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Abstract 

Background: There is a need to match characteristics of tobacco users with cessation treatments and risks of 
tobacco attributable diseases such as lung cancer. The rate in which the body metabolizes nicotine has proven an 
important predictor of these outcomes. Nicotine metabolism is primarily catalyzed by the enzyme cytochrone P450 
(CYP2A6) and CYP2A6 activity can be measured as the ratio of two nicotine metabolites: trans‑3’‑hydroxycotinine 
to cotinine (NMR). Measurements of these metabolites are only possible in current tobacco users and vary by bio‑
fluid source, timing of collection, and protocols; unfortunately, this has limited their use in clinical practice. The NMR 
depends highly on genetic variation near CYP2A6 on chromosome 19 as well as ancestry, environmental, and other 
genetic factors. Thus, we aimed to develop prediction models of nicotine metabolism using genotypes and basic 
individual characteristics (age, gender, height, and weight).

Results: We identified four multiethnic studies with nicotine metabolites and DNA samples. We constructed a 
263 marker panel from filtering genome‑wide association scans of the NMR in each study. We then applied seven 
machine learning techniques to train models of nicotine metabolism on the largest and most ancestrally diverse 
dataset (N=2239). The models were then validated using the other three studies (total N=1415). Using cross‑valida‑
tion, we found the correlations between the observed and predicted NMR ranged from 0.69 to 0.97 depending on 
the model. When predictions were averaged in an ensemble model, the correlation was 0.81. The ensemble model 
generalizes well in the validation studies across ancestries, despite differences in the measurements of NMR between 
studies, with correlations of: 0.52 for African ancestry, 0.61 for Asian ancestry, and 0.46 for European ancestry. The most 
influential predictors of NMR identified in more than two models were rs56113850, rs11878604, and 21 other genetic 
variants near CYP2A6 as well as age and ancestry.

Conclusions: We have developed an ensemble of seven models for predicting the NMR across ancestries from 
genotypes and age, gender and BMI. These models were validated using three datasets and associate with nicotine 
dosages. The knowledge of how an individual metabolizes nicotine could be used to help select the optimal path to 
reducing or quitting tobacco use, as well as, evaluating risks of tobacco use.
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Background
Tobacco smoking is a leading cause of global prevent-
able disease and death. Nicotine, the component of 
tobacco that sustains nicotine addiction, makes tobacco 
smoking highly addictive and difficult to quit. Nicotine 
is primarily metabolized by the cytochrome P450 2A6 
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(CYP2A6) enzyme. Individual variations in CYP2A6 
activity have been found to influence smoking behav-
iors [1]. A biomarker for measuring CYP2A6 enzymatic 
activity is the nicotine metabolite ratio (NMR), the 
ratio of two nicotine metabolites, trans-3’-hydroxycoti-
nine (3HC) to cotinine (COT) [2]. The NMR has been 
shown to be associated with smoking behaviors [1], 
smoking dose and risk of lung cancer [3], alcohol con-
sumption [4], and smoking cessation [5]. As a result, 
there have been repeated calls for screening based on 
the NMR [6].

There remain technical challenges in measuring nico-
tine metabolism that limits its potential clinical use. 
Ideally measurement would involve controlled nicotine 
administration trials which is simply not feasible in large 
population based studies or in screening. Biochemical 
measurement of the NMR requires serum, plasma, saliva, 
or urine for analyte analysis. While measurements of nic-
otine metabolites have good reproducibility within these 
biofluids [7], differences in metabolite measurements 
(e.g. total or free 3HC and COT) make results difficult 
to compare and interpret across studies [8]. Biochemi-
cal measurement of the NMR also requires biofluids to 
be collected relatively soon after the intake of nicotine, 
which is impractical in former smokers or if a smoker 
is an occasional user of tobacco. This has limited NMR-
based risk assessments of tobacco attributable diseases 
and comorbidities to current smokers.

Genomic prediction of the NMR is a promising alter-
native to direct biochemical measurements. Genotyp-
ing services are widespread and feasible within clinical 
laboratories. A number of functional variants of CYP2A6 
have been shown to be associated with the NMR [9]. 
More recently genome-wide genotyping have identified 
additional variants that are associated with the NMR 
[10–13]. Genomic data has been used to build more 
comprehensive genomic models [14] and polygenic risk 
scores [15] for predicting nicotine metabolism. But these 
models do not generalize across ancestries, requiring 
the development of ancestry-specific or transferable risk 
scores [16].

In this work we present the development and validation 
of an ensemble of models trained to predict NMR using 
genotypes and basic covariates across ancestries. We 
begin by prioritizing genetic markers found to be associ-
ated with the NMR in four multiethnic studies. We then 
apply an ensemble of machine learning algorithms to the 
largest study to train models which are then assessed 
directly in the other three by comparing observed to pre-
dicted NMR. The resulting selected variables and vali-
dated models can be used to assess nicotine metabolism 
in current or former tobacco users. This knowledge can 
help inform clinical decisions making on the optimal 

path to smoking cessation and communicate risks for 
tobacco-related outcomes.

Methods
Source of data
Four studies were identified with measured NMR or 
metabolite data, genomic data or DNA samples avail-
able for genotyping, and basic demographic variables. 
These four studies were used for training and validation 
of NMR models. They are summarized below. Given the 
differences in the study designs, including how nicotine 
metabolites were collected and measured, the focus of 
this work is on training a predictive model of NMR using 
the largest and most ancestrally diverse study (the Multi-
ethnic Cohort, MEC). Once the model has been trained, 
we use the three remaining studies to conduct valida-
tion trials by comparing predicted NMR to the measured 
NMR.

Multiethnic Cohort, MEC
The MEC was established in Hawaii and California (pri-
marily Los Angeles County) to study diet and cancer in 
the United States [17, 18]. From 1993 to 1996, individu-
als of both sexes, aged 45-75, and from five major racial/
ethnic groups (Latino, African-American, Japanese-
American, White, Native Hawaiian) were recruited. 
Participants completed a baseline questionnaire of 
demographic characteristics, anthropometrics, smoking 
history and other lifestyle factors. This study uses a sub-
cohort of 2,239 lung cancer free participants who were 
current smokers at time of biospecimen collection [19]. 
Collected biospecimens include blood and urine (over-
night for Hawaii or first morning in California). Nicotine 
metabolites were quantified using liquid chromatog-
raphy-tandem mass spectrometry [20]. Total nicotine 
equivalents (TNE) was defined as the sum of total nico-
tine, total COT, total 3HC, and nicotine N-oxide. Here 
total refers to the sum of the compound and its glucuron-
ide conjugate. The NMR was defined as the urinary total 
3HC to free COT ratio.

