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Abstract 

Rationale: The current tumour-node-metastasis (TNM) staging system is insufficient for precise 
treatment decision-making and accurate survival prediction for patients with stage I lung adenocarcinoma 
(LUAD). Therefore, more reliable biomarkers are urgently needed to identify the high-risk subset in stage 
I patients to guide adjuvant therapy. 
Methods: This study retrospectively analysed the transcriptome profiles and clinical parameters of 1,400 
stage I LUAD patients from 14 public datasets, including 13 microarray datasets from different platforms 
and 1 RNA-Seq dataset from The Cancer Genome Atlas (TCGA). A series of bioinformatic and machine 
learning approaches were combined to establish hypoxia-derived signatures to predict overall survival 
(OS) and immune checkpoint blockade (ICB) therapy response in stage I patients. In addition, enriched 
pathways, genomic and copy number alterations were analysed in different risk subgroups and compared 
to each other. 
Results: Among various hallmarks of cancer, hypoxia was identified as a dominant risk factor for overall 
survival in stage I LUAD patients. The hypoxia-related prognostic risk score (HPRS) exhibited more 
powerful capacity of survival prediction compared to traditional clinicopathological features, and the 
hypoxia-related immunotherapeutic response score (HIRS) outperformed conventional biomarkers for 
ICB therapy. An integrated decision tree and nomogram were generated to optimize risk stratification 
and quantify risk assessment. 
Conclusions: In summary, the proposed hypoxia-derived signatures are promising biomarkers to 
predict clinical outcomes and therapeutic responses in stage I LUAD patients. 
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Introduction 
Lung adenocarcinoma (LUAD) has become the 

most common subtype of non-small cell lung cancer 
(NSCLC), a leading cause of cancer death worldwide 

[1]. Unfortunately, even stage I lung cancer has a poor 
prognosis with about 70% 5-year overall survival after 
surgical resection [2], revealing the need of treatment 
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escalation, for example with adjuvant therapy. 
Although adjuvant chemotherapy proved to be 
beneficial for stage II-III NSCLC patients, its 
effectivity in stage I remains controversial [3-5]. 
Several large randomized studies failed to 
demonstrate a significant survival benefit in stage I 
NSCLC patients [3, 4]. Only in an exploratory 
analysis, Strauss et al. could show a significant benefit 
for adjuvant chemotherapy in stage I patients with 
tumour size larger than 4 cm [4]. However, without 
taking distinct tumour biological characters into 
account, tumour size alone cannot be an optimal 
criterion for precise risk stratification and 
decision-making of adjuvant treatment. Therefore, a 
novel method to identify the high-risk subset of stage 
I patients who mostly benefit from adjuvant therapy 
will bring immense value for personalized cancer care 
[6]. 

  In the recent years, an increasing number of 
studies have proposed genomic signatures for risk 
stratification and survival prediction in NSCLC 
patients [7-9]. However, due to some problematic 
issues such as limited sample size, individual 
heterogeneity and technical bias in these studies, most 
prognostic signatures lacked reproducibility and few 
of them were applied to clinical routine practice [10]. 

Hypoxic environment is a result of imbalance 
between oxygen demand and supply, and 
intratumoral hypoxia is a critical hallmark of cancer 
which is widely associated with malignant 
progression, therapeutic resistance and poor 
prognosis [11-13]. In our previous study, we 
established a hypoxia-related gene signature to 
predict prognosis in stage I-II LUAD patients [14]. 
However, the clinical outcomes, oncogenic pathways, 
genomic alterations and therapeutic responses 
underlying different hypoxic conditions remain 
obscure in absolute early-stage (stage I) patients, a 
group who urgently need reliable biomarkers to guide 
adjuvant therapy. 

In the present study, hypoxia was identified as a 
dominant risk factor for overall survival in stage I 
LUAD. A series of bioinformatic and machine 
learning approaches were jointly used to screen for 
robust candidate genes and to build individualized 
hypoxia-derived signatures to predict overall survival 
(OS) and immune checkpoint blockade (ICB) therapy 
response for stage I patients, respectively. 

