
The Canadian Journal of Statistics 395
Vol. 50, No. 2, 2022, Pages 395–416
La revue canadienne de statistique

Characterizing the COVID-19 dynamics
with a new epidemic model: Susceptible-
exposed-asymptomatic-symptomatic-
active-removed

Grace Y. YI1,2 , Pingbo HU1, and Wenqing HE1*

1Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario,
Canada N6A 5B7
2Department of Computer Science, University of Western Ontario, London, Ontario, Canada N6A 5B7

Key words and phrases: Basic reproduction number; COVID-19; epidemic model; IF-EAKF algorithm;
ordinary differential equations; transmission.

MSC 2020: Primary 92B15; secondary 62P10.

Abstract: The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has spread stealthily and presented a tremendous threat to the public. It is
important to investigate the transmission dynamics of COVID-19 to help understand the impact of the
disease on public health and the economy. In this article, we develop a new epidemic model that utilizes
a set of ordinary differential equations with unknown parameters to delineate the transmission process of
COVID-19. The model accounts for asymptomatic infections as well as the lag between symptom onset
and the confirmation date of infection. To reflect the transmission potential of an infected case, we derive
the basic reproduction number from the proposed model. Using the daily reported number of confirmed
cases, we describe an estimation procedure for the model parameters, which involves adapting the iterated
filter-ensemble adjustment Kalman filter (IF-EAKF) algorithm. To illustrate the use of the proposed model,
we examine the COVID-19 data from Quebec for the period from 2 April 2020 to 10 May 2020 and
carry out sensitivity studies under a variety of assumptions. Simulation studies are used to evaluate the
performance of the proposed model under a variety of settings. The Canadian Journal of Statistics 50:
395–416; 2022 © 2022 Statistical Society of Canada
Résumé: La maladie à coronavirus 2019 (COVID-19), causée par le coronavirus 2 du syndrome respiratoire
aigu sévère (SARS-CoV-2), s’est rapidement propagée et représente une grande menace pour le public.
Pour mieux comprendre l’impact de cette maladie sur la santé publique et l’économie, il est important
d’étudier la dynamique de sa transmission. A cette fin, les auteurs de cet article proposent un nouveau
modèle épidémiologique basé sur un ensemble d’équations différentielles ordinaires avec des paramètres
inconnus et qui tient compte des infections asymptomatiques ainsi que du décalage entre l’apparition des
symptômes et la date de confirmation de l’infection. Ils en déduisent le taux de reproduction de base qui
traduit le potentiel de transmission d’un cas infecté. En utilisant le nombre rapporté de cas confirmés, les
auteurs décrivent une procédure d’estimation des paramètres du modèle qui repose sur une adaptation de
l’algorithme filtre itéré - filtre de Kalman énsemble àjustement (IF-EAKF). Une mise en application du
modèle proposé est illustrée à travers l’examen des données COVID-19 du Québec pour la période du
2 avril 2020 au 10 mai 2020. Une analyse de sensibilité du modèle construit est explorée sous diverses
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hypothèses. Enfin, les auteurs ont fait appel à des études de simulation pour évaluer la performance du
modèle proposé et ce sous différents scénarios. La revue canadienne de statistique 50: 395–416; 2022 ©
2022 Société statistique du Canada

1. INTRODUCTION

The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), has spread stealthily and represented a tremendous
threat to worldwide public health. To help understand the virus transmissions, it is imper-
ative to investigate the transmission dynamics quantitatively. In the literature, a variety of
epidemic models have been developed to study various types of infectious diseases, including
the susceptible-infectious-recovered (SIR) model, the susceptible-infectious-susceptible (SIS)
model, the susceptible-exposed-infectious-recovered (SEIR) model, the Reed–Frost model, and
their variants. A review of epidemic models can be found in Duan et al. (2015).

Applications of those epidemic models have been extensive. To name a few, Osthus
et al. (2017) used the SIR model to forecast seasonal influenza. Shah & Gupta (2013) applied the
SEIR model to examine the transmission processes of vector-borne diseases. Ng & Orav (1990)
proposed a generalized Reed–Frost model to predict human immunodeficiency virus (HIV) inci-
dence in San Francisco’s homosexual population, and Ng, Turinici & Danchin (2003) developed
a modified SEIR model, called the susceptible-exposed-infectious-recovered-protection (SEIRP)
model, to study the outbreak of the severe acute respiratory syndrome (SARS) in China.

Recently, a number of new models have been explored to study the dynamics of COVID-19.
For example, Tang et al. (2020) proposed a generalized SEIR model to incorporate presymp-
tomatic COVID-19 cases and study the implications of the intervention measures such as contact
tracing, quarantine, and isolation in China. Tuite, Fisman & Greer (2020) generalized the SEIR
model by incorporating the information on interventions and severities of clinical symptoms to
examine the potential impact of case-based and noncase-based nonpharmaceutical interventions
for the population of Ontario, Canada. Mandal et al. (2021) proposed a deterministic model
by stratifying the population into three age groups and incorporating asymptomatic cases to
explore various strategies for lifting lockdowns in India. Also, the IHME COVID-19 Forecasting
Team (2021) used the SEIR model to characterize the trajectories of COVID-19 infections and
the effects of nonpharmaceutical interventions in the United States.

In this article, we propose a new epidemic model, called the susceptible-exposed-
asymptomatic-symptomatic-active-removed (SEASAR) model, to delineate the COVID-19
transmission dynamics. We describe the target population by stratifying it into six subpopu-
lations, consisting of individuals who are, respectively, susceptible, exposed, asymptomatic,
symptomatic, active, and removed. This model generalizes the SIR and SEIR models by
accounting for asymptomatic infections and the lag between symptom onset and the diagnosis
time. Consistent with the SIR and SEIR models, we make two routine assumptions: (1) the
population is homogeneous and (2) there are no inbound and outbound travels. Similar to the
SIR and SEIR models, the SEASAR model is a deterministic model that utilizes ordinary
differential equations to describe the transmission dynamics of COVID-19. We derive the basic
reproduction number from the proposed model to provide a scalar measure of the pandemic.

To implement the proposed model, we develop an estimation procedure for the model param-
eters by adapting the iterated filter-ensemble adjustment Kalman filter (IF-EAKF) algorithm
(e.g., Ionides, Bretó & King, 2006), where sampling from Bayesian posterior distributions is
employed. We illustrate the use of the proposed model by analyzing the COVID-19 data from
Quebec for the period from 2 April 2020 to 10 May 2020. We conduct sensitivity analyses to
assess how the estimation of the model parameters and the predicted results may change as
the model assumptions are altered. We compare the analysis results by applying the proposed
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method in contrast to the SIR and SEIR models as well as a neural network model. Simulation
studies provide a basis for assessing the model performance under different settings.

The remainder of this article is organized as follows. We introduce the deterministic
SEASAR model and elaborate on its rationale in Section 2. In Section 3, we present the
stochastic model for the observed data and establish its connection with the SEASAR model,
together with the initialization setup. Section 4 describes the estimation procedure by adapting
the IF-EAKF algorithm. In Section 5, we utilize the proposed SEASAR model to analyze the
Quebec COVID-19 data for the period from 2 April 2020 to 10 May 2020, and Section 6 reports
our simulation studies. The article concludes with a discussion of some outstanding issues.

2. MODEL FRAMEWORK

Via a meta-analysis, He, Yi & Zhu (2020) estimated that about 46% of individuals with
COVID-19 are asymptomatic. Because of the incubation period, there is a time lag between
symptom onset and being confirmed as an infected individual. To incorporate these features of
COVID-19, we develop the SEASAR model to be described as follows.

2.1. Illustration of the Proposed Model
To illustrate the ideas, we first consider a static framework by focusing on a given time point. We
divide the target population into six subpopulations with specific features, denoted by S, E, Ia,
Is, A, and R, respectively. Specifically, S represents the subpopulation of susceptible cases (i.e.,
those at risk of becoming infected with the novel coronavirus), E is the subpopulation of exposed
cases (i.e., those who are infected but do not have the infectious ability yet and are still in the
latent period) (e.g., Bai et al., 2020), Ia stands for the subpopulation of asymptomatic infections
(i.e., those cases who are infectious but exhibit no symptoms), Is represents the subpopulation
of symptomatic infections (i.e., those cases who exhibit symptoms and are infectious, but who
are not yet confirmed), A is the subpopulation of active cases (i.e., those confirmed cases who
have either not recovered or died), and R denotes the subpopulation of removed cases (i.e., those
confirmed cases who have recovered or died from COVID-19).