Center for the Evaluation of Nicotine in Cigarettes, CENIC
CENIC conducted studies of the effects of reduced nico-
tine cigarettes on smoking outcomes. 550 participants 
across eight United States institutions were randomized 
to one of seven nicotine levels between June 2013 and 
July 2014 [21] and had DNA available for analysis. Par-
ticipants were adult daily smokers that smoke an average 
of at least five cigarettes per day for at least one year and 
had either a cotinine (COT) level > 100 ng/mL or expired 
carbon monoxide (CO) of > 8 ppm [21]. Smokers were 
initially assessed using their usual brand cigarettes. Nico-
tine metabolites levels, including COT, were measured 
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using liquid chromatography with tandem mass spec-
trometry and expired CO levels were measured using a 
Smokerlyzer ED50 by Bedfont Instruments [21]. TNE 
was defined as the sum of total nicotine, total COT, total 
3HC, and nicotine N-oxide. The NMR was defined as the 
urinary total 3HC to free COT ratio.

Hawaii Smokers Study, HSS
The HSS was comprised of 600 participants randomly 
selected from the MEC participants who were current 
smokers at time of study, reporting that they smoked 
at least 10 cigarettes per day, had no history of cancer, 
and were self-reported Japanese, European, or Hawaiian 
ancestry [22]. Study interview and blood and 12-hour 
urine samples were collected independent of the previ-
ously mentioned MEC biospecimen collection. Analysis 
of total urinary nicotine, COT, and 3HC concentration 
was done by GC/MS (gas chromatography/mass spec-
trometry). Nicotine equivalents (NE) was defined as the 
sum of total nicotine, total COT, and total 3HC. The 
NMR was defined as the urinary total 3HC to total COT 
ratio.

Laboratory studies of nicotine metabolism, METS
The METS included 315 unrelated African-American, 
Asian-American, and European-American individuals 
from three laboratory studies of nicotine metabolism 
[12]. The studies included Pharmacokinetics in Twins 
(PKTWIN) [23], Pharmacogenetic Study of Nicotine 
Metabolism (588) [24], and SMOking in FAMilies (SMO-
FAM) [25]. Blood or saliva was collected 6 hours after the 
administration of labeled nicotine and cotinine in smok-
ers and non-smokers. Nicotine metabolite levels were 
assessed using gas chromatography-tandem mass spec-
trometry methods. The NMR was defined as the 6 hour 
plasma or saliva 3HC to COT ratio.

Response variable
We aim to develop a predictive model of the urinary 
nicotine metabolite ratio (the ratio of total 3HC to free 
COT) from genotypes and covariates.

Predictors
Genotypes
Imputed genotypes were already available for the MEC 
and METS studies [12, 13]. The MEC was previously gen-
otyped on the Illumina Human1M-Duo BeadChip. The 
METS were previously genotyped on the Smokescreen 
Genotyping Array. Both were imputed to include vari-
ants in the 1000 Genomes Project reference populations 
using standard phasing and imputation best practices at 
the time [12, 13].

DNA samples from HSS and CENIC were genotyped 
specifically for this project on the Smokescreen Geno-
typing Array [26]. 200 ng of genomic DNA were plated 
using Axiom 2.0 Reagent Kits and processed on the 
GeneTitan MC instrument. Analysis of the raw data was 
performed using Affymetrix Power tools (APT) v-1.16. 
Additional steps were performed using SNPolisher to 
identify and select probe sets and high quality variants 
for downstream analysis. Quality control steps for sam-
ples included comparisons of self-reported and genomic 
gender and ancestry, detection of excessive heterozy-
gosity ( > 0.20 ), genotype concordance among known 
duplicates, and removal of unexpected duplicates and 
related samples. Quality control steps for genetic variants 
included missingness > 5% and deviation from Hardy 
Weinberg equilibrium ( p <1E-10). After quality con-
trol, HSS had genotypes for 585 individuals on 569,986 
genetic variants. CENIC had genotypes for 515 individu-
als on 570,258 genetic variants.

We used genome-wide imputation to harmonize geno-
types across the studies prior to analysis. Alleles were 
reported on the forward strand and conform-gt was 
used to ensure consistency with the 1000 Genomes Phase 
2 version 5a data files prepared for use with the Beagle 
imputation software. Beagle 5.2 was used to phase gen-
otypes and impute ungenotyped or missing genotypes 
[27]. The resulting genotype dosages for variants typed 
on the Smokescreen Genotyping Array were imported 
into a Postgres database.

Covariates
We compiled age, sex, self-identified ethnicity, body 
mass index (BMI), and smoking status (from METS) 
from study datasets. Additionally, ancestry proportions 
were estimated by extracting genotypes for 5516 ances-
try informative markers from the study data and combin-
ing it with genotypes from 1000 Genomes Project Phase 
3 version 5a. fastSTRU CTU RE was used with default 
settings and k = 3 populations [28]. Populations assign-
ments from the 1000 Genome Project and self-reported 
race from the studies were used to label the estimated 
European, Asian, and African ancestry proportions.

Sample size
The NMR was merged with genotypes and covariates for 
each study to create the analytic dataset. Sample sizes 
were 2,239 for MEC, 515 for CENIC, 585 for HSS, and 
315 for METS.

Missing data
HSS was missing 5 observations for NMRs and those 
records were dropped from the analysis. The genome-
wide assocation scans of NMR used for marker 
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nomination used complete observations. In model train-
ing and validation, missing values were imputed using the 
missMDA package in R [29]. Briefly, the data for candi-
date predictors were stacked across studies, the number 
of dimensions were estimated by principal components 
analysis (PCA), and the missing values were imputed 
with the PCA model.

Statistical analysis methods
Marker nomination
Prior to training NMR prediction models, we nominated 
markers to consider using results from genome-wide 
association scans. The scans used models of the form

where Yi is the natural log NMR measured on the ith 
individual, Xi is a vector of covariates with β being the 
corresponding vector of regression coefficients, Sij is 
the genetic variant under consideration with α0 being 
the corresponding regression coefficient, Pi is a vector 
of principal components computed on the genotypes 
design matrix with α being the corresponding vector of 
regression coefficients, and ǫi is the error term. In this 
analysis, we controlled for age, sex, ancestry, body mass 
index (BMI), and smoking status in the METS. We used 
the first 50 principal components of the genotype design 
matrix to account for genetic relatedness/ancestry 
among the study participants. The p-values for the test of 
H0 : α0 = 0 vs. H1 : α0 �= 0 were computed.

From these results, we selected 200 genetic variants 
from each study based on the smallest p-values with 
allele frequencies > 1% . We took the union of these sets 
and retained genetic variants with evidence ( p < 0.05 ) 

(1)Yi = X
′
iβ + Sijα0 + Piα + ǫi,

of association with the NMR in at least two of the four 
studies.

