/6 [35]. Among them, CYP703A3, CYP704B2,
OsACOS12, OsPKS1/2 and OsTKPR1 may form a sporopollenin metabolon similar to their orthologues
in Arabidopsis [5,8,15,31,32,36]. OsABCG15 and OsC6 function in transporting of sporopollenin
precursors from tapetum to pollen surface for exine formation [16,34,35]. The expressions of CYP703A3
and OsC6 are directly regulated by TDR [24,35]. The transcript levels of CYP704B2, OsC4 and OsC6 are
reduced in ptc1 mutant [22,23].

Normal pollen development requires correct gene expression. In eukaryotes, pre-mRNA splicing,
including the removal of introns from nascent pre-mRNA transcripts and the ligation of exons,
is‘fundamental for gene expression [37,38]. The specific nucleotide sequences within the borders
between introns and exons of pre-mRNA determine where the splicing occurs [39]. The accuracy of
splice sites recognition is precisely controlled [40]. It is therefore possible that any variation in the
nucleotide sequences of the splice site causes erroneous gene transcription and translation, which
in turn affects protein function and even abnormal development of the organism [41–43]. In many
cases, mutations in the intronic splice sites result in aberrant mRNA splicing. For example, in rice,
the Waxy (Wx) gene encodes a granule-bound starch synthase, which regulates the amylose content and
determines the eating and cooking quality [44]. In indica rice that contains high endosperm amylose
level, Wx with a normal sequence has correct mRNA transcripts, whereas the Wx in japonica rice shows
a single base change at the 5′ splice site (splice donor site) of the first intron, representing a larger mRNA
with retention of the first intron, which reduces the levels of Wx protein and endosperm amylose [44–46].
A mutation at the 3′ splice site (splice acceptor site) of a intron in MUTANT snc1-ENHANCING (MUSE),
an Arabidopsis RNA polymerase III subunit, gives rise to intronic retention and partial loss-of-function
of MUSE, leading to pleiotropic defects in vegetative development [47]. The Arabidopsis pasticcino 2-1
(pas2-1) mutant harbors a point mutation in the splice donor site of the eighth intron of PAS2, which
causes a longer mature mRNA with an insertion of an intron and exhibits defective organogenesis with
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fused-organs [48,49]. A combined missplicing and missense point mutation at 3′ terminal of exon 8 in
Arabidopsis 2-phosphoglycolate phosphatase 1 gene (AtPGLP1) resulted in aberrant splicing of this gene
and the consequent conditional lethal phenotype [50]. However, the events of exonic mutations affecting
mRNA splicing are rarely reported, especially in the process of plant male gametophyte development.

In this study, we described the identification of a novel exonic mutation that induced suppressed
selection of normal splice donor site and splicing aberrations and is responsible for the abnormal
tapetum and pollen development and defective anther cuticular formation in rice pl1 mutant.

2. Results

2.1. Isolation of the pl1 Mutant

To identify new genes that affect microsporogenesis in rice, we screened an ethyl methane sulfonate
(EMS)-induced mutant library in the background of indica rice cultivar 9311 and obtained the pl1
mutant. No obvious morphological differences were found between the wild-type 9311 (WT) and
pl1 plants during the vegetative growth stage (Figure 1A). At the heading stage, though pl1 plants
had normal inflorescence morphology (Figure 1B), their anthers were white and thinner compared
with those of the WT (Figure 1C,D). A closer examination through I2-KI staining revealed that pl1
anthers were devoid of pollen grains (Figure 1E,F). When back-crossed with the WT, all the plants of F1

generation resembled the male fertility of the WT (Figure S1). Moreover, in the F2 progeny, the plants
with normal fertility and male sterility displayed an approximate segregation ratio of 3:1 (Table S1).
These observations indicated that pl1 mutant exhibited a completely male-sterile phenotype, which is
caused by a single recessive mutation.
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in (A), 2 mm in (B) and (C), 1 mm in (D), and 100 µm in (E) and (F). 

2.2. Cloning of PL1 

To unravel the casual mutation of pl1, we employed the MutMap method to analyze the single 
nucleotide polymorphisms (SNPs) positions of sterile individuals in the F2 progeny mentioned above 
[51]. The analysis of genomic resequencing results identified that only one SNP on chromosome 2 
had a SNP index of 1 (Figures 2A and S2), implying this SNP might be co-segregated with the mutant 
phenotype. Sequence analysis revealed that this point mutation (c. 777G > A) was located in the 3′ 
end of the fourth exon of Os02g01070 but did not alter the encoded amino acid (Figure 2B), indicating 
this mutation is a silent mutation (p. E259E). To further verify the association between the mutation 
and the male-sterile phenotype of pl1, we analyzed the genotype and phenotype of F2 individuals. 

Figure 1. Phenotypic comparison between the WT and pl1 mutant. (A) Plant phenotype of the WT and
pl1 mutant at grain-filling stage. (B) Spikelet of the WT and pl1 mutant at heading stage. le, lemma; pa,
palea. (C) Spikelet of the WT and pl1 mutant after removing of the lemma and palea. An, anther; pi,
pistil; sl, sterile lemma. (D) Anther of the WT and pl1 mutant. (E) I2 -KI staining of WT pollen grains at
maturing stage. (F) I2 -KI staining of pl1 pollen grains at maturing stage. Bars = 20 cm in (A), 2 mm in
(B) and (C), 1 mm in (D), and 100 µm in (E) and (F).