Next, we introduce parameters to facilitate dynamic changes among the subpopulations.
Let Z denote the average latent period, defined as the average time (in days, say) from being
infected to having the infectious ability. Various studies have been conducted to estimate the
value of Z (e.g., Bai et al., 2020; Guan et al., 2020), so here we take Z as being available. Let 𝜃
denote the average symptomatic transmission rate, defined as the average number of individuals
infected by a symptomatic case per unit time. Let the average asymptomatic transmission rate
be denoted by 𝜇𝜃, defined as the average number of individuals infected by an asymptomatic
case per unit time. As asymptomatic infections are regarded as less infectious than symptomatic
cases (e.g., Li et al., 2020), 𝜇 is a constant between 0 and 1. Let 𝛼 denote the average fraction of
symptomatic infections relative to all infections, let 𝛽 denote the average rate for asymptomatic
infections to develop symptoms per unit time, and let 𝛾 denote the average recovery rate of
asymptomatic infections per unit time. Let F stand for the average time (in days, say) from
symptom onset to the time of being a confirmed case, let B denote the average time (in days,
say) from being a confirmed case to having recovered, and let J represent the average time (in
days, say) from being a confirmed case to death due to COVID-19.

Figure 1 is a flowchart showing the relationship among the six subpopulations. A black
solid arrow between two subpopulations indicates that the members of one subpopulation can
transition into the other subpopulation; a red dashed arrow between two subpopulations indicates
that members in one subpopulation can be infected by members in the other subpopulation.
The parameters on black solid lines determine the number of people who move from one
subpopulation to another subpopulation per unit time, and the corresponding parameters on red
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FIGURE 1: Illustration of the SEASAR model. The population is divided into six compartments:
S (susceptible), E (exposed), Ia (asymptomatic), Is (symptomatic), A (active), and R (removed).

dashed lines determine the number of people infected by asymptomatic or symptomatic cases
per unit time. We assume that we have a homogeneous population and that any confirmed
COVID-19 case must be quarantined immediately and cannot infect other cases thereafter.
Thus, there is no transition from A to other compartments except R. Further, we assume that
asymptomatic individuals are not tested for COVID-19, whereas all symptomatic cases are
assumed to be confirmed at a certain time. The former assumption is fairly reasonable, especially
in the early stage of the pandemic when test kits are scarce. However, the latter assumption is less
realistic, because in reality, some symptomatic cases may never be confirmed because of false
negative results or not being tested. These two assumptions basically consider the setting where
an initially asymptomatic individual can move into compartment A only if this person shows
symptoms before recovery or death, and those asymptomatic cases who never show symptoms
cannot directly enter compartment A.

2.2. Deterministic Dynamic Model
Figure 1 shows a static chart for the transitions among the six subpopulations at a given time
point. However, for any time period, the transitions are not static but dynamic. To characterize
this dynamic feature, we modify the six subpopulations discussed in Section 2.1 by showing
their dependence on time t, and let S∗(t), E∗(t), I∗a (t), I∗s (t), A∗(t), and R∗(t) denote the respective
sizes of the corresponding six subpopulations (or state compartments) at time t. We assume that
the size of each state compartment at t follows a certain distribution with the mean, denoted by
the same symbol with the asterisk removed (e.g., S∗(t) ∼ Poisson(S(t)) for t > 0). While those
sizes are treated as random, here we focus on delineating the dynamic changes in their means to
reflect the underlying links.

To be specific, let 𝜙(t) = (S(t),E(t), Ia(t), Is(t),A(t),R(t))T denote the vector of the six
average subpopulation sizes at time t. We represent the dynamic changes in 𝜙(t) via the ordinary
differential equations (ODEs):

dS(t)
dt

= −
𝜃S(t)Is(t)

N
−

𝜇𝜃S(t)Ia(t)
N

; (1)
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dE(t)
dt

=
𝜃S(t)Is(t)

N
+

𝜇𝜃S(t)Ia(t)
N

− E(t)
Z

; (2)

dIa(t)
dt

= (1 − 𝛼)E(t)
Z

− 𝛽Ia(t) − 𝛾Ia(t); (3)

dIs(t)
dt

= 𝛼
E(t)
Z

−
Is(t)
F

+ 𝛽Ia(t); (4)

dA(t)
dt

=
Is(t)
F

− A(t)
B

− A(t)
J

; (5)

dR(t)
dt

= 𝛾Ia(t) +
A(t)
B

+ A(t)
J

; (6)

where, under the assumption of no immigration or emigration of individuals, N represents the
time-invariant total size N ≜ S(t) + E(t) + Ia(t) + Is(t) + A(t) + R(t) at any time point t. Any of the
Equations (1)–(6) is determined by the other five equations because of the total size constraint.
Such a constraint, however, is not applied to the sum of S∗(t), E∗(t), I∗a (t), I∗s (t), A∗(t), and R∗(t).

Our reasoning for Equations (1)–(6) may be found in Appendix B of the accompanying
Supplementary Material. For ease in referring to Equations (1)–(6), let 𝜂 = (𝜃, 𝜇, 𝛼, 𝛽, 𝛾,F,B, J)T
denote the vector of parameters of primary interest; then

d𝜙(t)
dt

= g(𝜙(t), 𝜂),

where g(⋅, ⋅) represents the vector function determined by the right-hand side of Equations (1)–(6),
and we call these six equations the SEASAR model. Figure S.1 in the Supplementary Material
displays a flowchart of the transmission dynamics for the six subpopulations together with the
associated values.

2.3. The Basic Reproduction Number
Knowing the value of 𝜂 allows us to describe the six subpopulation sizes using Equations (1)–(6).
Further, it enables us to describe the severity of the pandemic using a simple measure, the basic
reproduction number, denoted R0, which is defined as the expected number of cases infected by
one case in a population consisting of individuals susceptible to infection.

A large value of R0 indicates a severe pandemic. Usually, comparing R0 to 1 describes the
spread of the disease. “R0 > 1” suggests that the infection is spreading in the population, and
“R0 < 1” indicates a dying-down situation. In Appendix A of the Supplementary Material, we
show that the value of R0 derived from the SEASAR model equals

R0 = 𝜃(F𝛼𝛾 + 𝛽F − 𝜇𝛼 + 𝜇)
𝛽 + 𝛾

.

3. DATA AND THE STOCHASTIC MODEL

3.1. The Observed Data and the Stochastic Model
For t > 0, let Y(t) denote the number of confirmed cases to be reported on day t, which we regard
as a random variable. We assume that Y(t) follows a normal distribution:

Y(t) ∼ N
(
𝜇c(t), 𝜎2

t

)
(7)

with mean 𝜇c(t) and variance 𝜎2
t . As in Section 2.1, we assume that only symptomatic individuals

may be confirmed as cases; thus, by Figure 1, a case that is being confirmed at time t corresponds
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to a transition from state Is to state A at t. By the definition of F, 1
F

can be regarded as the
average proportion of symptomatic cases that are confirmed on any given day, and, hence,
Is(t)∕F represents the mean number of confirmed cases on day t. Consequently, 𝜇c(t) in (7) is
given by Is(t)∕F, which links Y(t) with the SEASAR model.

Let 𝜏0 denote the initial time point from which we start examining the data. Since the number
of confirmed COVID-19 cases is reported on a daily basis, we take the fundamental unit of time
to be a day, and let  = {𝜏0, 𝜏0 + 1,… , 𝜏0 + T} denote the examination days with T being a
specified positive integer.

In the study period  , let c = {yt ∶ t ∈  } represent the observed values for the process
{Y(t) ∶ t ∈  }. Being called the observational error variance (OEV) (e.g., Li et al., 2020), 𝜎2

t
in (7) is often characterized heuristically based on previously observed data {ys ∈ c ∶ s < t}
via an assumed function form. For example, for t ∈  , 𝜎2

t may be fixed as

𝜎2
t = max

(
30,

yt−1

20

)
, (8)

bearing in mind that other specifications to characterize the value of 𝜎2
t are also possible.

By time 𝜏0, let Rc, C0, and D0 denote the reported cumulative number of recoveries, of
confirmed cases, and of deaths from COVID-19, respectively. For t ∈  , let Q(t) denote the
number of individuals who report that their COVID-19 symptoms appeared on day t but are not
yet confirmed to have COVID-19 on day t; Q(t) is related to Is(t) in the SEASAR model via
Is(t) =

∑
s≤t Q(s) −

∑
s≤t ys for t ∈  . Let b = {Rc,C0,D0} record the available data when the

study begins and write s = {Q(t) ∶ t ∈  }.
In contrast, the unobserved variables S∗(t), E∗(t), I∗a (t), I∗s (t), A∗(t), and R∗(t), b, s, and

c represent the observed data that are used to describe an estimation procedure for the model
parameters in Equations (1)–(6), where b and s are used to initialize the mean sizes of the
six subpopulations, together with the assumptions as outlined in Section 3.2; and c is used to
estimate the model parameters 𝜂, as described in Section 4.