Model training and validation
To develop a predictive model of NMR, we took an 
ensemble based approach that leveraged a suite of 
machine learning algorithms. This suite consisted of 
partial least squares [30], projection pursuit [31], elas-
tic net [32], support vector machine (with a linear and 
radial basis function kernel) [33], gradient boosting 
machine [34], and random forests [35]. Each of these 
machine learning models was fit to the MEC data (the 
largest and most diverse of the four studies), treating the 
Yi (NMR measured on the ith subject) as the response 
variable. To explain the heterogeneity in the NMR in 
this analysis, we used a feature set consisting of age, 
gender, BMI, Asian and African ancestry proportions, 
and the 263 prioritized markers arising from the marker 
nomination step. For notational brevity, we denote the 
feature set for the ith observation by Fi . The R package 
caret was used to fit and train all of the models using 
the methods listed in Table 1.

It is important to note that the fitting process for 
each of the aforementioned models required the 
selection of tuning parameters that have to be speci-
fied in a methodical way to avoid issues of over- and 
under-fitting the data. Classically, this issue can also 
be described via the bias-variance tradeoff. That is, a 
model that is not appropriately regularized, or is over-
specified, can over-fit the data thus reducing the bias 
at the expense of increased variability. In contrast, an 
underspecified model, or over regularized, could pro-
vide for less variable predictions but at the expense of 

Table 1 Fitting method and tuning parameter configurations. Provided are the considered training parameters for partial least 
squares (PLS), project pursuit (PPR), elastic net (ENet), support vector machine with a linear kernel (SVM‑L), support vector machine 
with a radial basis function kernel (SVM‑R), gradient boosting machine (GBM), and random forests (RF). Also provided are the model 
fitting methods

Model Tuning Grid Method

PLS Number of components ∈ {1, ..., 20} pls

PPR Number of terms ∈ {1, .., 5} ppr

Enet Mixing percentage α ∈ {0.10, 0.55, 1.00} glmnet

Penalty parameter � ∈ {8.975e−4, 8.975e−3, 8.975e−2}

SVM‑L Cost parameter ∈ {0.001, 0.002, ..., 0.02} svmLinear

SVM‑R Cost parameter ∈ {5, ..., 20} svmRadialSigma

RBF kernel parameter σ ∈ {0.0001, 0.0005, ..., 0.02}

GBM Interaction depth ∈ {1, ..., 5} gbm

Number of trees ∈ {10, 20, ..., 100}

Shrinkage 0.1

Minimum number of Obs. in a node 10

RF Number of randomly selected predictors ∈ {1, ..., 10} rf
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increased bias. To choose the tuning parameters, we 
implemented repeated (10 times) 10-fold cross valida-
tion at an array of candidate tuning parameter values; 
for more on repeated cross validation see [36]. The grid 
of tuning parameters were designed based on initial 
analyses based on default settings, prior experience, 
and to ensure that the optimal configuration existed 
on the interior of the grid; i.e, the optimal value did 
not exist on the boundary of the grid. The optimal tun-
ing parameter configuration for each of the machine 
learning models was determined to be the one that 
minimized the cross-validation error. Table  1 sum-
marizes the candidate tuning parameters for each of 
the machine learning models. Note, our cross valida-
tion strategy requires fitting 100 models for each tun-
ing parameter configuration for each of the considered 
machine learning model. Figure  1 provides a sum-
mary of these fits at their optimal tuning parameter 

configuration. This summary includes the mean abso-
lute error (MAE), the root mean squared error (RMSE), 
and the R-squared value for each of the 100 fits.

Once the process of training the models was complete, 
the ensemble model was constructed; for further dis-
cussion on ensemble based techniques see [37]. Let f̂j(·) 
denote the jth fitted sub-model. Based on these fitted sub-
models, our ensemble is given by f̂ (·) = 1/7

∑7
j=1 f̂j(·) . 

Thus, the trained model can provide predictions of the 
NMR ( Y  ) for a new feature set ( F ) as Ŷ = f̂ (F) . That is, 
this ensemble provides predictions by averaging the pre-
dictions of the individual sub-models. Proceeding in this 
fashion we obtain more reliable predictive performance 
than could be obtained from any one of the component 
models alone. To examine performance of our trained 
ensemble, we use it to predict the NMR for the subjects 
in the CENIC, HSS, and METS studies. Supplementary 
Fig. S3 provides the predicted vs. the actual NMR across 

Fig. 1 Assessment of the seven models in the training data (MEC). Models were trained using project pursuit (PPR), partial least squares (PLS), 
support vector machine with a linear kernel (SVM_lin), elastic net (GLMNET), random forests (RF), support vector machine with a radial basis 
function kernel (SVM_rad_sig), and gradient boosting machine (GBM). Model performances were assessed using mean absolute error (MAE), root 
mean squared error (RMSE), and R Squared. The boxplots summarizes these metrics across 100 cross validation datasets. Performances were similar 
across the models justifying use of an average of predictions in the ensemble model
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all four studies for each of the seven models and Table 2 
provides the correlations between predicted and actual 
NMR by study and model stratified by estimated genomic 
ancestry. Figure  2 aggregates the predictions from each 
model to form an ensemble based prediction.

Results
Participant characteristics
The characteristics of the participants for each study are 
presented in Table 3. The MEC and HSS individuals were 
older on average than CENIC and the METS (mean ages 
of 64, 61, 43, and 34 respectively). Participants of CENIC 
had a greater proportion of males than the other studies 
(59% versus 49% (HSS), 45% (METS), and 46% (MEC)) 
and larger body mass. The METS study had a mix of 
smokers (45%) and nonsmokers, whereas the other study 
participants were all smokers.

The distribution of self-reported races varied by study 
and as expected corresponded to estimated ancestry 
proportions (see Supplementary Table S1). The MEC 
included African American (16%), Japanese American 
(30%), Native Hawaiian/Pacific Islander (14%), Latino 
(20%), and White (20%) smokers. The METS were 

comprised of self-reported African American (16%), 
Asian American (16%), and White (68%) participants. 
The HSS had nearly equal proportions of Japanese Amer-
ican, Native Hawaiian/Pacific Islander, and White smok-
ers. The smokers in CENIC were mostly White (72%) and 
African American (21%).

The distributions of natural log NMRs varied by study 
(Supplementary Fig. S1) and represented differences in 
collection source and timing, metabolite measurements, 
and study patient characteristics. MEC reported the uri-
nary total 3HC to free COT in smokers; CENIC reported 
urinary total 3HC to free COT in smokers; HSS reported 
urinary total 3HC to total COT in smokers; and METS 
reported plasma or salivary 3HC to COT at 6 hours after 
a fixed dose of nicotine was administered. This precluded 
stacking the data for model training.