2.2. Cloning of PL1

To unravel the casual mutation of pl1, we employed the MutMap method to analyze the single
nucleotide polymorphisms (SNPs) positions of sterile individuals in the F2 progeny mentioned
above [51]. The analysis of genomic resequencing results identified that only one SNP on chromosome
2 had a SNP index of 1 (Figure 2A and Figure S2), implying this SNP might be co-segregated with the
mutant phenotype. Sequence analysis revealed that this point mutation (c. 777G > A) was located
in the 3′ end of the fourth exon of Os02g01070 but did not alter the encoded amino acid (Figure 2B),
indicating this mutation is a silent mutation (p. E259E). To further verify the association between
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the mutation and the male-sterile phenotype of pl1, we analyzed the genotype and phenotype of
F2 individuals. The results showed that, in F2 population, all the male-sterile plants carried the
homozygous mutation, while the plants with normal fertility were WT or heterozygous (Figure 2C and
Table S1). This result suggests that the mutation was co-segregated with the male-sterile phenotype of
pl1, and that Os02g01070 may be the causal gene.
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Figure 2. Cloning of PL1 gene. (A) SNPs Plot on chromosome 2 (Chr 2) identified by MutMap analysis.
(B) The gene structure of PL1. Genomic sequences around the mutated position of WT and pl1 and
two independent CRISPR/Cas9 target sites are shown. Grey boxes indicate exons. Intervening lines
indicate introns. White boxes indicate untranslated regions. Parts of sequences of exon 4 and intron 4
are shown in upper case (grey) and lower case (black), respectively. The pl1 mutation is highlighted
with red color. (C) Genotypic and phenotypic identification of plants in F2 population. The mutated
position is highlighted with a grey background. (D) Genomic sequencing of the CRISPR/Cas9 target
regions in Nipponbare (Nipp) and knock-out (ko) lines. Bi, biallelic mutation. (E) Schematic diagrams of
the amino acid changes of PL1 in ko lines. Unchanged and changed amino acids are shown in black
and orange color, respectively. aa, amino acids. (F) Spikelet of Nipp and ko lines after removing of the
lemma and palea. An, anther; pi, pistil; sl, sterile lemma. (G) I2 -KI staining of pollen grains of Nipp
and ko lines at maturing stage. Bars = 100 µm in (C) and (G), and 1 mm in (F).

To confirm that Os02g01070 is PL1, we designed two independent targets within the second exon of
Os02g01070 (Figure 2B) and generated other allelic mutants (knocking out plants, ko plants) of pl1 using
the CRISPR/Cas9 technology. In T0 plants, four mutants (three homozygous and one bi-allelic mutants
in a background of japonica rice Nipponbare, Nipp) with five types of mutations were identified
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(Figure 2D). All these five mutations caused the production of premature and truncated proteins
(Figure 2E and Figure S3A), indicating all mutants were effective loss-of-function mutants. Though
these mutants displayed indistinguishable vegetative development and flower morphology compared
with Nipp (Figure S3B,C), they had smaller and pale-yellow anthers (Figure 2F and Figure S3D).
Moreover, the mature anthers of these mutants lacked pollen grains (Figure 2G), mimicking the
phenotypes of pl1. We also back-crossed these mutants with Nipp and obtained several F2 populations.
The genotypic and phenotypic association analysis of the segregated F2 populations found that the
mutated genotypes were co-segregated with male sterility (Table S2). Together, these results confirmed
that the mutation in Os02g01070 is responsible for the defective male-fertility in pl1. In another parallel
study, other mutations in Os02g01070, which was named as Defective Pollen Wall 3 (DPW3), were also
identified and consistently lead to the similar male-sterile phenotype [52].

2.3. Normal Splicing of PL1 Is Altered by pl1 Mutation

Real-Time PCR (RT-PCR) analysis results showed that the level of full-length PL1 cDNA detected
in young spikelets of pl1 seemed to be similar to that of the WT (Figure 3A,B), suggesting the
pl1 mutation may not affect PL1 mRNA accumulation. We then purified the full-length RT-PCR
products of the WT and pl1 and designed two additional primers to sequence them (Figure 3A).
The sequencing chromatogram resulted from Set-1F (a forward primer designed to mask the pl1
mutation site, upper panel in Figure 3A) displayed the superimposed peaks after the c. 777G > A
mutation in pl1 (Supplementary Figure S4), suggesting a mixture of the full-length PCR products.
We next designed three primer sets (lower panel in Figure 3A) and amplified the cDNA region of
interest from the WT and pl1 using RT-PCR analysis. We observed similar bands of the expected size
in both the WT and pl1 using primer set-A or set-B; however, we detected an additional large PCR
product in the pl1 using primer set-C (Figure 3B). These results suggest that the pl1 mutation generated
abnormal transcripts of the PL1 gene.

To characterize the detailed transcriptional changes caused by the pl1 mutation, we cloned the
full-length PL1 CDS of the young spikelets from the WT and mutant. As shown in Figure 3C and
Figure S5, a total of four different CDS variants, namely pl1.1, pl1.2, pl1.3 and pl1.4, in pl1 were found.
Compared with the PL1 CDS in WT, pl1.1 CDS had an insertion of the whole fourth intron; pl1.2 CDS
and pl1.4 CDS retained part of the fourth intron of 13 base-pairs and two base-pairs, respectively,
indicating the activation of a cryptic splice donor site in the fourth intron. Interestingly, pl1.3 CDS
showed an intact splicing corresponded to the PL1 CDS of WT but possessed the pl1 mutation (c. 777G
> A), which is a synonymous coding polymorphism (p. E259E). However, all the three alternative
intron retentions shifted the open reading frame and yielded a premature stop codon (Figure 3D and
Figure S6). Considering that the male-sterility of pl1 mutant might be caused by the reduction of
correctly processed PL1 protein, we calculated the corresponding colony numbers for each of the four
transcripts by sequencing to quantify their relative amounts. The statistical results revealed that in pl1
(pl1/pl1) young spikelets only ~15% (pl1.3 type) of the PL1 pre-mRNA was correctly processed, while
the other three abnormal transcripts amounted to ~85% of the total (Figure 3E and Supplementary
Table S3). Besides, we also investigated the splicing of PL1 gene in the heterozygous plants (PL1/pl1)
and found that the ratio of abnormally spliced PL1 transcripts was ~37% (including pl1.1, pl1.2 and
pl1.4, Figure 3E and Table S3). Based on these results, we demonstrated that the pl1 mutation is a leaky
mutation that altered PL1 splicing.