3.2. Initial Mean Sizes of the Subpopulations
At the beginning point 𝜏0 of the study, the initial mean sizes of the six subpopulations,
𝜙(𝜏0) = (S(𝜏0),E(𝜏0), Ia(𝜏0), Is(𝜏0),A(𝜏0),R(𝜏0))T, are given. Table S.1 in the Supplementary
Material summarizes the relationship of the initial mean sizes of the six subpopulations to be
used in Section 4.2, with r1, r2, and r3 being defined as in the following.

In contrast to Rc, which is defined in Section 3.1, let Ra denote the cumulative number
of recovered asymptomatic cases by time 𝜏0; however, Ra is unavailable. To facilitate the
relationship between the observed and unobserved values, let r1 = Ra∕Rc denote the ratio of the
unobserved value Ra to the observed value of Rc, and let r2 = Ia(𝜏0)∕Is(𝜏0) represent the ratio
of the unobserved size Ia(𝜏0) to the observed size Is(𝜏0). Motivated by Hao et al. (2020), let
r3 = E(𝜏0)∕

{∑⌊𝜏0+Z⌋
t=𝜏0

Q(t)
}

denote the ratio of the unobserved E(𝜏0) to the observed data in s

over the time window [𝜏0, ⌊𝜏0 + Z⌋ ], where the function ⌊x⌋ represents the largest integer that
is less than or equal to x. Notationally, one may write E(𝜏0) = r3 ×

∑⌊𝜏0+Z⌋
t=𝜏0

Q(t), though it is
understood that E(𝜏0) and the data in s do not have an intrinsic connection.

The introduction of the ratios r1, r2, and r3 does not enable us to determine the values of
unobservable Ra, Ia(𝜏0), and E(𝜏0), but these ratios do offer us an informative way to describe
the pandemic situation in relative scales of the observed values by time 𝜏0. For instance, at the
early stage of the pandemic, testing kits are limited, so the number of recoveries from confirmed
cases is likely to be much smaller than the corresponding number of recoveries by asymptomatic
individuals, and such a scenario can be informatively described by a large value of r1. If r2 is
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greater than 1, then there are more asymptomatic infections than symptomatic infections. Despite
the lack of information about r1, r2, and r3, one may conduct sensitivity analyses by changing
their values to describe different scenarios with different degrees of severity of the pandemic, as
we report in Section 5.

4. ESTIMATION PROCEDURE

Here we adapt the IF-EAKF algorithm in combination with the fourth-order Runge–Kutta (RK4)
method (e.g., Süli & Mayers, 2003, p. 328) to estimate the SEASAR model parameter 𝜂. The
basic idea is to embed the original SEASAR model with its time-invariant parameter 𝜂 into an
expanded yet “artificial” model with a time-varying parameter, say 𝜂(t), so that the problem
of estimating the original parameter 𝜂 is converted to estimating 𝜂(t) sequentially, where the
enhanced model assumes the same form as we assumed in Equations (1)–(6) with the parameter 𝜂
replaced by 𝜂(t) = (𝜃(t), 𝜇(t), 𝛼(t), 𝛽(t), 𝛾(t),F(t),B(t), J(t))T. The introduction of the “artificial”
time-varying parameter 𝜂(t) allows us to implement the IF-EAKF algorithm for the estimation
of 𝜂 by sequentially examining the observed data over  for each t ∈  .

Considering this enlarged model offers us the flexibility of using the observed data c
sequentially to update estimates of the model parameters using the Bayesian principle. For
t > 0, the time-dependent parameter 𝜂(t) in the enlarged model is treated as random, and its
prior and posterior distributions are updated for the sequential time points in  , as described in
Section 4.2. To implement the IF-EAKF algorithm, we specify the prior information concerning
the parameters at the study entry point 𝜏0 in Section 4.1 and then present the implementation
procedure in Section 4.2.

4.1. Initialization of the Model Parameters
Here we assume that the prior information concerning the parameters 𝜂(𝜏0) at the initial time
point 𝜏0 is not informative except for constraining the parameters to certain ranges to reflect our
prior knowledge about them.

To be specific, the transmission rate 𝜃 of symptomatic infections is such that 0 ≤ 𝜃 ≤ 7 to
cover the reported values in the literature, including Hao et al. (2020) and Li et al. (2020). The
multiplicative factor 𝜇 is assumed to satisfy 0.1 ≤ 𝜇 ≤ 1, the fraction 𝛼 of symptomatic infections
relative to all infections is restricted so that 0.1 ≤ 𝛼 ≤ 1, the average rate 𝛽 of asymptomatic
infections who develop symptoms per unit time is constrained to be 0.0002 ≤ 𝛽 ≤ 0.8, and the
average recovery rate 𝛾 of asymptomatic infections per unit time is such that 0.1 ≤ 𝛾 ≤ 1. The
average time F from symptom onset to being confirmed is considered to be between 1 and
10 days (Kramer, 2020), the average time B from being confirmed to recovery is between 7 and
42 days (WHO, 2020), and the average time J from being confirmed as a symptomatic case until
death occurs ranges from 14 to 56 days (WHO, 2020).

4.2. An Estimation Algorithm
In this subsection, we describe the detail of adapting the IF-EAKF algorithm to iteratively update
the estimates of the parameters of the SEASAR model. Let n be a prespecified integer, which
is reasonably large, and let L denote the iteration number. The estimation procedure consists of
iterations for l = 1,… ,L as follows:

First, we describe how to obtain an initial estimate of 𝜂(t) for t ∈  at iteration l = 1,
elaborated in the following four parts.

Part 1: At iteration l = 1 and at time t = 𝜏0, determine prior and posterior values of 𝜂(t) and
𝜇c(t):

• Stage 1: Determine prior values for 𝜂(𝜏0) and 𝜇c(𝜏0).
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– Step 1: Let 𝜋𝜂 denote a prior distribution for parameter 𝜂(𝜏0), which we assume is the
uniform distribution over the ranges specified in Section 4.1, with the assumption that
the parameter components in 𝜂(𝜏0) are independent of each other.

– Step 2: Generate n values from 𝜋𝜂 , denoted
{
𝜂i

pri,𝜏0
∶ i = 1,… , n

}
, where for each i,

𝜂i
pri,𝜏0

=
(
𝜃i

pri,𝜏0
, 𝜇i

pri,𝜏0
, 𝛼i

pri,𝜏0
, 𝛽 i

pri,𝜏0
, 𝛾 i

pri,𝜏0
,Fi

pri,𝜏0
,Bi

pri,𝜏0
, Ji

pri,𝜏0

)T.
– Step 3: Using the initial size Is(𝜏0) of symptomatic infections, we generate n prior val-

ues for 𝜇c(𝜏0), denoted
{
𝜇i

c,pri(𝜏0) ∶ i = 1,… , n
}

, by setting 𝜇i
c,pri(𝜏0) =

Is(𝜏0)
Fi

pri,𝜏0

for i =

1,… , n. Then calculate the sample mean and variance:

opri,𝜏0
=

∑n
i=1𝜇

i
c,pri(𝜏0)

n
and 𝜎2

pri,𝜏0
=

∑n
i=1

{
𝜇i

c,pri(𝜏0) − opri,𝜏0

}2

n − 1
,

together with the pairwise sample covariances:

𝜎cov
X,𝜇c(𝜏0),pri =

1
n − 1

n∑
i=1

{
𝜇i

c,pri(𝜏0) −

∑n
i=1𝜇

i
c,pri(𝜏0)

n

}{
Xi

pri,𝜏0
−

∑n
i=1Xi

pri,𝜏0

n

}
,

where X is a symbol for 𝜃, 𝜇, 𝛼, 𝛽, 𝛾 , F, B, and J.

• Stage 2: Generate posterior values for 𝜂(𝜏0) and 𝜇c(𝜏0).

We employ the following steps to generate n posterior values for 𝜇c(𝜏0) and 𝜂(𝜏0) from their
posterior distribution. The derivations may be found in Appendix E of the Supplementary
Material.