Model development
The distribution of marginal p-values found in the four 
genome-wide association scans of NMR are provided 
in Supplementary Fig. S2. There does not appear to be 
any inflation or deflation of the p-values overall (i.e. � ’s 
are close to one). In each study, there were many genetic 

Table 2 Correlations between predicted and observed NMRs by study, ancestry, and model. The correlations between predicted and 
observed NMRs were summarized overall and by genomic ancestry (ancestry proportion > 0.5 ). The MEC was the largest and most 
diverse sample and was used for training using partial least squares (PLS), project pursuit (PPR), elastic net (ENet), support vector 
machine with a linear kernel (SVM‑L), support vector machine with a radial basis function kernel (SVM‑R), gradient boosting machine 
(GBM), and random forests (RF). Predictions from these seven models were averaged in an ensemble model. The MEC trained models 
were applied to CENIC, HSS, and METs for validation

PLS PPR ENet SVM-L SVM-R GBM RF Ensemble N

MEC (Training)
 African 0.60 0.67 0.58 0.75 0.58 0.76 0.97 0.76 342

 Asian 0.71 0.76 0.70 0.79 0.69 0.81 0.97 0.82 995

 European 0.50 0.56 0.49 0.63 0.48 0.64 0.97 0.67 902

 Overall 0.71 0.75 0.70 0.78 0.69 0.79 0.97 0.81 2239

CENIC (Validation)
 African 0.35 0.33 0.32 0.33 0.32 0.41 0.41 0.37 111

 Asian 0.71 0.28 0.68 0.60 0.67 0.51 0.50 0.61 9

 European 0.42 0.38 0.43 0.41 0.37 0.52 0.47 0.46 395

 Overall 0.42 0.37 0.41 0.39 0.37 0.50 0.45 0.45 515

HSS (Validation)
 African 1

 Asian 0.51 0.29 0.55 0.59 0.53 0.55 0.58 0.56 308

 European 0.42 0.33 0.42 0.37 0.36 0.42 0.39 0.43 271

 Overall 0.53 0.37 0.56 0.56 0.53 0.55 0.56 0.56 580

METS (Validation)
 African 0.43 0.30 0.50 0.55 0.41 0.46 0.45 0.52 48

 Asian 0.37 0.03 0.39 0.47 0.41 0.47 0.47 0.43 51

 European 0.38 0.10 0.40 0.45 0.42 0.44 0.41 0.43 216

 Overall 0.36 0.09 0.42 0.42 0.39 0.45 0.45 0.40 315
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variants with small p-values; as seen in the the tail of 
the distributions presented in Supplementary Fig. S2. 
The smallest 200 p-values with allele frequencies > 1% 
were merged across the studies. After filtering (see Sec-
tion  2.6.1), there were 263 genetic variants selected as 
candidates predictors of NMR. The list of markers and 
their corresponding chromosome, position, and alleles 
can be found in the Supplementary Files. MEC had the 
largest and most diverse sample of the studies consid-
ered. Given this, we trained the models on the MEC data-
set and validated them in the other three studies.

Model performances
Within MEC, model performances were summarized 
across 100 model fits at their optimal tuning param-
eter configuration which are presented in Fig.  1. These 
included the mean absolute error (MAE), root mean 
squared error (RMSE), and the R-squared. Models with 
lower values of MAE and RMSE achieve higher model 

accuracy. The R-squared is the proportion of variance 
explained by the model. As shown in Fig. 1, the trained 
models can explain about half of the variability in NMR. 
The performances across the models are remarkably 
similar, with no clear winner or loser. Given this observa-
tion, we give each model equal weights in the ensemble 
model. That is, the ensemble model is simply the average 
of the predicted NMR values from the seven component 
models.

The model performances within sample (MEC) and 
out-of-sample (HSS, METS, CENIC) for each model and 
the overall ensemble are presented in Supplementary Fig. 
S3 and Fig.  2 respectively. Here out-of-sample refers to 
data that the model was not trained on, and represents 
a setting that offers an unbiased assessment of overall 
performance. Within MEC, the correlations between the 
observed and predicted NMR ranges from 0.69 to 0.97 
depending on the model. The correlation of the ensem-
ble and observed values is 0.81 indicating that averaging 
the predictions from the member models yields good 

Fig. 2 Observed versus predicted NMR values for the training (MEC) and validation (CENIC, HSS, and METS) data. The predicted NMR is the averages 
of the predictions from the seven models (i.e., the ensemble model). The correlation between these values are displayed to the upper left of each 
scatterplot. The distribution of NMRs were different across studies, yet the correlations were still strong in the validation datasets
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prediction performance. The models also generalizes well 
out-of-sample. The correlation between the observed 
NMR and the predicted NMR from the ensemble are 
0.45, 0.56, and 0.4 for CENIC, HSS, and METS respec-
tively (Fig. 2).

The correlations for each component model stratified 
by ancestry are presented in Table 2. Overall, the ensem-
ble model performed well across ancestries in the MEC 
(0.76, 0.82, and 0.67 for African, Asian, and European 
ancestries respectively). In the validation studies, the best 
ensemble correlations for African ancestry was 0.52 in 
the METS, for Asian ancestry was 0.61 in CENIC, and for 
European ancestry was 0.46 in CENIC.

Variable importance
Variable importance is an indicator of how much a candi-
date predictor contributes to a model on a scale of zero to 
100. These are presented for the seven models trained in 
the MEC data in Supplementary Fig. S4. In examining the 
patterns, there was consensus among the models on the 
importance of many of the variables in predicting NMR 

yet diversity in the variables each models deemed impor-
tant. Given this observation and the performances of 
the models being rather similar, the panel of 263 genetic 
variants seems adequate. We next examine the favorites 
by ranking variables by importance for each model and 
counting how many times each variable occurs in the 
top 20 (Fig.  3). Asian ancestry and rs56113850 were 
highly relevant to the prediction of NMR in all mod-
els. rs11878604 was also important in predicting NMR 
(six models). Additionally, African ancestry, age, and 24 
genetic variants were of top importance in more than two 
models.

Discussion
The NMR is an important biomarker for selecting the 
optimal intervention for smokers seeking to quit and for 
evaluating the risks of tobacco use. We selected a panel of 
263 genetic markers from genome-wide analyses in four 
multiethnic dataset, trained the models in the largest, 
most ancestrally diverse dataset, and validated models 
in three additional multiethnic datasets. In summary, we 
have created an ensemble model for estimating the NMR 

Table 3 Participant characteristics for the training data (MEC) and the three validation datasets (CENIC, HSS, and METS)

MEC CENIC HSS METS
(N=2239) (N=515) (N=580) (N=315)

Age
 Mean (SD) 63.9 (7.19) 43.4 (13.2) 60.6 (9.40) 33.8 (10.9)

 Median [Min, Max] 63.0 [45.0, 86.0] 44.0 [18.0, 75.0] 60.6 [19.6, 83.2] 30.0 [18.0, 69.0]

Body Mass Index
 Mean (SD) 26.3 (5.31) 30.0 (6.70) 27.1 (6.10) 25.6 (4.75)

 Median [Min, Max] 25.6 [11.3, 62.8] 29.2 [15.2, 56.0] 26.1 [14.4, 54.8] 24.9 [15.9, 49.1]