Materials and methods 
Data acquisition 

We retrospectively analysed the gene expression 
profiles and clinical parameters of primary LUAD 
patients from 14 public cohorts, including 13 

microarray datasets and 1 RNA-Seq dataset from The 
Cancer Genome Atlas (TCGA). Only patients meet the 
following two criteria were included: i) detailed TNM 
staging information includes stage I, IA, IB or 
T1N0M0 and T2aN0M0; ii) overall survival 
information includes follow-up time and vital status. 
Overall, a total of 1,400 stage I patients were included 
in our study. The dataset GSE72094 was used as the 
training set because it is an independent microarray 
dataset with an appropriate sample size [15]. Raw 
CEL files from a same chip platform (Affymetrix 
HG-U133A or U133 Plus 2.0) were downloaded and 
integrated to a new cohort using a robust multi-array 
average (RMA) method, with Combat algorithm 
eliminating the batch effects [16, 17]. The first 
validation set was composed of four independent 
microarray datasets (GSE68465 [18], GSE14814 [19], 
GSE31547 [unpublished], Chitale’s cohort [20]) 
produced from U133A, and the second validation set 
was composed of six datasets (GSE30219 [21], 
GSE31210 [22], GSE50081 [23], GSE37745 [24], 
GSE29013 [25], E-MTAB-923 [26]) from U133 Plus 2.0. 
Moreover, another three datasets from different 
platforms were used as three independent validation 
sets including TCGA, GSE41271 [27] and GSE13213 
[28]. The details of clinicopathological features in each 
cohort were summarized in Figure S1. In addition, 
transcriptome data and therapeutic responses of 20 
BALB/c mice inoculated subcutaneously with 
AB1-HA cells received anti-CTLA-4 treatment were 
acquired from GSE63557 [29]. In microarray analysis, 
probe IDs were mapped to gene symbols according to 
the corresponding annotation file, and expression 
measurements of all probes related to a same gene 
were averaged to obtain a single value. 

The somatic mutation and copy number 
variation (CNV) profiles were obtained from TCGA 
data portal (https://portal.gdc.cancer.gov/). Somatic 
mutation data, which are sorted in the form of 
Mutation Annotation Format (MAF), were analysed 
using R package ‘maftools’. Significant amplifications 
or deletions of copy number were detected using 
GISTIC 2.0 with a threshold of FDR Q < 0.05. 

Transcriptome profile analysis of tissues, single 
cells and cell lines 

Transcripts per million (TPM) value of 
transcriptome of 69 LUAD cell lines was obtained 
from Cancer Cell Line Encyclopedia (CCLE) [30]. In 
addition, we analysed a microarray data (GSE30979) 
of LUAD sample fragments which were cultured ex 
vivo under hypoxia (1% oxygen) or normoxia for 
three days [31]. Single-cell RNA-Seq data of 77 cells 
derived from a LUAD patient without any treatment 
was accessed from GSE69405 [32]. All the microarray 
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and RNA-Seq data included were normalized and 
log2 transformed. 

Selection of candidate genes and 
establishment of hypoxia-related signatures 

The levels of cancer-related hallmarks raised by 
Hanahan and Weinberg [33] such as “Cell cycle 
progression (CCP)”, “Epithelial-mesenchymal 
transition (EMT)” and “Hypoxia” in each sample 
from the training set were quantified using a 
single-sample gene set enrichment analysis (ssGSEA) 
algorithm based on the transcriptome profiling data 
and corresponding gene sets retrieved from 
Molecular Signatures Database (MSigDB), and the 
gene set of stemness was obtained from a previously 
published literature [34-36]. CIBERSORT was used to 
quantify immune infiltration based on the 
transcriptome profiling data of each sample in the 
training set [37]. Z-score scaling was applied to both 
ssGSEA and immune infiltration scores. Weighted 
gene co-expression network analysis (WGCNA) was 
used to construct a scale-free co-expression network 
using the R package ‘WGCNA’ and to identify a gene 
module which is mostly correlated with hypoxia [38]. 
On the other hand, potential targets of HIF1A in 
LUAD were obtained from Cistrome Cancer which 
integrated analysis of TCGA molecular profiling data 
and public transcription factor ChIP-Seq profiles [39]. 
Stage I LUAD-specific hypoxia-related candidates 
were identified from the intersection of 
“Hypoxia-related module” and “HIF1A targets”. The 
least absolute shrinkage and selection operator 
(LASSO) Cox or logistic regression models and 
random forest (RF) algorithm were used to further 
screen for the most robust candidates [40]. Finally, a 
hypoxia-related prognostic risk score (HPRS) and a 
hypoxia-related immunotherapeutic response score 
(HIRS) for each sample were calculated as follows: 