– Step 1: Generate n posterior values for 𝜇c(𝜏0), denoted
{
𝜇i

c,post(𝜏0) ∶ i = 1,… , n
}

. For
each i, 𝜇i

c,post(𝜏0) is determined by

𝜇i
c,post(𝜏0) =

𝜎2
𝜏0

𝜎2
𝜏0
+ 𝜎2

pri,𝜏0

opri,𝜏0
+

𝜎2
pri,𝜏0

𝜎2
𝜏0
+ 𝜎2

pri,𝜏0

y𝜏0

+

√√√√ 𝜎2
𝜏0

𝜎2
𝜏0
+ 𝜎2

pri,𝜏0

{
𝜇i

c,pri(𝜏0) − opri,𝜏0

}
, (9)

where 𝜎2
𝜏0

is given by Equation (8) with t = 𝜏0 and yt−1 taken as y𝜏0
, the number of

confirmed cases reported on day 𝜏0.
– Step 2: Generate n posterior values for 𝜂(𝜏0), denoted

{
𝜂i

post,𝜏0
∶ i = 1,… , n

}
, with

𝜂i
post,𝜏0

=
(
𝜃i

post,𝜏0
, 𝜇i

post,𝜏0
, 𝛼i

post,𝜏0
, 𝛽 i

post,𝜏0
, 𝛾 i

post,𝜏0
,Fi

post,𝜏0
,Bi

post,𝜏0
, Ji

post,𝜏0

)T, where each
component of 𝜂i

post,𝜏0
equals

Xi
post,𝜏0

= Xi
pri,𝜏0

+

(
𝜎cov

X,𝜇c(𝜏0),pri

𝜎2
pri,𝜏0

){
𝜇i

c,post(𝜏0) − 𝜇i
c,pri(𝜏0)

}
(10)

with X representing a symbol for 𝜃, 𝜇, 𝛼, 𝛽, 𝛾 , F, B, and J.

Part 2: At iteration l = 1 and at time t = 𝜏0 + 1, determine prior and posterior values of 𝜂(t)
and 𝜇c(t):
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• Stage 1: Generate prior values for 𝜂(t), 𝜙(t), and 𝜇c(t).

– Step 1: Generate n prior values for 𝜂(𝜏0 + 1), denoted
{
𝜂i

pri,𝜏0+1 ∶ i = 1,… , n
}

, by set-

ting 𝜂i
pri,𝜏0+1 = 𝜂i

post,𝜏0
for i = 1,… , n, where we denote 𝜂i

pri,𝜏0+1 =
(
𝜃i

pri,𝜏0+1, 𝜇
i
pri,𝜏0+1,

𝛼i
pri,𝜏0+1, 𝛽

i
pri,𝜏0+1, 𝛾

i
pri,𝜏0+1,F

i
pri,𝜏0+1,B

i
pri,𝜏0+1, J

i
pri,𝜏0+1

)T for each i.
– Step 2: Using the RK4 method, generate n prior values for 𝜙(𝜏0 + 1), denoted{

𝜙i
pri(𝜏0 + 1) ∶ i = 1,… , n

}
, where for each i, 𝜙i

pri(𝜏0 + 1) =
(
Si

pri(𝜏0 + 1
)
,

Ei
pri(𝜏0 + 1), Ii

apri
(𝜏0 + 1), Ii

spri
(𝜏0 + 1),Ai

pri(𝜏0 + 1),Ri
pri(𝜏0 + 1))T. Specifically, let

k1(t) = g
(
𝜙(t), 𝜂i

pri,t+1

)
, k2(t) = g

(
𝜙(t) + k1(t)

2
, 𝜂i

pri,t+1

)
, k3(t) = g

(
𝜙(t) + k2(t)

2
, 𝜂i

pri,t+1

)
,

and k4(t) = g
(
𝜙(t) + k3(t), 𝜂i

pri,t+1

)
. Then we set

𝜙i
pri(𝜏0 + 1) = 𝜙(𝜏0) +

k1(𝜏0) + 2k2(𝜏0) + 2k3(𝜏0) + k4(𝜏0)
6

. (11)

– Step 3: Generate n prior values for 𝜇c(𝜏0 + 1), denoted
{
𝜇i

c,pri(𝜏0 + 1) ∶ i = 1,… , n
}

,

by setting 𝜇i
c,pri(𝜏0 + 1) =

Ii
spri

(𝜏0+1)

Fi
pri,𝜏0+1

for i = 1,… , n. Then calculate

𝜎2
pri,𝜏0+1 = 1

n − 1

n∑
i=1

{
𝜇i

c,pri(𝜏0 + 1) −

∑n
i=1𝜇

i
c,pri(𝜏0 + 1)

n

}2

,

together with the pairwise sample covariance

𝜎cov
X(𝜏0+1),𝜇c(𝜏0+1),pri =

1
n − 1

n∑
i=1

[{
𝜇i

c,pri(𝜏0 + 1) −

∑n
i=1𝜇

i
c,pri(𝜏0 + 1)

n

}

×

{
Xi

pri(𝜏0 + 1) −

∑n
i=1Xi

pri(𝜏0 + 1)

n

}]
,

where X represents each of the symbols S, E, Ia, Is, A, or R.
• Stage 2: Generate posterior values for 𝜂(t), 𝜙(t), and 𝜇c(t). This stage is similar to Stage 2

in Part 1.

– Step 1: Generate n posterior values for 𝜇c(𝜏0 + 1) and 𝜂(𝜏0 + 1), respectively, denoted{
𝜇i

c,post(𝜏0 + 1) ∶ i = 1,… , n
}

and
{
𝜂i

post,𝜏0+1 ∶ i = 1,… , n
}

.
– Step 2: Generate n posterior values for 𝜙(𝜏0 + 1), denoted

{
𝜙i

post(𝜏0 + 1) ∶ i =
1,… , n

}
, where for each i, 𝜙i

post(𝜏0 + 1) =
(
Si

post(𝜏0 + 1),Ei
post(𝜏0 + 1), Ii

apost
(𝜏0 + 1),

Ii
spost

(𝜏0 + 1),Ai
post(𝜏0 + 1),Ri

post(𝜏0 + 1)
)T, with each component of 𝜙i

post(𝜏0 + 1)
given by

Xi
post(𝜏0 + 1) = Xi

pri(𝜏0 + 1)

+

(
𝜎cov

X(𝜏0+1),𝜇c(𝜏0+1),pri

𝜎2
pri,𝜏0+1

){
𝜇i

c,post(𝜏0 + 1) − 𝜇i
c,pri(𝜏0 + 1)

}
.

Here X represents each of the symbols S, E, Ia, Is, A, or R.
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Part 3: At iteration l = 1 and at time t = 𝜏0 + 2, determine prior and posterior values of 𝜂(t)
and 𝜇c(t):

• Stage 1: Generate prior values for 𝜂(t), 𝜙(t), and 𝜇c(t).

– Step 1: Generate n prior values for 𝜂(𝜏0 + 2), denoted
{
𝜂i

pri,𝜏0+2 ∶ i = 1,… , n
}

, by

setting 𝜂i
pri,𝜏0+2 = 𝜂i

post,𝜏0+1 for i = 1,… , n.
– Step 2: Generate n prior values for 𝜙(𝜏0 + 2), denoted

{
𝜙i

pri(𝜏0 + 2) ∶ i = 1,… , n
}

,
using the RK4 method where, like the result specified in Equation (11),

𝜙i
pri(𝜏0 + 2) = 𝜙i

post(𝜏0 + 1)

+
k1(𝜏0 + 1) + 2k2(𝜏0 + 1) + 2k3(𝜏0 + 1) + k4(𝜏0 + 1)

6
.

– Step 3: Similar to Step 3 of Stage 1 in Part 2, generate n prior values for 𝜇c(𝜏0 + 2).
• Stage 2: Similar to Stage 2 in Part 2, generate n posterior values of 𝜂(𝜏0 + 2), 𝜙(𝜏0 + 2),

and 𝜇c(𝜏0 + 2).

Part 4: Calculate the output of the first iteration:
We repeat Part 3 for t = 𝜏0 + 3,… , 𝜏0 + T and obtain a sequence of posterior values for 𝜂(t),

denoted
{
𝜂i

post,t ∶ i = 1,… , n; t ∈ 
}

. Then, we calculate

𝜂̂(1) = 1
n(T + 1)

𝜏0+T∑
t=𝜏0

n∑
i=1

𝜂i
post,t,

which is then adopted as the initial value of 𝜂 at iteration l = 1.
Next, we describe the iterative procedures to update estimates of 𝜂 for l = 2, 3,… ,L. The

iterations are similar to those sketched in the preceding Parts 1–4 except that the prior distribution
𝜋𝜂 of 𝜂(𝜏0) in Step 1 of Stage 1 of Part 1 is taken to be (𝜂̂(l−1), al−1Σ), where 𝜂̂(l−1) is the output of
iteration (l − 1), a is a discount factor representing a value in (0, 1), and Σ is a user-specified p × p
positive-definite matrix with p representing the dimension of parameter vector 𝜂 (i.e., p = 8).

Let 𝜂̂(L) denote the estimate of the model parameter 𝜂 at the Lth iteration. To reduce the Monte
Carlo error induced during the simulation procedure, we run the preceding algorithm repeatedly,
say M times, and let 𝜂̂(L1),… , 𝜂̂(LM) denote the resulting estimates of 𝜂. Let 𝜂̂ = 1

M

∑M
𝑗=1𝜂̂

(L𝑗) be
the final estimate of 𝜂, where M is often set to be a large number, for example, M = 1000, as in
our numerical studies.