 Missing 0 (0%) 3.00 (0.5%) 0 (0%) 0 (0%)

Gender
 Male 1040 (46.4%) 306 (59.4%) 284 (49.0%) 141 (44.8%)

 Female 1199 (53.6%) 209 (40.6%) 296 (51.0%) 174 (55.2%)

Current Smoker
 Yes 2239 (100%) 515 (100%) 580 (100%) 120 (38.1%)

 No 0 (0%) 0 (0%) 0 (0%) 195 (61.9%)

Self Reported Race
 African American 364 (16.3%) 107 (20.8%) 0 (0%) 49 (15.6%)

 American Indian/Alaskan Native 0 (0%) 5 (1.0%) 0 (0%) 0 (0%)

 Asian American 0 (0%) 6 (1.2%) 0 (0%) 51 (16.2%)

 Multirace 0 (0%) 25 (4.9%) 0 (0%) 0 (0%)

 White 437 (19.5%) 372 (72.2%) 197 (34.0%) 215 (68.3%)

 Japanese American 674 (30.1%) 0 (0%) 191 (32.9%) 0 (0%)

 Native Hawaiian/Pacific Islander 311 (13.9%) 0 (0%) 192 (33.1%) 0 (0%)

 Latino 453 (20.2%) 0 (0%) 0 (0%) 0 (0%)

Natural log Nicotine Metabolite Ratio
 Mean (SD) 1.11 (0.898) 1.50 (0.720) ‑0.324 (0.959) ‑1.58 (0.548)

 Median [Min, Max] 1.20 [‑3.91, 3.60] 1.54 [‑2.54, 3.35] ‑0.267 [‑3.30, 2.90] ‑1.57 [‑3.22, ‑0.240]
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across ancestries from genotypes, genetic ancestry, and 
basic individual characteristics (i.e., age, height, weight, 
and gender). This work also provides a methodological 
framework for developing other genomic-based assess-
ments of heritable biomarkers.

Diversity was a strengths in our approach and findings. 
The American individuals used in model training and 
validation studies represented diverse ancestries, com-
posed of Asian, African, and European backgrounds. This 
enabled us to detect genetic variants related to nicotine 
metabolism that we would not have selected otherwise 
and train models that generalize to new observations. 
This is highlighted in Table 2 by the out-of-sample per-
formances of the models in CENIC, HSS, and METS 
across ancestries. We also adopted an ensemble based 
approach that averages NMR predictions from seven dif-
ferent component models. While performances of these 
seven models were similar, there was variation in how the 
candidate variables contribute to the model (Supplemen-
tary Fig. S4). This diversity in solutions is a strength, ena-
bling more reliable predictions in the ensemble model.

The most important predictors in these models com-
bine many of the findings in the literature on the genet-
ics of the NMR. Of the 26 genetic variants flagged 
in more than one model (Fig.  3), 7 had entries in the 
NHGRI-EBI Catalog of human genome-wide associa-
tion studies [38]. The marker rs56113850 was associated 
with nicotine metabolism at genome-wide significance 
in smokers of European ancestry [10, 11]. In smokers of 
African ancestry, the marker rs11878604 was associated 
with NMR at genome-wide significance and identified 

as an independent signal [39]. This marker was also top 
ranked in African American female smokers [40]. The 
marker rs12459249 was associated at genome-wide sig-
nificance and top ranked in the METS meta-GWAS [26], 
and was an independent signal identified in conditional 
analysis of African American treatment seeking smokers 
[39]. Markers rs11878604 and rs116921376 have been 
implicated in tobacco-related consequences (lung cancer 
and chronic obstructive pulmonary disease) [41]. The 
marker rs56267346 has been identified as playing a role 
in caffeine metabolism, which involves CYP2A6 [42]. 
rs8192726 has been shown to be related to cigarettes per 
day in a genomic study of 1.2 million individuals [43]. 
These variants are all located at or near the CYP2A6 
gene on chromosome 19. Age and BMI have previously 
been shown to influence the NMR in treatment-seeking 
smokers [44]. Genomic estimated Asian and African 
ancestries were important in five and seven models, 
respectively, and have been shown to influence nicotine 
metabolism [45].

Limitations
Differences in NMR measurements prevented us from 
stacking the data across studies. These differences 
included patient characteristics (type of smoker, nico-
tine administration, age, ancestry, etc.), biospecimens 
collected (urine, blood, saliva), the timing of collection 
(steady state kinetics or laboratory sampling), and the 
metabolite measurement procedures. For example, in 
the METS, participants were administered fixed doses of 
labeled nicotine and cotinine followed by biospecimen 

Fig. 3 Summary of the most important candidate variables in the NMR models. Variable importance was ranked for each of the seven models 
trained on the MEC data. The number of times each variable occurred in the top 20 for each model was enumerated. Asian ancestry and 
rs56113850 was an influential variable in all the models
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collection at regular intervals, with the 6 hour collec-
tion being used to assess NMR. However, this timing 
does not allow the metabolite ratio to reach a steady 
state, and thus the NMR is under estimated relative to 
NMR measured based on steady state kinetics as in the 
MEC [8]. In addition, non-smokers will have slightly 
reduced NMR estimates compared to smokers, as ciga-
rette smoking has been associated with increases in the 
NMR [44]. Thus, the NMR of the non-smokers in METS 
is an underestimate of the steady-state NMR in smok-
ers of the same genomic background. This may account 
for the lower correlation between the predicted urinary 
total 3HC/free COT and the laboratory-based NMR in 
the METS. Additionally, the HSS NMR measure included 
total cotinine, with individual variation in the cotinine 
glucuronidation ratio, as this NMR measure contains glu-
curonidated cotinine in the denominator [8, 46]. Specific 
adjustment for cotinine glucuronidation ratio was shown 
to substantially improve prediction of plasma NMR using 
the urinary total 3HC to total COT ratio [3, 8]. These dif-
ferences however provided a unique opportunity for vali-
dation since while the NMR measures do differ between 
some of the cohorts studied here, we do know these 
NMRs are correlated [8, 46]. As such, in our analysis, we 
trained on the largest and most diverse cohort (MEC), 
and were able to validate the NMR models in the other 
three studies (METS, CENIC, and HSS). While the cor-
relation between the observed and predicted NMRs were 
the strongest in the training set as expected (0.81 for the 
MEC ensemble model), the predicted NMRs also corre-
lated with measured NMRs in the validation sets (0.45, 
0.58, and 0.40 for CENIC, HSS, and METS respectively).

As noted, we trained the models on the largest multi-
ethnic sample. However, MEC was genotyped using an 
older genotype array (Illumina Human1M-Duo Bead-
Chip), while the other studies were genotyped with the 
Smokescreen Genotyping Array, designed with more 
markers within gene regions related to nicotine metabo-
lism and smoking-related behaviors outcomes [14, 26]. 
While all studies were imputed to the 1000 Genomes 
Project, there were more poor quality genotypes (typed 
or imputations) in the older studies MEC (23 markers) 
and METS (28 markers) than the newly genotyped stud-
ies (5 markers in CENIC and 12 markers in HSS).