𝐻𝑃𝑅𝑆 𝑜𝑟 𝐻𝐼𝑅𝑆 = �𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡(𝑚𝑅𝑁𝐴𝑖)
𝑖

× 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑚𝑅𝑁𝐴𝑖) 

Additional bioinformatic and statistical 
analyses 

IBM SPSS Statistics 20 (IBM Corp., Armonk, 
N.Y., USA), GraphPad Prism 8.0 (GraphPad Software 
Inc, San Diego, CA), Stata 12 (StataCorp LLC, Texas, 
USA) and R software (version 3.6.0, http://www.r- 
project.org) were used to analyse data and plot 
graphs. Distance between different hallmarks was 
depicted using hierarchical clustering analysis. 
Multivariate Cox regression analysis was performed 
to evaluate the risk significance of each variable for 
overall survival. Non-negative matrix factorization 
(NMF) consensus clustering (R package ‘NMF’) was 

used to obtain clusters based on a gene expression 
matrix. Principal component analysis (PCA) was used 
to visualize dissimilarity of two groups using R 
package ‘pca3d’, and the percentages of explained 
variances were calculated using R package 
“factoextra”. The Kaplan-Meier method was used to 
draw survival curves, and the log-rank test was 
performed to evaluate survival difference. 
Random-effects meta-analysis model was used to 
calculate a pooled hazard ratio (HR). Time-dependent 
concordance index (C-index) and time-dependent 
receiver operating characteristic (tROC) analysis were 
used to compare the predictive capacity of survival 
among different variables with R packages 
‘survConcordance’ and ‘survivalROC’. Survival net 
benefits of each variable were estimated with decision 
curve analysis (DCA) using ‘stdca.R’. Recursive 
partitioning analysis was performed to construct a 
survival decision tree for risk stratification with R 
package ‘rpart’. A nomogram and calibration curve 
were plotted using R package ‘rms’. Differentially 
expressed genes (DEGs) were identified with a 
threshold of FDR q < 0.0001 based on reads count 
matrix and R package “DESeq2”, and submitted for 
Gene Ontology enrichment analysis using Metascape 
[41]. The R package ‘pRRophetic’ was applied to 
estimate the chemotherapeutic responses in the 
training cohort. Potential ICB therapy response was 
predicted with tumour immune dysfunction and 
exclusion (TIDE) algorithm [42], and the RF algorithm 
was used to screen for the most important candidates 
associated with ICB therapy response with two 
parameters ‘mtry’ and ‘ntree’ of optimal values. 
Student’s t-test or one-way analysis of variance was 
used to analyse differences between groups in 
variables with a normal distribution. Categorical 
variables between two groups were compared using 
chi-square test. P value < 0.05 was considered 
statistically significant. 

Results 
Schematic diagram of the study design 

Among various hallmarks of cancer defined by 
Hanahan and Weinberg [33], hypoxia was identified 
as the most significant risk factor for overall survival 
in stage I LUAD patients (Figure 1A). Then, WGCNA 
and LASSO Cox algorithm were combined to screen 
for robust hypoxia-related prognostic biomarkers 
(Figure 1B). Subsequently, the prognostic capacity of 
the hypoxia-related signature was evaluated in the 
training cohort and five independent validation 
cohorts. In addition, meta-analysis was performed to 
further validate its prognostic power, DCA was used 
to compare the survival net benefits of each variable, 
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and an integrated decision tree and nomogram were 
built to improve risk stratification and survival 
prediction (Figure 1C). Finally, the enriched pathways 
of DEGs, genomic alterations and therapeutic 
responses were analysed and compared (Figure 1D). 

Hypoxia was identified as a primary risk factor 
for overall survival in stage I LUAD 

An unrooted clustering dendrogram was 
generated to show the distance between 
cancer-related hallmarks based on their Z-score 
matrix in the training set. We observed that 
“Hypoxia” and “Glycolysis” remained close to each 
other but relatively distant to other hallmarks (Figure 
2A). Multivariate Cox regression analysis 
demonstrated that hypoxia was the only significant 

risk factor for overall survival among various 
cancer-related hallmarks (P = 0.003; Figure 2B). A 
heatmap was plotted to depict the correlations 
between hypoxia ssGSEA Z-scores and 
clinicopathological features and mutations of driver 
genes in the training cohort, and significant 
correlations between hypoxia and gender, age and 
overall survival status were observed (Figure 2C). In 
addition, multivariate Cox regression analysis 
revealed that hypoxia was the only significant 
variable for overall survival among these features (P = 
0.006; Figure 2D). These findings showed that hypoxia 
was a dominant risk factor for overall survival in 
stage I LUAD among cancer hallmarks and 
clinicopathological features. 