The implementation steps are summarized in Algorithm 1. We now comment on the
specification of n, L, a, and Σ. While the choice of n may, in principle, be driven by
the consideration of “the larger, the better”, our numerical experience suggests that a value
in the range 100–500 usually works well in combination with suitable values of L and a. The
iteration number L and the discount factor a are often specified in an ad hoc way by inspecting
the evolution of the posterior distributions over iterations. The inclusion of the discount factor
a ensures that 𝜂̂(L) in Algorithm 1 will converge within a reasonable number of iterations.
Li et al. (2020, Supplementary Material, p. 8) commented that a small value of a makes the
algorithm “quench” too fast and miss the maximum likelihood estimate, while a value of a close
to 1 seems to delay the prompt convergence of the algorithm. In applications, Li et al. (2020)
suggested setting a to be a value in (0.9, 0.99). Here, we specify Σ as a diagonal matrix with
the ith diagonal element set as the variance of the uniform distribution over the range of the ith
parameter in 𝜂, which we specified in Section 4.1.
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Algorithm 1. IF-EAKF

Input: the sequence {yt ∶ t = 𝜏0,… , 𝜏0 + T} of daily reported confirmed cases, the
sequence {𝜎2

t ∶ t = 𝜏0,… , 𝜏0 + T}, the covariance matrix Σ, a fixed discount
factor a ∈ (0, 1), and the number L of iterations.

for l = 1 to L do
if l = 1 then

Generate n prior values
{
𝜂i

pri,𝜏0
∶ i = 1,… , n

}
for parameters at time 𝜏0

independently from distribution 𝜋𝜂;
else

Generate n prior values,
{
𝜂i

pri,𝜏0
∶ i = 1,… , n

}
, for parameters at time 𝜏0

independently from a multivariate Gaussian distribution  (𝜂̂(l−1), a(l−1)Σ), where
𝜂̂(l−1) is described below and is specified as an initial value for l = 1, and al−1

represents a discount factor which may change with l.
end
Generate n prior values

{
𝜇i

c,pri(𝜏0) ∶ i = 1,… , n
}

for 𝜇c(𝜏0) based on{
𝜂i

pri,𝜏0
∶ i = 1,… , n

}
and 𝜙(𝜏0);

Generate n posterior values
{
𝜂i

post,𝜏0
∶ i = 1,… , n

}
for parameters and n posterior

values
{
𝜇i

c,post(𝜏0) ∶ i = 1,… , n
}

for 𝜇c(𝜏0) based on their prior values, 𝜎2
𝜏0

and
observation y𝜏0

;

Generate n prior values
{
𝜂i

pri,𝜏0+1 ∶ i = 1,… , n
}

for parameters at time 𝜏0 + 1 by
setting 𝜂i

pri,𝜏0+1 = 𝜂i
post,𝜏0

for i = 1,… , n. The RK4 method is used to generate n

prior values
{
𝜙i

pri(𝜏0 + 1) ∶ i = 1,… , n
}

for 𝜙(𝜏0 + 1) based on Equations (1)–(6).
Generate n prior values

{
𝜇i

c,pri(𝜏0 + 1) ∶ i = 1,… , n
}

for 𝜇c(𝜏0 + 1);
for t = 𝜏0 + 1 to 𝜏0 + T do

Generate n posterior values
{
𝜂i

post,t ∶ i = 1,… , n
}

for parameters at time t, n

posterior values
{
𝜙i

post(t) ∶ i = 1,… , n
}

for 𝜙(t), and n posterior values{
𝜇i

c,post(t) ∶ i = 1,… , n
}

for 𝜇c(t) based on their prior values, 𝜎2
t and observation

yt;

Generate n prior values
{
𝜂i

pri,t+1 ∶ i = 1,… , n
}

for parameters at time t + 1 by
setting 𝜂i

pri,t+1 = 𝜂i
post,t for i = 1,… , n. The RK4 method is used to generate n

prior values
{
𝜙i

pri(t + 1) ∶ i = 1,… , n
}

for 𝜙(t + 1). Generate n prior values{
𝜇i

c,pri(t + 1) ∶ i = 1,… , n
}

for 𝜇c(t + 1);
end
Calculate the mean: 𝜂̂(l) = 1

n(T+1)
∑𝜏0+T

t=𝜏0

∑n
i=1 𝜂

i
post,t.

end
Output: 𝜂̂(L).
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5. ANALYSIS OF THE QUEBEC COVID-19 DATA

As an illustration, we used our proposed model to analyze the observed data concerning the daily
reported number of COVID-19 cases in the Canadian province of Quebec for the period between 2
April 2020 and 10 May 2020. To implement the procedure described in Section 4.2, we developed
the R source code, which is available from the second author upon request. Using the notation in
Section 3.1, the examination days are listed in  = {𝜏0, 𝜏0 + 1,… , 𝜏0 + T} with T = 38 and 𝜏0
being 2 April 2020. By time 𝜏0, the reported cumulative numbers of recoveries, of confirmed cases,
and of deaths from COVID-19 are available at the website https://www.canada.ca/en/public-
health/services/diseases/2019-novel-coronavirus-infection.html, giving b = {Rc,C0,D0} with
Rc = 29, C0 = 4611, and D0 = 33. In addition, the observed values c for the process {Y(t) ∶
t > 0} are available at https://www.canada.ca/en/public-health/services/diseases/2019-novel-
coronavirus-infection.html.

The data s for Quebec are not available. However, using other reported data for
either Canada or Quebec, we may roughly approximate Q(t) for t < 𝜏0 and t ∈  . Let nt,C
denote the number of COVID-19 patients with symptom onset on day t in Canada, which is
available in the section labelled “Epidemic curve” of the website https://health-infobase.canada
.ca/covid-19/epidemiological-summary-covid-19-cases.html?stat=num&measure=total_last7&
map=pt\%23a4. Let mt,C and mt,Q denote the numbers of confirmed COVID-19 cases on day t
in Canada and Quebec, respectively, which can be found at the website https://www.canada.ca/
en/public-health/services/diseases/2019-novel-coronavirus-infection.html. Assuming that the
number of confirmed cases in Quebec and in Canada in a day appears in nearly the same ratio as
the number of individuals with symptom onset in Quebec to that in Canada, Q(t) is approximated
by nt,Cmt,Q∕mt,C for t < 𝜏0 and t ∈  . As s = {Q(t) ∶ t ∈  } is only used to help describe the
initial value 𝜙(𝜏0), we hope this treatment of Q(t) offers us a reasonable approximation, and we
stress that this approximation yields a less accurate estimate of 𝜂 than that obtained from the
setting where s would have been available.

To assess the performance of the SEASAR model in terms of parameter estimation as well
as prediction, we split the study period into two parts: the period from 2 April to 30 April 2020
(denoted {𝜏0, 𝜏0 + 1,… , 𝜏0 + T1} with T1 = 28) and the period from 1 May to 10 May 2020
(denoted {𝜏0 + T1 + 1,… , 𝜏0 + T1 + T2} with T2 = 10). The data for the first period, called the
training data, are used to estimate the model parameters by applying Algorithm 1. The data
in the second period, called the test data, are used to assess the prediction performance of our
proposed model.

5.1. Estimation and Prediction Results
We ran Algorithm 1 with (7) and (8) on the training data, where we set n = 300, a = 0.9, L = 50,
and fixed the average latent period Z at 5.2 days, an estimate reported by Bai et al. (2020) and
Hao et al. (2020). For the initial sizes of the six subpopulations discussed in Section 3.2, we took
r1 = 2, r2 = 1, and r3 = 2.

In Table 1, we reported the estimates (EST) of the model parameters in Equations (1)–(6) as
well as the estimate of the basic reproduction number R0. The estimate of R0 suggests that the
pandemic situation in Quebec for the period from 2 April 2020 to 30 April 2020 was not under
control and the virus was spreading in the province.

Next, we evaluated the prediction performance using the test data. With 𝜂 replaced by its
estimate, we used the RK4 method to derive the estimates of 𝜙(t) recursively from the SEASAR
model for t ∈  by using

𝜙(t + 1) = 𝜙(t) +
k1(t) + 2k2(t) + 2k3(t) + k4(t)

6
, (12)
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a form similar to that specified in Equation (11), where k𝑗(t) is defined as indicated in
Equation (11) with 𝜂i

pri,t+1 replaced by 𝜂, and 𝑗 = 1,… , 4. Then we took the ratio of the resulting
estimates of Is(t) and F as a predicted (or fitted) value ŷt to yt for t ∈  .