Validation with smoking dosage in the HSS and CENIC
The rate of nicotine metabolism influences how much 
nicotine an individual is exposed to (i.e., nicotine dos-
age) and consequently risk of lung cancer [3]. Nicotine 
equivalents is the sum of nicotine and nicotine metabo-
lites, and offers a more precise measure of nicotine intake 
than self-reported cigarettes per day. To link predicted 

nicotine metabolism to nicotine exposure, we took the 
NMR predictions for HSS and CENIC using the MEC 
trained ensemble model, and examined their relation-
ship to nicotine equivalents. We found that the predicted 
NMRs were strongly associated with nicotine equiva-
lents in both studies ( p = 3.3E − 4 and p = 1.6E − 7 in 
CENIC and HSS respectively). This indicates that pre-
dicting how an individual metabolizes nicotine could be 
used to quantify their nicotine exposure and tobacco-
attributable disease risk.

Implications and future work
Direct measurement of the NMR has its challenges. For 
example, individuals must be actively using nicotine-
containing products and there are issues related to meas-
urement and sample collection. We offer an approach 
where genotypes and basic demographics could be used 
to characterize how a current or previous tobacco user 
metabolizes nicotine. Genotypes could be obtained by 
inexpensive genotyping platforms and paired with popu-
lar saliva DNA collection kits. The knowledge of how an 
individual metabolizes nicotine could be used to help 
select the optimal path to reducing or quitting tobacco 
use, as well as, evaluating risks of tobacco-related dis-
eases and comorbidities.

Additional work is needed to optimize the predic-
tive models using larger population representative sam-
ples with genotypes and both plasma and urine nicotine 
metabolites. Training models on different versions of 
NMR may improve prediction performance; e.g., NMR 
measured relative to different metabolite combinations. 
In optimizing these models, we plan to consider struc-
tural variations (e.g., copy number variants, gene dupli-
cation, deletions, and translocations) for genes involved 
in the nicotine metabolism pathway (e.g., CYP2A6 and 
UGT2B10). These future models should also consider 
environmental factors that influence NMR, e.g., estro-
gen, comorbidites and diet [1, 44, 47] as well as additional 
components of the nicotine metabolism pathway (e.g., 
N-oxidation pathways [48–50]).

However, the presented models may be immediately 
used to predict nicotine metabolism in newly collected 
or existing DNA samples, or from existing genomic 
data. These predictions in turn can be linked to clini-
cal outcomes. For example probabilistic models could 
be built that relate the predicted NMR to the likelihood 
of smoking cessation or response to different treatment 
options. This could lead to the identification of NMR cut-
points that could be used to guide subject specific treat-
ment paths. Additionally, our prediction model could 
help improve the understanding of nicotine metabo-
lism in large representative populations (e.g., Population 
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Assessment of Tobacco and Health [51]). This could help 
inform proposed and actual regulatory thresholds for 
nicotine levels.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12864‑ 022‑ 08884‑z.

Additional file 1. Supplementary Figures.

Additional file 2. Supplementary Table.

Additional file 3. List of genetic variants nominated for prediction of 
nicotine metabolism. This file contains the rs number, chromosome, hg19 
position, reference allele, and alternative allele for the 263genetic variants 
selected as candidates for prediction of the nicotine metabolite ratio.

Acknowledgements
The authors thank participants, staff and Investigators of the MEC, the CENIC, 
the HSS and the METS. The METS were supported by: the National Institute 
on Drug Abuse Pharmacokinetics and Pharmacodynamics of Nicotine 
(DA002277, PI: Neal L Benowitz), Young Adult Substance Use‑Predictors and 
Consequences (DA003706, PI: Hy Hops), Pharmacokinetics of Nicotine in 
Twins (DA011170, PI: Gary E Swan), Pharmacogenetics of Nicotine Addiction 
Treatment Consortium (DA020830, PI: Neal L Benowitz; MPI: Rachel F Tyndale, 
and Caryn Lerman); and, by the Tobacco‑Related Disease Research Program 
of the University of California: Nicotine Metabolism in Families (7PT‑2004, PI: 
Neal L Benowitz). The MEC was supported by the National Cancer Institute 
(U01 CA164973 and P01 CA138338). CENIC was supported by a grant from 
the National Institute on Drug Abuse and the Food and Drug Administra‑
tion Center for Tobacco Products (U54 DA031659). The HSS was supported 
by National Cancer Institute (R01 CA 85997). We would like to acknowledge 
BioRealm LLC team (https:// biore alm. ai) for supporting project workflows and 
computation and IBX (http:// ibx. bio) for sample processing.

Authors’ contributions
All authors contributed to preparing this manuscript. AWB, SLP, SEM prepared 
data and samples; JWB, AWB, CME, and CSM performed data management; 
and JWB and CSM performed data analysis. All authors read and approved the 
final manuscript.

Funding
This study was funded by the National Institute on Alcohol Abuse and 
Alcoholism (R44 AA027675) and the National Institute on Drug Abuse (R43 
DA041211). The sponsors had no role in the analysis of data, writing of the 
report, or in the decision to submit the paper for publication.

Availability of data and materials
The data that support the findings of this study are available from the princi‑
pal investigators of the individual studies. Restrictions apply to the availability 
of these data, which were used under license for this study. Data are available 
from the corresponding author with the permission of the principal investiga‑
tors of the individual studies.

Declarations

Ethics approval and consent to participate
All methods were carried out in accordance with relevant guidelines and 
regulations. Written informed consent was obtained from all participants. The 
research described herein received approvals from the Institutional Review 
Boards of BioRealm, Oregon Research Institute, and the University of Hawaii.

Consent for publication
Not applicable.

Competing interests
JWB and CME are members and employees of BioRealm LLC. AWB is an 
employee of Oregon Research Institute and ORI Community and Evaluation 

Services, and serves as a Scientific Advisor and Consultant to BioRealm LLC. 
JWB, CSM and AWB are co‑inventors on a related patent application “Biosigna‑
ture Discovery for Substance Use Disorder Using Statistical Learning”, assigned 
to BioRealm LLC. BioRealm LLC offers genotyping and data analysis services. 
Other authors declare that they have no competing interests.

Author details
1 BioRealm LLC, 340 S Lemon Ave, Suite 1931, 91789 Walnut, CA, USA. 2 Oregon 
Research Institute, 3800 Sports Way, 97477 Springfield, OR, USA. 3 University 
of Hawaii, 701 Ilalo Street, 96813 Honolulu, HI, USA. 4 University of Minnesota, 
2231 6th St SE, 55455 Minneapolis, MN, USA. 5 Clemson University, 220 Park‑
way Drive, 29634 Clemson, SC, USA. 