 
 

 
Figure 1. Schematic diagram of the study design. (A) Among various hallmarks of cancer, hypoxia was identified as the primary risk factor for overall survival in stage I 
LUAD patients. (B) WGCNA and LASSO Cox algorithms were combined to develop a hypoxia-related gene signature for prognosis. (C) The prognostic and predictive capacities 
were validated in different cohorts and methods. (D) Comprehensive analyses of enriched pathways, genomic alterations, CNVs and therapeutic responses in different risk 
groups. 
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Figure 2. Hypoxia is a dominant risk factor for stage I LUAD, and a set of 199 stage I-specific hypoxia-related candidates were identified. (A) An unrooted 
clustering dendrogram shows the distance between different hallmarks of cancer. (B) Multivariate Cox regression analysis demonstrated that hypoxia was the only significant risk 
factor for overall survival among various hallmarks of cancer (P = 0.003). (C) A heatmap depicts the correlations between hypoxia ssGSEA Z-scores and clinicopathological 
features and mutations of driver oncogenes. (D) Multivariate Cox regression analysis revealed that hypoxia was the only significant variable for overall survival among 
clinicopathological features (P = 0.006). (E) WGCNA was performed to construct a scale-free co-expression network. The green gene module exhibited the highest correlation 
with hypoxia (r = 0.62, P = 3e-28) and was considered as “hypoxia-related module”. (F) The module membership and gene significance of 773 genes involved in the green module 
exhibited a highly positive correlation (r = 0.969, P < 0.001), and HIF1A was located in the core part which is positively correlated with hypoxia. (G) 199 overlapping candidates 
were identified in the intersection of “hypoxia-related module” and “HIF1A targets”. 

 

Identification of stage I LUAD-specific 
candidate genes involved in hypoxia 

WGCNA was performed with transcriptome 
profiling data and hypoxia ssGSEA Z-scores to 
construct a scale-free co-expression network. A total 
of 48 gene modules were generated with a power of 5 
as the optimal soft threshold (Figure 2E & Figure S2). 

Among these modules, the green module exhibited 
the highest correlation with hypoxia (r = 0.62, P = 
3e-28) and was considered as “hypoxia-related 
module” (Figure 2E). The module membership and 
gene significance of 773 genes involved in the green 
module exhibited a highly positive correlation (r = 
0.969, P < 0.001), and we observed HIF1A was located 
in the core part which is positively correlated with 
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hypoxia (Figure 2F). Considering HIF1A acts as a core 
transcription factor in hypoxia, we intersected the 
“hypoxia-related module” with 4,748 potential targets 
of HIF1A in LUAD and found 199 candidate genes in 
the intersection (Figure 2G & Table S1), and the 199 
candidates were considered as “stage I LUAD-specific 
hypoxia-related genes”. 

We further validated the 199 candidate genes as 
robust hypoxia-related genes in three aspects: LUAD 
tissues, single cells and cell lines. Firstly, NMF was 
used to divide 254 training samples into two clusters 
based on the expression profiles of the 199 genes with 
an optimal k of 2 (Figure 3A), and GSEA analysis 
indicated that cluster 1 exhibited significant hypoxia 

enrichment compared to cluster 2 (Figure 3B). 
Boxplots showed the ssGSEA scores of some critical 
hallmarks including stemness, angiogenesis, 
inflammation, glycolysis and EMT were significantly 
elevated in cluster 1 (All, P < 0.001; Figure 3C). 
Similarly, with an optimal k of 2, 77 single cells 
derived from a same LUAD patient were divided into 
two clusters (Figure 3D) with different hypoxia level 
(P = 0.004; Figure 3E). Furthermore, the two clusters 
exhibited absolute dissimilarity in the PCA analysis 
(Figure 3F) and different distribution ratio of 
glycolysis and TCA cycle (Figure 3G). With an 
optimal k of 3, 69 LUAD cell lines from CCLE were 
divided into three clusters based on the log2TPM 