It was reported that a single point mutation was able to alter the pre-mRNA secondary structure
and induce splicing errors [53,54]. The pl1 mutation was at the end of the fourth exon of PL1 gene and
was adjacent to a splice donor site; we therefore hypothesized this mutation might affect pre-mRNA
secondary structure. To test this, we carried out the RNA secondary structure prediction of PL1
pre-mRNA without or with the pl1 mutation. The results showed that, compared with the stem-loop
structure with a three-base-pair stem and a 10-nucleotide loop around the mutation site in the WT PL1
pre-mRNA, the mutated PL1 pre-mRNA had a shorter stem with two-base-pair and a longer loop with
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14-nucleotide (Figure S7). Additionally, in the mutated pre-mRNA, the minimum free energy (MFE)
increased from –17.7 to –15.3 (Figure S7). These findings suggest that the pl1 mutation may affect the
stability of PL1 pre-mRNA secondary structure, which in turn causes the abnormal pre-mRNA splicing.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 21 
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Figure 3. Identification of the pl1 mutation associated missplicing. (A) Schematic diagram of positions
of the primers used for RT-PCR. The pl1 mutation site is indicated by red arrow. Grey boxes indicate
exons. (B) RT-PCR analysis of PL1 gene in the WT and pl1. The expected 242-bp and 380-bp products
of the PL1 with primer Set-A and Set-B, respectively, were detected in the WT and pl1 plants, while
additional larger products were observed in the pl1 with primer Set-C. (C) Schematic diagrams of
splicing patterns of the pl1 mRNA species. PL1 is the mRNA that is normally spliced in WT. pl1.1 is the
mRNA with retention of whole intron 4 in pl1 mutant. pl1.2 and pl1.4 are mRNA spliced using the
cryptic splice donor sites of intron 4 in pl1 mutant. pl1.3 is the normal spliced mRNA but harboring
the pl1 mutation. The splice donor sites are highlighted with blue color. The splice acceptor sites are
highlighted with orange color. The pl1 mutation site is indicated by red arrow, and the mutation is also
highlighted with red color. Parts of sequences of exons and introns are shown in upper case and lower
case, respectively. (D) Schematic diagrams of the amino acid changes of PL1 proteins translated from
corresponding mRNA species. Unchanged and changed amino acids are shown in black and red color,
respectively. aa, amino acids. (E) Comparisons of mRNA species ratios among plants with different
genotype. The pie charts are used for visualizing the ratios.

2.4. PL1 Encodes a Conserved Integrin-α FG-GAP Repeat-Containing Protein

According to the annotation from Rice Genome Annotation Project (RGAP, http://rice.plantbiology.
msu.edu/), PL1 (Os02g01070) encodes an FG-GAP repeat-containing protein. An N-terminal signaling
peptide followed by a large extracellular region, a single-pass transmembrane domain near the
C-terminus and a short cytoplasmic tail was predicted in the protein using TMHMM 2.0 (http://www.
cbs.dtu.dk/services/TMHMM/) (Figure 4A and Figure S8A). Furthermore, two FG-GAP repeat domains
(Figure 4B and Figure S8B) and two integrin-α N-terminal domains were predicted using Simple
Modular Architecture Research Tool (SMART, http://smart.embl-heidelberg.de/) and InterProScan
(http://www.ebi.ac.uk/interpro/) (Figure 4C). The secondary and tertiary protein structure analysis
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showed these FG-GAP domains and integrin-α N-terminal domains were predicted to fold into
seven β-sheets (Figure 4D and Figure S8B). These β-sheets arranged pseudosymmetrically in a torus
around an axis (Figure 4E,F), which contains several putative residues to forming Ca2+-binding pocket
(Figure 4D and Figure S8B). In addition, the structure of PL1 is similar to Homo sapiens (human) integrin
α4-subunit [55] (Figure S8C).
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To gain information about the evolutionary role of PL1, we searched its closest relatives using
Basic Local Alignment Search Tool (BLAST) of National Center for Biotechnology Information
(NCBI, https://blast.ncbi.nlm.nih.gov/Blast.cgi). Forty-one orthologues of PL1 were retrieved from
different land plants species (Table S4). Subsequently, we constructed a phylogenetic tree using the
neighbor-joining method. These proteins were grouped into four clades that belong to dicots, monocots,
gymnosperms and cryptogams (Figure 4G). Protein sequence alignment analysis showed that PL1
shared high identities with the homologs identified, not only from primarily monocots and dicots but
also from distantly related gymnosperms and cryptogams (Figure 4G and Figure S9 and Table S4).
Protein sequence alignment and phylogenetic analysis also showed that NEW ENHANCER of ROOT
DWARFISM 1 (NERD1), an integrin-α N-terminal domain containing protein required for Arabidopsis
reproductive development [56,57], is an orthologue of PL1 (Figure 4G and Figure S9), suggesting a
functional conservation between these two proteins. Overall, these results suggested that PL1 is a
member of a highly conserved protein family in terrestrial plants.

2.5. Expression Analysis of PL1

The PL1 protein contains a transmembrane domain, suggesting this protein may be present on
membrane. To validate this, we determined the subcellular localization of PL1 by transient co-expression
of PL1-YFP fusion protein and a PM marker (OsPIP2.1-mCherry) in Nicotiana benthamiana (tobacco)
leaf epidermal cells. Results showed that the fluorescent signals of PL1-YFP partially overlapped with
the PM marker (Figure 5A–C). Besides, we observed that part of the YFP signals appeared on ring-like
structures similar to ER (Figure 5A,C). To verify this speculation, we then examined the tobacco leaf
epidermal cells co-expressing of PL1-YFP with an ER marker (mCherry-HDEL). Confocal microscopy
revealed that the YFP signal co-localized with the ER marker (Figure 5E–G), while the free YFP (control)
was expressed in the whole cell (Figure 5D,H). These results indicate that PL1 is primarily localized to
PM and ER.