Received: 19 December 2021   Accepted: 9 September 2022

References
 1. Benowitz NL, Hukkanen J, Jacob P 3rd. Nicotine chemistry, metabolism, 

kinetics and biomarkers. Handb Exp Pharmacol. 2009;192:29–60.
 2. Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinet‑

ics of nicotine. Pharmacol Rev. 2005;57(1):79–115.
 3. Murphy SE. Biochemistry of nicotine metabolism and its relevance to 

lung cancer. J Biol Chem. 2021;296:100722.
 4. Roberts W, Marotta PL, Verplaetse TL, Peltier MR, Burke C, Ramchandani 

VA, et al. A prospective study of the association between rate of nicotine 
metabolism and alcohol use in tobacco users in the United States. Drug 
Alcohol Depend. 2020;216:108210.

 5. Lerman C, Schnoll RA, Hawk LW Jr, Cinciripini P, George TP, Wileyto EP, 
et al. Use of the nicotine metabolite ratio as a genetically informed 
biomarker of response to nicotine patch or varenicline for smoking 
cessation: a randomised, double‑blind placebo‑controlled trial. Lancet 
Respir Med. 2015;3(2):131–8.

 6. Siegel SD, Lerman C, Flitter A, Schnoll RA. The Use of the Nicotine 
Metabolite Ratio as a Biomarker to Personalize Smoking Cessation 
Treatment: Current Evidence and Future Directions. Cancer Prev Res. 
2020;13(3):261–72.

 7. St Helen G, Novalen M, Heitjan DF, Dempsey D, Jacob P 3rd, Aziziyeh A, 
et al. Reproducibility of the nicotine metabolite ratio in cigarette smok‑
ers. Cancer Epidemiol Biomarkers Prev. 2012;21(7):1105–14.

 8. Giratallah HK, Chenoweth MJ, Addo N, Ahluwalia JS, Cox LS, Lerman 
C, et al. Nicotine metabolite ratio: Comparison of the three urinary 
versions to the plasma version and nicotine clearance in three clinical 
studies. Drug Alcohol Depend. 2021;223:108708.

 9. McDonagh EM, Wassenaar C, David SP, Tyndale RF, Altman RB, Whirl‑
Carrillo M, et al. PharmGKB summary: very important pharmacogene 
information for cytochrome P‑450, family 2, subfamily A, polypeptide 6. 
Pharmacogenet Genomics. 2012;22(9):695–708.

 10. Buchwald J, Chenoweth MJ, Palviainen T, Zhu G, Benner C, Gordon S, 
et al. Genome‑wide association meta‑analysis of nicotine metabolism 
and cigarette consumption measures in smokers of European descent. 
Mol Psychiatry. 2020;26(6):2212–23.

 11. Loukola A, Buchwald J, Gupta R, Palviainen T, Hällfors J, Tikkanen E, 
et al. A Genome‑Wide Association Study of a Biomarker of Nicotine 
Metabolism. PLoS Genet. 2015;11(9):e1005498.

 12. Baurley JW, Edlund CK, Pardamean CI, Conti DV, Krasnow R, Javitz 
HS, et al. Genome‑Wide Association of the Laboratory‑Based 
Nicotine Metabolite Ratio in Three Ancestries. Nicotine Tob Res. 
2016;18(9):1837–44.

 13. Patel YM, Park SL, Han Y, Wilkens LR, Bickeböller H, Rosenberger A, et al. 
Novel Association of Genetic Markers Affecting CYP2A6 Activity and 
Lung Cancer Risk. Cancer Res. 2016;76(19):5768–76.

 14. Baurley JW, McMahan CS, Ervin CM, Pardamean B, Bergen AW. Biosigna‑
ture Discovery for Substance Use Disorders Using Statistical Learning. 
Trends Mol Med. 2018;24(2):221–35.

 15. El‑Boraie A, Taghavi T, Chenoweth MJ, Fukunaga K, Mushiroda T, Kubo 
M, et al. Evaluation of a weighted genetic risk score for the prediction 
of biomarkers of CYP2A6 activity. Addict Biol. 2020;25(1):e12741.

 16. El‑Boraie A, Chenoweth MJ, Pouget JG, Benowitz NL, Fuku‑
naga K, Mushiroda T, et al. Transferability of ancestry‑specific and 

https://doi.org/10.1186/s12864-022-08884-z
https://doi.org/10.1186/s12864-022-08884-z
https://biorealm.ai
http://ibx.bio


Page 12 of 12Baurley et al. BMC Genomics          (2022) 23:663 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

cross‑ancestry CYP2A6 activity genetic risk scores in African and 
European populations. Clin Pharmacol Ther. 2021;110(4):975–85.

 17. Kolonel LN, Henderson BE, Hankin JH, Nomura AM, Wilkens LR, Pike 
MC, et al. A multiethnic cohort in Hawaii and Los Angeles: baseline 
characteristics. Am J Epidemiol. 2000;151(4):346–57.

 18. Stram DO, Hankin JH, Wilkens LR, Pike MC, Monroe KR, Park S, et al. Cali‑
bration of the dietary questionnaire for a multiethnic cohort in Hawaii 
and Los Angeles. Am J Epidemiol. 2000;151(4):358–70.

 19. Patel YM, Stram DO, Wilkens LR, Park SSL, Henderson BE, Le Marchand 
L, et al. The contribution of common genetic variation to nicotine and 
cotinine glucuronidation in multiple ethnic/racial populations. Cancer 
Epidemiol Biomarkers Prev. 2015;24(1):119–27.

 20. Murphy SE, Park SSL, Thompson EF, Wilkens LR, Patel Y, Stram DO, et al. 
Nicotine N‑glucuronidation relative to N‑oxidation and C‑oxidation 
and UGT2B10 genotype in five ethnic/racial groups. Carcinogenesis. 
2014;35(11):2526–33.

 21. Donny EC, Denlinger RL, Tidey JW, Koopmeiners JS, Benowitz NL, 
Vandrey RG, et al. Randomized Trial of Reduced‑Nicotine Standards for 
Cigarettes. N Engl J Med. 2015;373(14):1340–9.

 22. Derby KS, Cuthrell K, Caberto C, Carmella SG, Franke AA, Hecht 
SS, et al. Nicotine metabolism in three ethnic/racial groups with 
different risks of lung cancer. Cancer Epidemiol Biomarkers Prev. 
2008;17(12):3526–35.

 23. Swan GE, Benowitz NL, Jacob P 3rd, Lessov CN, Tyndale RF, Wilhelmsen 
K, et al. Pharmacogenetics of nicotine metabolism in twins: methods 
and procedures. Twin Res. 2004;7(5):435–48.

 24. Dempsey D, Tutka P, Jacob P 3rd, Allen F, Schoedel K, Tyndale RF, et al. 
Nicotine metabolite ratio as an index of cytochrome P450 2A6 meta‑
bolic activity. Clin Pharmacol Ther. 2004;76(1):64–72.