 

 
Figure 3. The representation of the 199 hypoxia-related genes was validated at different levels. (A) NMF consensus clustering was used to divide 254 training 
samples into two clusters, and (B) GSEA analysis indicated that cluster 1 exhibited significant hypoxia enrichment. (C) Hypoxia-induced influences on stemness, angiogenesis, 
inflammation, glycolysis and EMT. (D & E) 77 single cells derived from a same LUAD patient were divided into two clusters with different hypoxia level (P = 0.004). (F) The two 
clusters exhibited absolute dissimilarity in the PCA analysis and (G) different distribution ratio of glycolysis and TCA cycle. (H) 69 LUAD cell lines from CCLE were divided into 
three clusters, and (I) hypoxia levels were progressively decreased in the three clusters (P < 0.001). (J) PCA analysis demonstrated that samples cultured ex vivo under hypoxia 
or normoxia were clearly separated into two discrete groups with the 199 genes expression matrix. 
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matrix of the 199 genes (Figure 3H), and hypoxia 
levels were progressively decreased in the three 
clusters (P < 0.001; Figure 3I). Finally, PCA analysis 
demonstrated that samples cultured ex vivo under 
hypoxia or normoxia were clearly separated into two 
distinct groups with the 199 genes expression matrix 
(Figure 3J). 

Establishment and validation of a 
hypoxia-related prognostic signature for 
overall survival in stage I patients 

LASSO Cox algorithm was used to identify the 
most robust prognostic genes among the 199 

candidate genes. 10-fold cross-validation was applied 
to overcome over-fitting effect, and an optimal λ value 
of 0.051 was selected (Figure 4A & Figure S3). An 
ensemble of 10 genes remained with individual 
coefficients (Figure 4B), which were integrated to 
build a hypoxia-related prognostic signature. A 
correlation network involving the 10 genes and 
hypoxia ssGSEA Z-scores in the training cohort was 
shown in Figure 4C. Using the established formula, a 
hypoxia-related prognostic risk score (HPRS) for each 
sample was calculated and normalized to Z-score in 
each cohort. As shown in Figure 4D, Kaplan-Meier 
analysis demonstrated that patients with higher HPRS 

 

 
Figure 4. Establishment and validation of a prognostic hypoxia signature for stage I patients. (A) LASSO Cox regression algorithm was used to identify the most 
robust prognostic genes. (B) An ensemble of 10 genes remained with individual coefficients. (C) A correlation network involving the 10 genes and hypoxia in the training cohort. 
(D) Kaplan-Meier analysis demonstrated that patients with higher HPRS exhibited worse overall survival in the training cohort, and (E-I) the prognostic value was validated in five 
independent cohorts. 



Theranostics 2021, Vol. 11, Issue 10 
 

 
http://www.thno.org 

5068 

exhibited worse overall survival in the training cohort 
(HR = 6.738, 95% CI = 3.902-11.64, P = 6.42e-09). Then, 
the prognostic value of HPRS was validated in five 
independent cohorts (Validation I: HR = 2.259, 95% CI 
= 1.309-3.899, P = 0.0008; Validation II: HR = 3.369, 
95% CI = 2.331-4.869, P = 4.07e-06; Validation III: HR = 
1.765, 95% CI = 1.082-2.880, P = 0.0195; Validation IV: 
HR = 3.850, 95% CI = 1.771-8.369, P = 0.0005; 
Validation V: HR = 5.063, 95% CI = 2.311-11.09, P = 
0.0009; Figure 4E-I). 

Comparison of prognostic and predictive 
capacities between HPRS and traditional 
features 

Meta-analysis was performed to calculate the 
pooled HR of TNM staging classification or HPRS 
with the exclusion of the training set, respectively. In 
comparison, staging classification exhibited a pooled 
HR of 1.69 (95% CI = 1.30-2.18; Figure 5A), while 
HPRS showed a pooled HR of 2.87 (95% CI = 
2.02-4.07; Figure 5B). In addition, Kaplan-Meier 

 