The loss-of-function of PL1 resulted in a male-sterile phenotype, suggesting that PL1 should be
expressed in developing anthers. We used quantitative RT-PCR (qRT-PCR) to analyze the expression
profiles of PL1 in various tissues of Nipp plants. The results revealed that PL1 transcripts were highly
accumulated in developing spikelets with anthers from stages 4 to 12 and were particularly reached the
maximum amount in spikelets with anthers at stages 9 and 10 (Figure 5I), when the tapetum PCD and
pollen wall formation began (Zhang and Wilson, 2009; Zhang et al., 2011). However, relatively lower
expressions of PL1 were detected in root, stem, leaf and sheath (Figure 5I). To refine this expression
pattern, we transformed a PL1pro::GUS construct into Nipp plants. In transgenic plants, negligible
GUS activity was present in vegetative tissues (including root, stem and leaf), and hull (including
lemma and palea) and sterile lemma of spikelet with anthers at stage 10 (Figure 5J–M), while the strong
GUS signals were observed in the anthers (Figure 5M), which resembled the qRT-PCR data. Moreover,
observations on transverse sections of the anthers in Figure 5M found a specific GUS expression in
tapetal cell layer (Figure 5N). These results indicated that PL1 is mainly expressed in tapetal cells of
developing anther.

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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and their microspore were normally released from the tetrads. During these stages, the WT tapetum 
developed as expected and started to condense (Figure 6A–D), but the tapetal cell layers of pl1 
showed a slightly swollen morphology (Figure 6E–H). At stage 10, the WT microspores enlarged and 
vacuolated, meanwhile, its tapetum underwent degradation into thin and hill-like layer (Figure 6I). 
On the contrary, in pl1 anthers, tapetal cells seemed to be ectopically hypertrophic with less cytoplasm 
contents, and the microspores had abnormal shape with the tendency to degenerate and without 
vacuolation (Figure 6L). During stage 11, the WT microspores went through two steps of mitosis, and 
the tapetum degraded further (Figure 6J). However, the pl1 microspores were shriveled and crushed, 
while the tapetum rapidly degenerated and part of the remnants invaded into the locular space 

Figure 5. Expression analysis of PL1. (A–H) Subcellular localization analysis of PL1-YFP fusion protein
in tobacco leaves. The co-expression of PL1-YFP and PM marker (OsPIP2.1-mCherry) is shown in
(A–D). The co-expression of PL1-YFP and ER marker (mCherry-HDEL) is shown in (E–G). The free
YFP that is used as a control is shown in (D) and (G). The arrows in (A) and (C) indicate the ER-like
structures. (I) Expression pattern of PL1. The expression levels were examined by qRT-PCR. RNA was
extracted from root, stem, leaf, sheath and spikelets with anthers at different developmental stages (St).
Data are shown as means ± SD (n = 3). (J–M) GUS staining of the PL1pro::GUS transgenic plant. GUS
activity in root (J), stem (K), leaf (L), spikelet with anthers at stage 10 (M). (N) Cross-section of anthers
from (M). Bars = 10 µm in (A–H), 2 mm in (J–M) and 25 µm in (N).

2.6. Cytological Observations of pl1 Anthers

To understand the dedicated role of PL1 in male fertility, we compared transverse sections of
anthers from both WT and pl1 mutant based on their developmental stages [9,10]. From stage 7 to
stage 9 (Figure 6A–H), the PMCs meiotic processes of WT and pl1 anthers were indistinguishable,
and their microspore were normally released from the tetrads. During these stages, the WT tapetum
developed as expected and started to condense (Figure 6A–D), but the tapetal cell layers of pl1 showed a
slightly swollen morphology (Figure 6E–H). At stage 10, the WT microspores enlarged and vacuolated,
meanwhile, its tapetum underwent degradation into thin and hill-like layer (Figure 6I). On the contrary,
in pl1 anthers, tapetal cells seemed to be ectopically hypertrophic with less cytoplasm contents, and the
microspores had abnormal shape with the tendency to degenerate and without vacuolation (Figure 6L).
During stage 11, the WT microspores went through two steps of mitosis, and the tapetum degraded
further (Figure 6J). However, the pl1 microspores were shriveled and crushed, while the tapetum
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rapidly degenerated and part of the remnants invaded into the locular space (Figure 6M). At stage 12,
the WT tapetal cell layer disappeared completely, and the microspores developed into mature pollen
grains filled with inclusions (Figure 6K). By contrast, the pl1 anthers had locules containing remnants
of degraded tapetum and microspores (Figure 6O) or empty locules (Figure 6N).
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Figure 6. Cross-sections of anthers from stage (St) 7 to 12 in WT and pl1. (A–D) and (I–K) WT anthers
from St 7 to 12. (E–H) and (L–N) pl1 anthers from St 7 to 12. (O) pl1 anther with an empty locule at
stage 12. DMsp, degrading microspores; E, epidermis; En, endothecium; ET, ectopic tapetal cells; ML,
middle layer; MP, mature pollen; Ms, microsporocyte; Msp, microspores; R, remnants; ST, swollen
tapetal cells; T, tapetum; Tds, tetrads; TR, tapetal remnants. Bars = 25 µm.