To evaluate the prediction performance, for t = 𝜏0 + T1 + 1,… , 𝜏0 + T1 + T2, we report the
absolute prediction error (APE), defined |ŷ∗t − y∗t |, and the relative absolute prediction error

(Rel.APE) in percent, defined as
|ŷ∗t −y∗t |

y∗t
× 100, where two settings are considered with y∗t

representing the daily net number of confirmed cases (i.e., y∗t = yt) or the daily cumulative
number of confirmed cases (i.e., y∗t =

∑
s≤t ys), and we let ŷ∗t denote the corresponding predicted

value of y∗t . The results are reported in Table 2.
To visualize the results, we displayed in Figure 2 the mean estimates of the daily net number

and of the daily cumulative number of cases for the period from 2 April 2020 to 30 April 2020
(in green), as well as the mean predicted daily net numbers and the predicted daily cumulative
numbers of cases for the period from 1 May 2020 to 10 May 2020 (in blue), in comparison to
the actual observed daily net numbers and the daily cumulative numbers of cases from 2 April
2020 to 10 May 2020 (in red). While the APE values vary greatly from day to day and it is
difficult to quantify an acceptable range for the prediction error, examining the Rel.APE values
gives us some insight into the prediction performance. The Rel.APE values for predicting a daily
net number of confirmed cases seem to be acceptable and they are very small for predicting a
daily cumulative number of confirmed cases. This suggests that prediction of a daily cumulative
number of confirmed cases seems fairly acceptable.

TABLE 1: Analysis of the Quebec data: The estimates of the model parameters.

Parameter 𝜃 𝜇 𝛼 𝛽 𝛾 F B J ||| R0

EST 0.88 0.10 0.48 0.01 0.97 2.36 39.58 37.56 ||| 1.06

TABLE 2: Analysis of the Quebec data using the proposed SEASAR model: Prediction performance for
the daily net and daily cumulative numbers in 10 days for the period 1 May 2020 to 10 May 2020.

Net number Cumulative number

APE Rel.APE APE Rel.APE

Day 1 241.07 21.72 36.96 0.13

Day 2 133.30 13.22 170.26 0.57

Day 3 11.52 1.29 181.78 0.60

Day 4 128.27 16.92 53.50 0.17

Day 5 98.08 12.35 44.57 0.14

Day 6 12.11 1.33 32.46 0.10

Day 7 7.29 0.80 25.17 0.07

Day 8 2.46 0.27 22.71 0.07

Day 9 79.38 0.95 102.08 0.29

Day 10 186.22 25.34 288.31 0.79

Note: APE and Rel.APE (in percent) represent the absolute prediction error and the relative absolute prediction error,
respectively.
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FIGURE 2: The model fitting to the number (in green) in the period 2 April 2020 to 30 April 2020,
and the model prediction to the number (in blue) in the period 1 May 2020 to 10 May 2020, as opposed
to the reported number (in red) in the period 2 April 2020 to 10 May 2020, where the number
represents the daily net number of confirmed cases (left) and the daily cumulative number of confirmed

cases (right).

Finally, to mitigate the error due to data aggregation that arises on weekends, we calculated
APE and Rel.APE for the weekly net numbers of confirmed cases, which are 178.938 and 0.028,
respectively. We also displayed these results in Figure S.3 of the Supplementary Material in a
manner similar to that used in Figure 2.

5.2. A Comparison with the Neural Network, SIR, and SEIR Models
To further assess the performance of the SEASAR model, we compared its prediction performance
to that of the neural network (NN), SIR, and SEIR models by examining prediction of the daily
net, daily cumulative, and weekly net numbers of confirmed cases.

The NN method is commonly used by the machine learning community. Basically, it contains
three elements: the input layer, the hidden layer(s) with a number of nodes, and the output layer.
Here we take the input data as the observed time series c with T = 28 and 𝜏0 being 2 April 2020.
We use the NN model with one hidden layer having three nodes, with the same implementation
details as specified in Chen et al. (2021). The R function nnetar was used to fit the training data,
and the R function forecast was used for prediction.

Next we considered the SIR model, which divides the target population into three
subpopulations, respectively denoted SSIR, ISIR, and RSIR, of susceptible cases, of infectious
cases (i.e., those who are infected and are themselves infectious), and of removed cases (i.e.,
those cases who recover or die from COVID-19). Let SSIR(t), ISIR(t), and RSIR(t) denote the
mean size of the corresponding subpopulation at time t, which are, by definition, related to the
subpopulations classified by the SEASAR model via ISIR(t) = Ia(t) + Is(t), RSIR(t) = R(t), and
SSIR(t) = N − ISIR(t) − RSIR(t). Let 𝜆 denote the average transmission rate, defined as the average
number of individuals infected by an infectious case per unit time, and let 𝜉 denote the average
removal rate, defined as the average rate of death or recovery. Under the same assumptions
for the SEASAR model, the SIR model is characterized by the following ordinary differential
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equations:

dSSIR(t)
dt

= −
𝜆SSIR(t)ISIR(t)

N
; (13)

dISIR(t)
dt

=
𝜆SSIR(t)ISIR(t)

N
− 𝜉ISIR(t); (14)

dRSIR(t)
dt

= 𝜉ISIR(t). (15)

Now we turn to the SEIR model that stratifies the population into four subpopulations.
In addition to the three subpopulations considered in the SIR model, now denoted SSEIR,
ISEIR, and RSEIR, the SEIR model further considers the subpopulation of exposed cases (i.e.,
those who are infected but not yet infectious, and are still in the latent period), denoted
ESEIR. Let SSEIR(t), ESEIR(t), ISIR(t), and RSIR(t) denote the mean size of the corresponding
subpopulation at time t, which, by definition, are related to the quantities in the SEASAR model
by the corresponding ESEIR(t) = E(t), ISEIR(t) = Ia(t) + Is(t), RSEIR(t) = R(t), and SSEIR(t) =
N − ESEIR(t) − ISEIR(t) − RSEIR(t). Under the same assumptions that apply to the SEASAR
model, the SEIR model is characterized by the ordinary differential equations

dSSEIR(t)
dt

= −
𝜆∗SSEIR(t)ISEIR(t)

N
; (16)

dESEIR(t)
dt

=
𝜆∗SSEIR(t)ISEIR(t)

N
−

ESEIR(t)
Z

; (17)

dISEIR(t)
dt

=
ESEIR(t)

Z
− 𝜉∗ISEIR(t); (18)

dRSEIR(t)
dt

= 𝜉∗ISEIR(t); (19)

where 𝜆∗ and 𝜉∗ have meanings similar to those of 𝜆 and 𝜉 in the SIR model, and Z is the latent
period defined in Section 2.1 and is fixed at the value Z = 5.2 as in Section 5.1.

Modifying the estimation procedure that we outlined in Section 4.2, we obtained estimates
of the parameters for the SIR and SEIR models, where the implementation details may be
found in Appendices I and J in the Supplementary Material; we set n = 300, a = 0.9,L = 50, and
M = 1000, as in Section 5.1. As we previously reported in Section 5.1, in Table 3 we summarized
the APE and Rel.APE values for prediction of the daily net number and the daily cumulative
number obtained from the fitted NN, SIR, and SEIR models for the same time period 1 May
2020 to 10 May 2020. For the prediction of the weekly net number, we estimated that the average
APE values for the NN, SIR, and SEIR were 678.07, 1354.636, and 1863.149, respectively,
and that the average Rel.APE values for the NN, SIR, and SEIR were 0.106, 0.212, and 0.292,
respectively. In contrast, the proposed SEASAR model yielded a much smaller average APE and
average Rel.APE, which were 178.938 and 0.028, respectively.
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TABLE 3: Analysis of the Quebec data using the NN, SIR, and SEIR models: Prediction performance for
the daily net and daily cumulative numbers in 10 days for the period 1 May 2020 to 10 May 2020.

NN model SIR model SEIR model

Net number

Cumulative

number Net number

Cumulative

number Net number

Cumulative

number

Day APE

Rel.

APE APE

Rel.

APE APE

Rel.

APE APE

Rel.

APE APE

Rel.

APE APE

Rel.