 
Figure 5: Comparison of the prognostic and predictive capacities between HPRS and traditional features. (A & B) Meta-analysis was performed to calculate the 
pooled HR of TNM staging classification or HPRS, respectively. (C & D) Kaplan-Meier analysis was used to plot survival curves and evaluate survival difference in the pooled 
cohort to visualize the prognostic values of staging classification and HPRS, respectively. (E & F) In both stage IA and stage IB subgroups, HPRS retained its prognostic capacity 
to discriminate high-risk subset with Z-score of zero as a cut-off value. (G) Multivariate Cox regression analysis was performed on four variables including HPRS, p-stage, gender 
and age in the pooled cohort. (H) C-index of HPRS ranks first among all the parameters. (I) DCA graphically illustrated that HPRS brought more net benefit of survival than other 
parameters at two different time points. 
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analysis was used to plot survival curves and evaluate 
survival difference in the pooled cohort to visualize 
the prognostic values of staging classification and 
HPRS, respectively (Figure 5C & D). In both stage IA 
and stage IB subgroups, HPRS retained its prognostic 
capacity to discriminate high-risk subset with Z-score 
of zero as a cut-off value (in stage IA: HR = 1.831, P = 
4.38e-05, Figure 5E; in stage IB: HR = 1.930, P = 
1.63e-06, Figure 5F). Further, multivariate Cox 
regression analysis was performed on four variables 
including HPRS (Z-score of zero as cut-off value), 
p-stage (IA and IB), gender (male and female) and age 
(continuous value) in the pooled cohort. We observed 
that all the four parameters are independent risk 
factors for overall survival in stage I patients, and 
HPRS exhibited highest significance (HR = 1.87, 95% 
CI = 1.50-2.34, P = 2.45e-08; Figure 5G) among these 
variables. In addition, C-index of HPRS ranks first 
among these variables, which suggests the most 
powerful predictive capacity (Figure 5H). DCA 
graphically illustrated that HPRS brought more net 
benefit of survival than other parameters at two 
different time points (Figure 5I). 

Construction of integrated models to optimize 
risk stratification and survival prediction in 
stage I patients 

1,316 patients with full-scale clinical annotations 
including p-stage, gender and age were extracted. 
Subsequently, four variables including HPRS, stage, 
gender and age were submitted for recursive 
partitioning analysis to build a survival decision tree 
to optimize the risk stratification. As shown in the 
decision tree (Figure 6A), three different risk 
subgroups were defined based on two major 
components including HPRS as the most powerful 
parameter together with age (64 years old was 
identified as the cut-off point in the HPRS-high 
branch). Patients with low HPRS were defined as 
“low-risk” group, while “intermediate-risk” and 
“high-risk” groups were labelled with “High HPRS & 
Age < 64” and “High HPRS & Age ≥ 64”, respectively. 
Significant differences of overall survival were 
observed among the three risk subgroups (P = 
3.95e-13; Figure 6B). 

With a goal of quantifying the risk assessment 
for individual stage I patients, a nomogram was 
generated with HPRS together with other 
clinicopathological features, and the red arrow shows 
an example (Figure 6C). In the calibration analysis, the 
prediction lines of the nomogram for 3- and 5-year 
survival probability were extremely close to the ideal 
performance (45-degree line) (Figure 6D), indicating a 
high accuracy of the nomogram. When compared 
with other clinicopathological features, the 

nomogram exhibited the most powerful capacity for 
survival prediction (Figure 6E). 

Comprehensive analyses of enriched pathways 
and genomic alterations between different risk 
groups 

With a threshold of FDR q < 0.0001, 2,054 
significantly upregulated genes and 1,579 
significantly downregulated genes were identified in 
HPRS-high samples of TCGA cohort (Figure 7A). 
Subsequently, these DEGs were submitted to 
Metascape for Gene Ontology enrichment analysis. 
Upregulated genes were mainly enriched in pathways 
such as cell division, DNA repair and extracellular 
matrix organization (Figure 7B), while downregulated 
genes were mainly enriched in various metabolic 
processes (Figure 7C). 

Top 20 most frequently mutated genes in each 
cohort were illustrated in Figure 7D & E. With a 
threshold of P value < 0.001 using Fisher’s exact test, 
differently mutated genes were detected between the 
HPRS-high and -low cohort. Interestingly, TP53 
occupies the top 1 position (Figure 7F), which 
suggests a high correlation with hypoxic condition in 
stage I patients. A lollipop plot revealed the different 
mutation spots of TP53 between two cohorts (Figure 
7G), and the plausible chain reaction in survival 
difference was observed (Figure 7H & I). 
Furthermore, co-occurrence and mutually exclusive 
mutations were investigated, and a unique case of 
KRAS-TP53 mutually exclusive mutation was 
observed in HPRS-high cohort (Figure 7J), which 
indicates a probably common effect induced by their 
respective mutation and the selective advantages to 
keep more than one copy of the mutations. Moreover, 
the tumour mutational burden (TMB) was 
significantly elevated in the HPRS-high group (P = 
2.14e-07; Figure 7K). 