To gain a more detailed understanding of the anther development process that PL1 might affect,
electron microscopic analyses were further performed. We examined anthers at stage 10 by scanning
electron microscope (SEM) and observed a smaller size of pl1 anthers that had less and deformed
microspores (Figure 7B,D) compared with those of the WT (Figure 7A,C). Moreover, in WT anthers,
the spaghetti-like cuticle (Figure 7E) and granular Ubisch bodies (Figure 7G) were apparent on the
epidermal surface of anther wall and inner locule surface of tapetum, respectively. In contrast, outer
surface of pl1 anther had flat and smooth nanoridges (Figure 7F), and its inner surface lacked Ubisch
bodies (Figure 7H). Besides, unlike the round shape microspores with elaborate exine pattern in the
WT anther (Figure 7I,K), the exine development of pl1 microspores at this stage appeared to be arrested
and be intended to collapse (Figure 7J,L), which is consistent with the light microscopic observations.
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on the PM surface of released pl1 microspores (Figure 7N). At stage 10, the WT anthers had a 
condensed tapetal cell layer with conical Ubisch bodies covered on and highly vacuolated 
microspores with double-layered exine (contained tectum, bacula and nexine; Figure 7O,Q). While at 
this stage, in pl1 anthers, abnormally swollen tapetal cells with low electron-dense cell wall and 
fragmented cytoplasm were observed, and the formation of Ubisch bodies was devoid (Figure 7P,R). 
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Figure 7. SEM and TEM analysis of the anthers in WT and pl1. (A–L) SEM observations of the surfaces
of anther and microspores at stage 10 in WT and pl1. M-V TEM analysis of the anther sections in WT
and pl1 from stages (St) 9 to 11. Microspores are false colored in orange. Tapetum is false colored in
blue. A and B The appearance of entire anther of WT (A) and pl1 (B). (C,I) Microspores in WT anthers.
(D,J) Microspores in pl1 anthers. (E,F) The outer surface of the epidermis of WT (E) and pl1 (F) anthers.
(G,H) The inner surface of tapetum of WT (G) and pl1 (H) anthers. (K,L) The enlarged view of the
microspore surface of WT (K) and pl1 (L). (M,N) Tapetum and microspore at stage 9 in WT (M) and pl1
(N). (O,P) Tapetum and microspore at stage 10 in WT (O) and pl1 (P). (Q,R) Tapetal cells and pollen
exine at stage 10 in WT (Q) and pl1 (R). (S,T) The outer region of anther epidermis at stage 10 in WT (S)
and pl1 (T). (U,V) Tapetal cells and pollen exine at stage 11 in WT (U) and pl1 (V). AC, anther cuticle;
Ba, bacula; DMsp, degrading microspores; Ex, exine; FAC, flat anther cuticle; Msp, microspores; Ne,
nexine; PEx, primexine; ST, swollen tapetal cells; T, tapetum; Te, tectum; TR, tapetal remnants; Ub,
Ubisch bodies. Bars = 200 µm in (A) and (B), 50 µm in (C) and (D), 5 µm in (E), (F), (I), (J) and (M–P),
and 1 µm in (G), (H), (K), (L) and (Q–V).

We also utilized transmission electron microscope (TEM) to further characterize the developing
defects in pl1 anthers. At stage 9, no discernable differences of tapetum development between WT and
pl1 anthers were observed (Figure 7M,N). Microspores in WT anthers were released form tetrads and
displayed a thin layer of primexine (Figure 7M), while no obvious primexine structure appeared on
the PM surface of released pl1 microspores (Figure 7N). At stage 10, the WT anthers had a condensed
tapetal cell layer with conical Ubisch bodies covered on and highly vacuolated microspores with
double-layered exine (contained tectum, bacula and nexine; Figure 7O,Q). While at this stage, in pl1
anthers, abnormally swollen tapetal cells with low electron-dense cell wall and fragmented cytoplasm
were observed, and the formation of Ubisch bodies was devoid (Figure 7P,R). In parallel, the pl1
microspores did not have any exine-like structure and began to collapse (Figure 7P,R). Additionally,
the surface of the WT anther exhibited well-developed cuticle (Figure 7S), whereas that was flat and
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short in pl1 (Figure 7T). At stage 11, the tapetum was more condensed, and the microspores became
falcate in WT anthers (Figure 7U). By contrast, in pl1, the tapetal cells and microspores had degenerated
circumstantially, leaving the remnants in the locule (Figure 7V). Together, these observations indicated
that PL1 is indispensable for anther cuticle, tapetum and pollen development.

2.7. The pl1 Mutation Altered the Expression of Genes Related to Anther and Pollen Development

To explore the role of PL1 in anther cuticle, tapetum and pollen development, we analyzed
expression profiles of several known genes, which were critical for anther and pollen development, in
WT and pl1 spikelets with anthers from stages 4 to 11 by qRT-PCR. We first monitored CYP703A3 [24],
OsACOS12 [26,27], OsPKS2 [28,29] and OsTKPR1 [32], which are required for pollen exine formation
and lipid metabolism in tapetal cells. Our analysis showed that the expression levels of these genes
were decreased in pl1 (Figure 8A–D). Next, we examined rice Strictosidine synthase-like 2 (OsSTRL2)
because it plays important role in pollen exine formation [58], the results showed a dramatically
down-regulated expression of OsSTRL2 (Figure 8E). These results suggested a possibly defective
biosynthesis of pollen exine components in the mutant.
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OsABCG26, which transports wax and cutin monomers from tapetal cells to anther surface for anther 
cuticle development [34,59], was not significantly changed at early stages but reduced during stages 
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Figure 8. Expression profiles of genes related to anther and pollen development in WT and pl1.
Expression levels of CYP703A3 (A), OsACOS12 (B), OsPKS2 (C), OsTKPR1 (D), OsSTRL2 (E), OsABCG26
(F), NP1 (G), EAT1 (H) and PTC1 (I) in spikelets with anthers at different stages (St) were analyzed
using qRT-PCR. Data are shown as means ± SD (n = 3).