 25. Swan GE, Hudmon KS, Jack LM, Hemberger K, Carmelli D, Khroyan TV, 
et al. Environmental and genetic determinants of tobacco use: meth‑
odology for a multidisciplinary, longitudinal family‑based investigation. 
Cancer Epidemiol Biomarkers Prev. 2003;12(10):994–1005.

 26. Baurley JW, Edlund CK, Pardamean CI, Conti DV, Bergen AW. Smoke‑
screen: a targeted genotyping array for addiction research. BMC 
Genomics. 2016;17:145.

 27. Browning BL, Tian X, Zhou Y, Browning SR. Fast two‑stage phasing of 
large‑scale sequence data. Am J Hum Genet. 2021;108(10):1880–90.

 28. Raj A, Stephens M, Pritchard JK. fastSTRU CTU RE: variational infer‑
ence of population structure in large SNP data sets. Genetics. 
2014;197(2):573–89.

 29. Josse J, Husson F. missMDA: A Package for Handling Missing Values in 
Multivariate Data Analysis. J Stat Softw. 2016;70(1):1–31.

 30. Vinzi VE, Chin WW, Henseler J, Wang H, et al. Handbook of partial least 
squares. vol. 201. Berlin: Springer; 2010.

 31. Huber PJ. Projection pursuit. Ann Stat. 1985;13(2):435–75.
 32. Zou H, Hastie T. Regularization and variable selection via the elastic 

net. J R Stat Soc Ser B (Stat Methodol). 2005;67(2):301–20.
 33. Awad M, Khanna R. Support vector regression. In: Efficient learning 

machines. Berlin: Springer; 2015. p. 67‑80.
 34. Natekin A, Knoll A. Gradient boosting machines, a tutorial. Front Neuro‑

robotics. 2013;7:21.
 35. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.
 36. Rodriguez JD, Perez A, Lozano JA. Sensitivity analysis of k‑fold cross 

validation in prediction error estimation. IEEE Trans Pattern Anal Mach 
Intell. 2009;32(3):569–75.

 37. Sagi O, Rokach L. Ensemble learning: A survey. Wiley Interdiscip Rev 
Data Min Knowl Disc. 2018;8(4):e1249.

 38. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone 
C, et al. The NHGRI‑EBI GWAS Catalog of published genome‑wide asso‑
ciation studies, targeted arrays and summary statistics 2019. Nucleic 
Acids Res. 2019;47(D1):D1005–12.

 39. Chenoweth MJ, Ware JJ, Zhu AZX, Cole CB, Cox LS, Nollen N, et al. 
Genome‑wide association study of a nicotine metabolism biomarker 
in African American smokers: impact of chromosome 19 genetic influ‑
ences. Addiction. 2018;113(3):509–23.

 40. Chenoweth MJ, Cox LS, Nollen NL, Ahluwalia JS, Benowitz NL, Lerman 
C, et al. Analyses of nicotine metabolism biomarker genetics stratified 
by sex in African and European Americans. Sci Rep. 2021;11(1):19572.

 41. Sakaue S, Kanai M, Tanigawa Y, Karjalainen J, Kurki M, Koshiba S, et al. A 
cross‑population atlas of genetic associations for 220 human pheno‑
types. Nat Genet. 2021;53(10):1415–24.

 42. Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, 
et al. Genome‑wide association study of caffeine metabolites provides 
new insights to caffeine metabolism and dietary caffeine‑consumption 
behavior. Hum Mol Genet. 2016;25(24):5472–82.

 43. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association stud‑
ies of up to 1.2 million individuals yield new insights into the genetic 
etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237–44.

 44. Chenoweth MJ, Novalen M, Hawk LW Jr, Schnoll RA, George TP, Cin‑
ciripini PM, et al. Known and novel sources of variability in the nicotine 
metabolite ratio in a large sample of treatment‑seeking smokers. 
Cancer Epidemiol Biomarkers Prev. 2014;23(9):1773–82.

 45. Murphy SE. Nicotine Metabolism and Smoking: Ethnic Differences in 
the Role of P450 2A6. Chem Res Toxicol. 2017;30(1):410–9.

 46. Taghavi T, Novalen M, Lerman C, George TP, Tyndale RF. A Compari‑
son of Direct and Indirect Analytical Approaches to Measuring Total 
Nicotine Equivalents in Urine. Cancer Epidemiol Biomarkers Prev. 
2018;27(8):882–91.

 47. Swan GE, Lessov‑Schlaggar CN, Bergen AW, He Y, Tyndale RF, Benowitz 
NL. Genetic and environmental influences on the ratio of 3’hydroxy‑
cotinine to cotinine in plasma and urine. Pharmacogenet Genomics. 
2009;19(5):388–98.

 48. Perez‑Paramo YX, Watson CJW, Chen G, Lazarus P. CYP2C19 plays a 
major role in the hepatic N‑oxidation of cotinine. Drug Metab Dispos. 
2022. https:// doi. org/ 10. 1124/ dmd. 121. 000624.

 49. Perez‑Paramo YX, Chen G, Ashmore JH, Watson CJW, Nasrin S, Adams‑
Haduch J, et al. Nicotine‑N’‑Oxidation by Flavin Monooxygenase 
Enzymes. Cancer Epidemiol Biomarkers Prev. 2019;28(2):311–20.

 50. Koopmans AB, Braakman MH, Vinkers DJ, Hoek HW, van Harten PN. 
Meta‑analysis of probability estimates of worldwide variation of 
CYP2D6 and CYP2C19. Transl Psychiatry. 2021;11(1):141.

 51. Sosnoff CS, Caron K, Akins JR, Dortch K, Hunter RE, Pine BN, et al. Serum 
Concentrations of Cotinine and Trans‑3’‑Hydroxycotinine in US Adults: 
Results From Wave 1 (2013–2014) of the Population Assessment of 
Tobacco and Health Study. Nicotine Tob Res. 2021. https:// doi. org/ 10. 
1093/ ntr/ ntab2 40.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1124/dmd.121.000624
https://doi.org/10.1093/ntr/ntab240
https://doi.org/10.1093/ntr/ntab240

	Predicting nicotine metabolism across ancestries using genotypes
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Source of data
	Multiethnic Cohort, MEC
	Center for the Evaluation of Nicotine in Cigarettes, CENIC
	Hawaii Smokers Study, HSS
	Laboratory studies of nicotine metabolism, METS

	Response variable
	Predictors
	Genotypes
	Covariates

	Sample size
	Missing data
	Statistical analysis methods
	Marker nomination
	Model training and validation


	Results
	Participant characteristics
	Model development
	Model performances
	Variable importance

	Discussion
	Limitations
	Validation with smoking dosage in the HSS and CENIC
	Implications and future work

	Acknowledgements
	References