APE

1 293.09 26.40 292.76 1.02 383.85 34.58 1939.29 6.77 31.91 2.87 6195.44 21.63

2 192.90 19.14 485.65 1.64 284.45 28.22 2223.75 7.50 145.76 14.46 6341.19 21.38

3 77.31 8.67 562.96 1.84 171.05 19.18 2394.80 7.84 273.72 30.69 6614.91 21.65

4 56.58 7.46 506.37 1.62 39.65 5.23 2434.46 7.78 419.80 55.38 7034.71 22.47

5 20.55 2.59 485.82 1.51 78.26 9.86 2512.72 7.83 395.98 49.87 7430.69 23.15

6 95.46 10.49 581.28 1.76 196.87 21.63 2709.59 8.21 292.29 32.12 7722.98 23.40

7 96.46 10.59 677.74 2.00 200.48 22.01 2910.08 8.58 303.70 33.33 8026.68 23.66

8 97.46 10.69 775.21 2.23 204.10 22.38 3114.17 8.94 315.23 34.56 8341.91 23.94

9 21.46 2.57 796.67 2.23 130.71 15.64 3244.88 9.10 403.87 48.31 8745.78 24.52

10 79.54 10.82 717.13 1.97 32.33 4.40 3277.21 9.00 517.63 70.42 9263.40 25.45

Note: APE and Rel.APE (in percent) represent the absolute prediction error and the relative absolute prediction error,
respectively.

To visualize the results obtained from the SEASAR model (in verde olive), the NN
model (in purple), the SIR model (in green), and the SEIR model (in blue), we displayed
in Figure 3 the mean predicted daily net numbers, the mean predicted daily cumulative
numbers, and the mean predicted weekly net numbers of confirmed cases for the period
from 1 May 2020 to 10 May 2020, in comparison to the corresponding reported numbers
for the same period. Our proposed SEASAR model appeared to outperform the SIR, SEIR,
and NN models with respect to prediction during the period represented by the test data. The
SEIR and SIR models performed quite differently; the SEIR model resulted in over-estimated
values, whereas the SIR model produced under-estimated results, though the degree of bias
varied considerably. It would be interesting to investigate what causes these systematic biases
of the SEIR and SIR models, though such an investigation is beyond the scope of this
article.

Finally, to see how various assumptions might affect the results, we conducted sensitivity
analyses for 12 settings. For details, see Appendix H in the Supplementary Material.

6. SIMULATION STUDY

To assess the performance of our proposed method, we conducted simulation studies using the
estimation procedure described in Section 4.2. In this section, we report the performance of
the SEASAR model by assuming that the two required conditions are met: (1) the population
is homogeneous and (2) the population is closed, i.e., there is no immigration or emigration.
In Appendix K of the Supplementary Material, we assess the model performance when those
conditions are violated.
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FIGURE 3: The average prediction to the number in the period 1 May 2020 to 10 May 2020 using the
SEASAR model (in verde olive), SIR model (in green), SEIR model (in blue), and NN model (in purple), as
opposed to the real number (in red) in the period 1 May 2020 to 10 May 2020, where the number represents
the daily net number (left), daily cumulative number (middle), and weekly net number (right) of confirmed

cases.

6.1. Data Generation
First, we generated data from the SEASAR model specified in Equations (1)–(6), together
with (7) and (8), for a period of study days. We fixed Z = 5.2, N = 8,433, 301, and 𝜂 =
(0.2, 0.45, 0.18, 0.08, 0.7, 9, 24, 34)T. Then we used Equation (12) to generate data with the initial
value of 𝜙(t) equal to 𝜙(𝜏0) = (8,421, 149.295, 3475.073, 2018.316, 2018.316, 4549, 91)T. To
see what the trajectories of 𝜙(t) look like, we plotted 𝜙(t) in Figure S.6 in the Supplementary
Material with T set to the value 200.

With the availability of {𝜙(t) ∶ t ∈  }, we calculated 𝜇c(t) = Is(t)∕F for t ∈  , and then
used (7) and (8) to iteratively generate realizations yt of Y(t) for t ∈  , where we set y𝜏0−1 = 449,
the number of confirmed cases in Quebec on 1 April 2020. Thus, we obtained the data
c = {yt ∶ t ∈  }. We repeated this data-generation process m times, and let 𝑗

c = {y𝑗t ∶ t ∈  }
record each copy of c for 𝑗 = 1, 2,… ,m, where we used m = 1000, and y𝑗t represents a realized
value of Y(t) in the 𝑗th generated data sample.

6.2. Assessment of the Estimation Performance
Here we focused on evaluating estimation of the model parameter 𝜂 as well as prediction of
the daily numbers of confirmed cases. To this end, for 𝑗 = 1, 2,… ,m, we divided 

𝑗
c into two

subsets, i.e., 𝑗

CT and 
𝑗

CP, with 
𝑗

CT =
{

y𝑗t ∶ t = 𝜏0, 𝜏0 + 1,… , 𝜏0 + T1
}

and 
𝑗

CP =
{

y𝑗t ∶ t =
𝜏0 + T1 + 1,… , 𝜏0 + T1 + T2

}
, where T1 + T2 = T = 49. We considered different values of T1

to evaluate the model performance. Here 
𝑗

CT represents the training data used to estimate
the SEASAR model parameters, and 

𝑗

CP denotes the test data used to evaluate the prediction
performance.

When assessing the estimate of 𝜂, we considered three cases for the training data 
𝑗

CT with
T1 = 29, 34, or 39, respectively, called “Case 1”, “Case 2”, and “Case 3”. In each instance, we
separately ran Algorithm 1 on each set of training data 

𝑗

CT for 𝑗 = 1,… ,m to estimate the
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TABLE 4: Simulation study in Section 6 with a = 0.9 and L = 50: Estimation results for the SEASAR
model parameter; the entries with ∗ are the original values times 103.

n = 100

Case 1 Case 2 Case 3

Parameter BIAS RBIAS SSD BIAS RBIAS SSD BIAS RBIAS SSD

𝜃 −0.01 −0.05 0.02 −0.01 −0.06 0.02 −0.01 −0.07 0.02

𝜇 0.15 0.34 0.11 0.19 0.41 0.11 0.20 0.45 0.11

𝛼 −0.01 −0.08 0.02 −0.02 −0.09 0.02 −0.02 −0.10 0.02

𝛽 1.59∗ 0.02 0.02 1.60∗ 0.02 0.02 1.49∗ 0.02 0.02

𝛾 −0.06 −0.08 0.10 −0.07 −0.10 0.11 −0.08 −0.11 0.11

F −8.47∗ −0.94∗ 0.16 −0.01 −1.33∗ 0.16 −0.02 −1.68∗ 0.16

B 0.33 0.01 3.66 0.28 0.01 3.77 0.48 0.02 3.67

J 1.00 0.03 4.21 0.89 0.03 4.45 1.05 0.03 4.36

n = 300

Case 1 Case 2 Case 3

Parameter BIAS RBIAS SSD BIAS RBIAS SSD BIAS RBIAS SSD

𝜃 −0.01 −0.06 0.02 −0.01 −0.07 0.02 −0.01 −0.07 0.02

𝜇 0.17 0.38 0.09 0.20 0.44 0.09 0.22 0.49 0.09

𝛼 −0.02 −0.08 0.02 −0.02 −0.10 0.02 −0.02 −0.11 0.02

𝛽 1.92∗ 0.02 0.02 1.18∗ 0.01 0.02 1.34∗ 0.02 0.02

𝛾 −0.06 −0.09 0.10 −0.08 −0.11 0.10 −0.09 −0.12 0.11

F −8.06∗ −0.90∗ 0.16 −0.01 −1.45∗ 0.16 −0.02 −1.80∗ 0.16

B 0.46 0.02 2.13 0.56 0.02 2.19 0.40 0.02 2.25

J 1.06 0.03 2.52 0.87 0.03 2.59 0.96 0.03 2.49

n = 500

Case 1 Case 2 Case 3

Parameter BIAS RBIAS SSD BIAS RBIAS SSD BIAS RBIAS SSD

𝜃 −0.01 −0.06 0.02 −0.01 −0.07 0.02 −0.02 −0.08 0.02

𝜇 0.18 0.39 0.08 0.21 0.46 0.09 0.23 0.50 0.09

𝛼 −0.02 −0.09 0.02 −0.02 −0.10 0.02 −0.02 −0.11 0.02

𝛽 1.90∗ 0.02 0.02 1.35∗ 0.02 0.02 1.25∗ 0.02 0.02

𝛾 −0.07 −0.09 0.09 −0.08 −0.11 0.10 −0.09 −0.13 0.10

F −8.83∗ −0.98∗ 0.16 −0.01 −1.48∗ 0.16 −0.02 −1.86∗ 0.16

B 0.44 0.02 1.68 0.48 0.02 1.68 0.47 0.02 1.73

J 0.94 0.03 2.04 1.00 0.03 1.99 1.00 0.03 2.03

Note: BIAS and RBIAS represent the average bias of the estimates and the average relative bias of the estimates,
respectively; and SSD stands for the sample standard deviation of the estimates.
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TABLE 5: Simulation study in Section 6: Prediction performance of the proposed SEASAR model for
Scenario-1-short (T1 = 29;T2 = 5), Scenario-1-long (T1 = 29;T2 = 10), Scenario-2-short

(T1 = 39;T2 = 5), and Scenario-2-long (T1 = 39;T2 = 10).