We subsequently compared the expression of genes involved in the anther development, including
anther cuticle formation, Ubisch bodies pattering, and tapetal PCD. Transcript levels of OsABCG26,
which transports wax and cutin monomers from tapetal cells to anther surface for anther cuticle
development [34,59], was not significantly changed at early stages but reduced during stages 7 to 11
(Figure 8F). No Pollen 1 (NP1) is also crucial for formation of anther cuticle and patterning of both
Ubisch bodies and pollen exine [60,61]. An increase in the expression level of NP1 was observed in WT
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from stages 7 to 10, whereas it was decreased during these stages in the mutant (Figure 8G). In addition,
EAT1 and PTC1 are related to tapetal PCD [19,23]. The expression pattern of EAT1 in pl1 was similar
to that of the WT from stages 4 to 8, but at stages 9 and 10, the transcript levels of EAT1 significantly
decreased (Figure 8H). Similarly, a down-regulation of PTC1 expression was also detected from stages
7 to 11 in pl1, compared with that of the WT (Figure 8I). The reduced expressions of these genes were
consistent with the defective anther development in pl1.

3. Discussion

3.1. The pl1 Mutation Affects Splice Donor Site Selection

In eukaryotes, gene expression starts from the generation of pre-mRNA, a copy of the genomic
DNA containing intronic regions [62]. Next, the pre-mRNA is modified to become the mature
mRNA for translation. This modification, called RNA splicing, is a process that removes introns
and joins exons [63]. RNA splicing is tightly regulated by the complexes known as spliceosomes,
which are comprised of multiple small nuclear RNA (snRNA) and small nuclear ribonucleoproteins
(snRNPs) [64,65]. For accurate splicing of intron, the spliceosomes need to recognize the intrinsic
regulatory sequences: the splice donor sites (at 5′ end of the introns), splice acceptor sites (at 3′ end
of intron) and exonic splicing enhancers [40,66]. These sequences are base-paired with the different
snRNA of spliceosomes and play variant roles in RNA splicing [39,64]. Abnormal splicing, such as
exonic skipping and intronic retention, are most commonly caused by mutations in splice donor or
acceptor sites of intron [67–69]. In the present study, we revealed that a novel exonic mutation resulted
in missplicing and male sterility in rice.

In RNA splicing processes, the recognition of splice donor sites requires U1 snRNA of spliceosome
base-paring with one nucleotide upstream and six nucleotides downstream around exon-intron
boundaries [64,66,69–71]. In silico analysis shows that the pl1 mutation did not induce an amino-acid
change of PL1; however, this mutation is positioned at the last base of the fourth exon, which is in
close proximity to the splice donor site of the fourth intron (Figure 2B). Via combined analysis of
RT-PCR and sequencing, we revealed that the pl1 mutation generated transcript aberrations of PL1. All
the aberrant mRNA species had retained the original splice donor site of the fourth intron (Figure 3
and Figure S5), suggesting that the pl1 mutation may influence the base-paring and modification of
adjacent splice donor site of the fourth intron in spliceosome. Besides, previous studies suggested the
structure of hairpins in pre-mRNA is also important for its stability and splice site selection [72–74].
Our secondary structure prediction of pre-mRNA indicated the pl1 mutation expanded the adjacent
loop and shortened the stem, respectively, and also increased the MFE (Figure S7), suggesting a reduced
stability of pl1 pre-mRNA. Based on these results, we propose that the pl1 mutation would shift the
base-pairing with U1 snRNA and influence the stability of pre-mRNA secondary structure, thereby
affecting the normal recognition of the adjacent splice donor site.

The conventional introns have well-conserved splice donor sites with 5′-GT boundaries [75].
Inactivation of the normal splice donor sites would result in the activation of cryptic splice sites
in the adjacent exon and intron [76]. It is worth noting that, in this study, parts of these aberrant
mRNA species (pl1.2 and pl1.4) were caused by activating the cryptic donor sites in the fourth intron
(Figure 3C). Among them, we found a non-canonical 5′-GC type, by which the 5′ border of the fourth
intron in pl1.4 was demarcated (Figure 3C and Figure S5). This suggests that the 5′-GC boundaries in
the splice donor sites may also ensure the constitutive pre-mRNA splicing in rice, similar to results in
other eukaryote species [77–79].

3.2. Normal Rice Male Development Requires a Certain Amount of Functional PL1 Protein

Disruptions of PL1′s function by two independent CRISPR/Cas9 targets led to male-sterility
(Figure 2D–G), suggesting the functional PL1 protein is crucial for normal male development in rice.
The pl1 mutation did not result in any amino acid substitution (Figure 2B), inferring that the normal
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splicing of PL1 pre-mRNA carrying this mutation also generated functional protein. Indeed, although
rare, normally spliced transcripts (pl1.3) were detected in both heterozygous and homozygous mutated
plants (Figure 3E and Table S3). It should be emphasized that the aberrant mRNA species (pl1.1,
pl1.2 and pl1.4), which were predicted to produce non-functional truncated PL1 proteins, were not
found in WT plants but exhibited different ratios between the heterozygous and homozygous mutated
plants. Correspondingly, in pl1 (homozygous mutant), normally spliced transcripts that accounted for
only ~15% of all transcripts, were much fewer than ~63% in heterozygotes (Figure 3E and Table S3).
Consistently, only homozygous mutated plants harbored male sterility while the heterozygous ones
were normally fertile (Figure 2C and Figure S1 and Table S1). It is therefore conceivable that, though
the amount of functional PL1 protein in heterozygous plants is sufficient for maintaining the normal
male-fertility, it is not enough in pl1. Thus, we speculate that a certain amount of functional PL1
protein may be required for rice male development; however, further efforts are needed to determine
its specific threshold value for fertility alteration, which might have applications in manual regulation
of rice male fertility.