TAPE TRAPE

ATAPE SSD ATRAPE SSD

Setting 1

Scenario-1-short 24.77 8.71 0.31 0.11

Scenario-1-long 49.07 15.03 0.67 0.21

Scenario-2-short 22.92 7.51 0.41 0.14

Scenario-2-long 45.57 10.72 0.90 0.22

Setting 2

Scenario-1-short 105.32 77.35 0.02 0.02

Scenario-1-long 262.25 196.44 0.05 0.04

Scenario-2-short 103.72 80.48 0.02 0.01

Scenario-2-long 245.09 182.93 0.04 0.03

Note: T1 and T2 represent the size of the training and test data, respectively. ATAPE and ATRAPE represent the averages
of total absolute prediction error and the total relative absolute prediction error, respectively.

model parameter 𝜂, where we considered different specifications of n, a, and L. Let 𝜂̂𝑗 denote the
resulting estimates for 𝑗 = 1,… ,m for each configuration. We reported the average bias of the
estimates (BIAS), which we calculated using m−1∑m

𝑗=1𝜂̂
𝑗
r − 𝜂r; the average relative estimate bias

(RBIAS), which we calculated using m−1∑m
𝑗=1{𝜂̂𝑗r

𝑗 − 𝜂r}∕𝜂r; and the sample standard deviation

(SSD), which we calculated using
√

(m − 1)−1∑m
𝑗=1

(
𝜂̂𝑗r − m−1∑m

𝑗=1𝜂̂
𝑗
r

)2, where 𝜂̂𝑗r and 𝜂r denote

the rth element of 𝜂̂𝑗 and 𝜂, respectively, and r = 1,… , 8.
Table 4 summarizes the results for the settings with a = 0.9 and L = 50, where n is taken

as 100, 300, or 500; additional results for n = 50 and 1000 may be found in Table S.6 in the
Supplementary Material. While different choices of n lead to different degrees of estimation
bias, as expected, the incurred bias or relative bias for those values of n fall in acceptable ranges
in general. Interestingly, a larger value of n does not necessarily yield estimates with a smaller
bias. On the contrary, increasing the value of n does help reduce the sample standard deviation.
Overall, it seems that with suitable values of L and a, setting n to be a value between 100 and
500 may be plausible.

To evaluate the prediction performance of the SEASAR model, we used different training
data to build a prediction model and then compared the performance over different prediction
windows. We first fixed T1 = 29 or 39 for the training data 

𝑗

CT to build a prediction model in
simulation 𝑗. Then for each scenario, we compared the prediction performance over a short and
a relatively long time period by using the test data 

𝑗

CP with T2 = 5 and 10, respectively. For
convenience, we used the labels “Scenario-1-short”, “Scenario-1-long”, “Scenario-2-short”, and
“Scenario-2-long”, respectively, to indicate those settings with (T1,T2) = (29, 5), (29, 10), (39, 5),
and (39, 10).

To assess the discrepancies between the predicted values and the corresponding values gener-
ated from the model for the test data, for 𝑗 = 1,… ,m, we calculated the total absolute prediction
error (TAPE): TAPE𝑗 =

∑𝜏0+T1+T2
t=𝜏0+T1+1|ŷ∗𝑗t − y∗𝑗t |, and the total relative absolute prediction error
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(TRAPE): TRAPE𝑗 =
∑𝜏0+T1+T2

t=𝜏0+T1+1

|||| ŷ∗𝑗t −y∗𝑗t

y∗𝑗t

||||, where we considered two settings for y∗𝑗t . In Setting

1, we let y∗𝑗t represent the daily net number of confirmed cases y𝑗t ∈ 
𝑗

CP, and let ŷ∗𝑗t denote
its predicted value. In Setting 2, we let y∗𝑗t represent the daily cumulative number of confirmed
cases

∑
s≤t y𝑗s with y𝑗s ∈ 

𝑗

CP, and let ŷ∗𝑗t denote the corresponding predicted value.
Figure S.7 of the Supplementary Material shows the boxplots of the m TAPEs and TRAPEs

for the four scenarios under the two settings. To gain an overall sense of the prediction error, in
Table 5 we reported the average TAPE (ATAPE) and the average of TRAPE (ATRAPE) over
the m simulations, together with the associated sample standard deviations (SSD). As expected,
with a given training dataset to build a SEASAR model for prediction, the ATAPE and ATRAPE
for a shorter prediction window are smaller than the corresponding values for a longer prediction
window. Furthermore, the former case incurs less variation than the latter one.

7. DISCUSSION

In this article, we introduced a new epidemic model, called the SEASAR model, to describe the
transmission process for COVID-19, where the population is divided into six subpopulations,
called susceptible, exposed, asymptomatic, symptomatic, active, and removed. While the proposed
SEASAR model extends the SIR and SEIR models to accommodate the manifestations of
COVID-19 related to asymptomatic infections and varying lag times between symptom onset
and diagnosis, it has certain limitations as we outline below.

The model basically delineates settings that are reasonably characterized by time-invariant
parameters in 𝜂. It does not, however, facilitate the investigation of other features of the data such
as weekly cycles related to varying testing and reporting rates among weekdays and weekends.
To gain further insight into transmission, one may prefer to use the SEASAR model to predict
the number of cumulative cases rather than daily cases. Further, prediction over a short-term
window tends to be more reliable than that over a longer period. In contrast, dividing the study
period into five intervals to allow for interval-dependent model parameters, Hao et al. (2020)
proposed a generalized SEIR model to describe the COVID-19 dynamic progression in Wuhan
during the period from 1 January 2020 to 8 March 2020. With 10 unknown parameters, they
focused on the estimation of only two parameters and replaced the other parameters with the
estimates reported in the literature. To better describe the dynamic changes of the population, it
is useful to develop a more flexible model with time-varying model parameters.

Consistent with the SIR and SEIR models, our proposed model requires two standard
conditions: (1) the population is homogeneous and (2) the population size remains invariant
over time. In applications, it is difficult to satisfy these conditions. By dropping the assumption
of no immigration or emigration, Li et al. (2020) modified the SEIR model to delineate the
COVID-19 transmission in 375 cities of China. Their method requires the availability of inter-city
mobility data. It would be interesting to extend our proposed model with these two assumptions
relaxed. For example, one could perhaps add immigration and emigration to the SEASAR
model to reflect the population dynamics if the observed data include such information for
estimation of the associated parameters. One may further stratify the six subpopulations by
pandemic-related factors, such as age and medical conditions, to achieve more homogeneous
subpopulations. Such a development typically requires rich information at the individual level;
merely having data at the population level, such as b, s, and c in the estimation framework
we have considered here, is not sufficient for building a more refined model than the SEASAR
model.

As noted by a referee, the model parameter 𝜂 cannot be well estimated based on the
observed data b, s, and c, even if it is combined with an additional distributional assump-
tion such as the one identified in (7) and the availability assumption for Z and ri with
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i = 1, 2, 3. The use of Bayesian priors, as we have suggested following (S21) in Appendix
D of Section S2 in the Supplementary Material, comes into play to help resolve the issues
of nonidentifiability or nonestimability of the model parameters. While imposing prior infor-
mation enables us to estimate 𝜂 using the posterior distribution, this does not mean that
the nonidentifiability issue is eliminated. We should note that estimation results based on
the posterior distribution in such a circumstance may be greatly affected by the choice of
priors.

The implementation of the IF-EAKF algorithm hinges on the availability of the variance 𝜎2
t

of Y(t), as shown, for instance, in the expression indicated in Equation (9). Here 𝜎2
t is assumed to

be determined by the previously observed data as identified in Equation (8). While this scheme
has been used in many studies of infectious diseases such as the study of influenza by Pei
et al. (2018), the study of the West Nile virus by DeFelice et al. (2017), and the study of the
respiratory syncytial virus by Reis & Shaman (2016), the reasonableness of the resulting analysis
relies on how 𝜎2

t is specified. It would be interesting to develop an estimation procedure that
can also accommodate estimation of the unknown parameter 𝜎2

t . This research warrants in-depth
studies, which extend beyond the scope of this article.

Another important aspect concerns the quality of the observed data, an issue that should not
be overlooked (Yi, 2017). Under-reporting or over-reporting confirmed cases can occur on a daily
basis due to reasons related to varying incubation times, insufficient test capacity, test errors,
delay in data aggregation, and so on. Available COVID-19 data often involve measurement
error (such as recall bias when reporting exposure to a COVID-19 infected case) and missing
observations. It would be interesting to refine the proposed model to address those issues, and
such research warrants a careful investigation.
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