3.3. Role of PL1 in Anther and Pollen Development

Similar to defective pollen wall 3 (dpw3), another allelic mutant of pl1 (in japonica background)
reported very recently [52], our pl1 mutant (in indica background) exhibited slightly swollen tapetum
and abnormal primexine matrix formation at stage 9 (Figures 6H and 7N), and necrosis-like tapetum
cell death with less cytoplasmic contents, severely enlarged cell size and compromised cell wall
integrity, as well as defective formation of Ubisch bodies and anther cuticle at later stages (Figure 6L–O
and Figure 7P,R,T). However, pl1 had some characteristics distinguished from dpw3. Firstly, at stage 10,
pl1 showed degeneration of microspores with no deposition of sporopollenin precursors on their surface
(Figure 7P,R,T), while bead-like sporopollenin precursors gathers around the degrading microspores in
dpw3. Secondly, in addition to hypertrophy, some of the tapetal cells in pl1 ectopically invaded into the
locular space and subsequently degraded into remnants from stages 10 to 12 (Figure 6L–N). By contrast,
in dpw3, the tapetal cells with atypical degeneration and enlargement persisted through stage 10 and
stage 11. These different cytological features may be due to the large background differences of these
two mutants or the differential biochemical alterations of their independent mutations. Nevertheless,
it is clear that PL1 is indispensable for normal pollen exine formation, tapetum PCD and anther cuticle
development in rice.

Crisscross anther cuticles and two-layered pollen exine are the major protective structures for
preventing the male reproductive system from attacks of pathogens and external environmental
stresses [15]. Tapetum, the innermost layer of the anther, undergoes PCD in time, and supplies
materials, such as sporopollenin precursors and cutin monomers, for the formation of pollen exine and
anther cuticle [6]. Most enzymes catalyzing the lipid metabolism for bio-synthesis of sporopollenin
precursors, and cutin monomers are preferentially expressed in the tapetal cells [6,8,15,31]. PL1
is also highly expressed in the tapetum of developing anther (Figure 5I,M,N), suggesting a role
of this gene in pollen exine and anther cuticle formation. Indeed, in pl1, the transcript levels of
several key enzyme encoding genes involved in this process were down-regulated (Figure 8A–D).
Consistently, loss-of-function of PL1 decreased the levels of serval waxes components and dominant
cutin monomers [52]. These data raise a possibility that PL1 might participate in male development
by affecting the metabolic pathway of anther cuticle and pollen exine. Besides, the pl1 mutant also
exhibited abnormal tapetum PCD (Figure 6H–N) and the reduced expression of genes related to tapetal
development (Figure 8H,I). Because these genes have been known as transcription factors to activate
the transcription of key genes involved in the metabolic pathways of sporopollenin precursors and
cutin monomers in tapetal cells [5,8,23], we therefore cannot rule out the possibility that PL1 may be
linked to the development of the tapetal cell layer, thereby affecting the supply of the anther cuticle
and pollen exine components.
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PL1 putatively encodes an integrin-α FG-GAP repeat-containing protein with a seven-bladed
β-propeller domain (Figure 4A–C), which shares a highly structural similarity with the human
integrin α4-subunit [55] (Supplementary Figure S9C), suggesting that PL1 may resemble the function
of integrin-like proteins. The FG-GAP domain of integrin α4-subunit has been predicted to bind
Ca2+ [55]. Particularly noteworthy is the fact that rice Defective in Exine Formation 1 (OsDEX1) has
the Ca2+-binding activity and also contains two FG-GAP repeat domains like PL1 [80]. Mutation of
OsDEX1 also causes defective tapetal cell degradation and pollen formation [80], which is similar to
that of pl1, suggesting that PL1 may have a potential function in modulating the Ca2+ homeostasis
during anther and pollen development. Additionally, phylogenetic analysis showed that PL1 has a
high identity with Arabidopsis NERD1 (~67% identity, Figure 4G). Importantly, the nerd1-2 mutant was
also displayed in the phenotype of defective pollen development, suggesting a possible functional
conservation of PL1 and NERD1 in male development between rice and Arabidopsis.

Male sterility is widely used to avoid laborious emasculation in rice hybrid seeds production [81,82].
With the advance of technology, a new male sterility system for crops hybrid breeding, namely Seed
Production Technology (SPT), was developed. SPT uses recessive male-sterile mutant to generate a
maintainer line that has capability to reproduce non-transgenic male-sterile lines. This technology
has been applied in maize and rice successfully [60,83]. The pl1 mutation identified in this work is
recessive (Figure 2), and the homozygous pl1 mutant had a complete male-sterile phenotype (Figure 1),
suggesting a potential application of pl1 in rice hybrid breeding with SPT.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

The pl1 mutant was identified from the progenies of indica rice variety 9311 after treating with
EMS [51]. As the pollen acceptor, pl1 was back-crossed with the WT to generate F1 and F2 populations
for genetic analysis and gene mapping. Other additional mutant alleles of PL1 (ko plants) were created
by CRISPR/Cas9 genome editing tool. The CRISPR/Cas9 plasmids carrying specific target oligos
(Table S5) were constructed and transformed into japonica rice variety Nipp in accordance with the
methods described previously [84]. All the rice plants materials used in this study were grown in
the paddy field of Lingshui, Hainan Province or in Wenjiang, Sichuan Province, and were managed
following commercial rice production practices.

4.2. Phenotypic and Microscopic Observations

The whole plant and reproductive organs were photographed with a EOS 1200D digital camera
(Canon, Tokyo, Japan). Anthers at the heading stage that contain mature pollen grains were squeezed,
and were then stained with 1% I2-KI solution and observed using a Axio Lab. A1 microscope (Zeiss,
Baden-Wurttemberg, Germany). Spikelets with anthers at different developing stages were classified,
and were fixed with Carnoy’s fixative or 2.5% glutaraldehyde fixative according to the previous
description [84]. The subsequent dehydration, semi-thin sections analysis, SEM and TEM analysis of
the anther samples were performed as described previously [30].

4.3. Mapping the pl1 Mutation

DNA from 50 male-sterile individuals characterized from F2 population was extracted and
bulk-sequenced using Plant Genomic DNA Kit (Tiangen Biotech, Beijing, China) and Illumina
sequencing platform (Novogene, Beijing, China), respectively. The sequence data were further
subjected to computational analysis for detecting and annotating SNPs as described previously [51].
Co-segregation analysis of the candidate mutation in F2 population and the target site mutations in ko
plants were carried out by PCR and sequencing with corresponding primer sets (Table S5) as described
previously [30].
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4.4. Pre-mRNA Secondary Structure Prediction

For prediction of Pre-mRNA secondary structure, the 101 nucleotides (including 50 nucleotides
upstream and downstream of the mutation site) sequences with or without pl1 mutation were submitted
to the Mfold web server (http://unafold.rna.albany.edu/?q=mfold/download-mfold), and the resultant
structures were reached by following the guidance described by Zuker [85].

4.5. RNA Extraction and RT-PCR Analysis

Total RNA was extracted from various rice tissues, including root, stem, leaf, sheath and spikelets
with anthers at different developing stages, using Plant Total RNA Isolation Kit (Sangon Biotech,
Shanghai, China) as described by the manufacturer. The first strand cDNA was synthesized using
NovoScript® Reverse Transcriptase (Novoprotein, Shanghai, China) as described by the manufacturer.

RT-PCR analysis were performed in a regular 28 cycles of three steps PCR program using Biometra
TOne thermal cycler (Analytik-Jena, Jena, Germany) with the corresponding primer sets (Table S1) and
2×TSINGKE Master Mix (Tsingke, Beijing, China). The products amplified by RT-PCR with primer
Set-FL (Table S5) were further subcloned using 5min TA/Blunt-Zero Cloning Kit (Vazyme, Nanjing,
China). More than 200 clones of each plant with different genotype were sequenced for calculating the
ratio of each transcript variant. qRT-PCR were performed using qTOWER3G machine (Analytik-Jena,
Jena, Germany) with the corresponding primer sets (Table S5) and AceQ Universal SYBR qPCR Master
Mix (Vazyme, Nanjing, China). The expression level of Ubiquitin (Os03g13170) was used as the internal
control for normalization of mRNA expression ratio.

4.6. Histochemical GUS Assay

A 2.6-kb upstream region of the PL1 gene was amplified with primer set GUS-PL1 (Table S1)
and was then inserted into PHB-GUS vector to generate the PL1pro::GUS construct. This construct
was further introduced into Nipp by Agrobacterium tumefaciens-mediated transformation [86].
Histochemical GUS staining of different rice tissues and section analyses of stained anthers were
performed as described previously [58].

4.7. Subcellular Localization Analysis of PL1

To determine the subcellular localization of PL1, a full-length cDNA lacking a stop codon of PL1
was amplified with primer set YFP-PL1 (Table S1) and was further inserted into PHB-YFP vector for
generating the 2×35Spro::PL1-YFP construct, in which the YFP was directly fused to the C-terminus
of PL1. For co-localization of PL1-YFP with organelle markers, a rice PM aquaporin (OsPIP2.1) was
fused to the N-terminus of mCherry to obtain the PM maker [87], and an HDEL retention signal was
fused to the C-terminus of mCherry to obtain the ER marker [88]. The resulting constructs were
transiently co-expressed in tobacco leaf epidermal cells following the method described previously [89].
The florescent signals were visualized using a A1 confocal scanning microscope (Nikon, Tokyo, Japan)
at 48 h after infiltration.

4.8. Protein Sequence Analysis of PL1

For determination the domains in PL1, the full-length amino acid sequence of this protein,
which was obtained from RGAP (http://rice.plantbiology.msu.edu/), was submitted to TMHMM
2.0 tool (http://www.cbs.dtu.dk/services/TMHMM/) in the Expert Protein Analysis System, SMART
(http://smart.embl-heidelberg.de/), and InterProScan (http://www.ebi.ac.uk/interpro/) were performed
with default settings. For secondary and tertiary protein structure prediction of PL1, the full-length
amino acid sequence of this protein was submitted to an online threading program RaptorX (http:
//raptorx.uchicago.edu/), and the prediction were processed with default settings. The protein templates
used to derive the resultant model of PL1 were listed in Supplementary Table S6. For phylogenetic
analysis of PL1, the full-length amino acid sequence of this protein, as the query, was submitted to

http://unafold.rna.albany.edu/?q=mfold/download-mfold
http://rice.plantbiology.msu.edu/
http://www.cbs.dtu.dk/services/TMHMM/
http://smart.embl-heidelberg.de/
http://www.ebi.ac.uk/interpro/
http://raptorx.uchicago.edu/
http://raptorx.uchicago.edu/
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BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) of NCBI. Forty-one orthologues of PL1 from different
species were identified (Table S4). All these orthologues and PL1 were aligned using ClustalW of
MEGA 5.0 [90], and the alignment result was then applied to construct a neighbor-joining phylogenetic
tree using MEGA 5 with 1000 bootstrap replicates.

5. Conclusions

To conclude, in the present work, we reported that a silent mutation at the last base of exon 4 in
PL1 gene caused the missplicing and completely male-sterile phenotype in rice. Our findings highlight
the crucial roles of integrin-α FG-GAP repeat-containing protein in male reproduction and the exonic
influence on splice donor site selection. Further experimental determinations on the biochemical
functions of PL1 in anther and pollen development will be interesting.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/6/2018/s1.
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