After removing germline CNV, significant 
amplifications and deletions were detected with a 
threshold of FDR < 0.05 in each cohort. By 
comparison, we observed more regions were altered 
in HPRS-high cohort (Figure 7L & M). In detail, some 
representative oncogenes such as FGFR1, E2F1, 
KRAS, MET, CDK4 and MYC were widely amplified 
in the HPRS-high cohort compared to HPRS-low 
cohort (Figure 7N). Furthermore, KRAS is a typical 
example to demonstrate the positive correlation 
between copy number and mRNA expression in the 
HPRS-high cohort (Figure 7O). 

Hypoxia-derived signatures predict 
therapeutic response in stage I patients 

Based on the altered gene sets of different drug 
treatments retrieved from MSigDB, GSEA predicted 
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that high HPRS is significantly correlated with drug 
resistance in the training cohort (Figure 8A). The R 
package ‘pRRophetic’ was used to estimate the 
chemotherapeutic sensitivity of four common drugs 
(cisplatin, gemcitabine, gefitinib and doxorubicin) 
used in LUAD treatment. The estimated IC50 values 
of these drugs were significantly elevated in 
HPRS-high samples of the training cohort (Figure 8B). 
Considering the controversial issue of the 

chemotherapeutic benefit in stage IB patients, we 
screened the six cohorts and extracted a total of 41 
stage IB patients who received adjuvant 
chemotherapy and divided them into three groups 
according to their HPRS Z-score. Significant 
differences of overall survival were observed among 
different HPRS groups, indicating HPRS could serve 
as a promising biomarker to guide adjuvant 
chemotherapy in stage IB patients (Figure 8C). 

 
 

 
Figure 6. A survival decision tree and nomogram were generated to improve risk stratification and estimate survival probability. (A) Patients with full-scale 
annotations including HPRS, p-stage, gender and age were used to build a survival decision tree to optimize risk stratification. (B) Significant differences of overall survival were 
observed among the three risk subgroups. (C) Details of the nomogram. (D) The nomogram shows a high accuracy in the calibration analysis. (E) Compared with other 
clinicopathological features, the nomogram exhibited the most powerful capacity for survival prediction. 
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Figure 7. Comprehensive analyses of enriched pathways and genomic alterations between different risk groups. (A) Volcano plot shows DEGs between 
HPRS-low and -high groups in TCGA cohort. (B & C) Gene Ontology enrichment analysis was performed with significantly upregulated and downregulated genes, respectively. 
(D & E) Top 20 most frequently mutated genes were illustrated in each cohort. (F) TP53 occupies the top 1 position among differently mutated genes between HPRS-high and 
-low cohort. (G) A lollipop plot showed the different mutation spots of TP53 between two cohorts. (H & I) Kaplan-Meier analysis shows the independent relevance between 
overall survival and TP53 mutation in each cohort. (J) The heatmap illustrates the co-occurrence and mutually exclusive mutations of the top 25 frequently mutated genes in each 
cohort. (K) TMB was significantly elevated in the HPRS-high group. (L & M) Significant amplifications and deletions of copy number were detected and compared between the two 
cohorts. (N) Some representative oncogenes such as FGFR1, E2F1, KRAS, MET, CDK4 and MYC were widely amplified in the HPRS-high cohort compared to HPRS-low cohort. 
(O) KRAS is a typical example to demonstrate the positive correlation between copy number and mRNA expression in the HPRS-high cohort. 
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Figure 8. Hypoxia-derived signatures predict therapeutic response in stage I patients. (A) GSEA predicted that high HPRS is positively correlated with drug 
resistance in the training cohort. (B) Chemotherapeutic sensitivity of four common drugs (cisplatin, gemcitabine, gefitinib and doxorubicin) were estimated and compared in the 
training cohort. (C) Significant differences of overall survival were observed among different HPRS groups from 41 stage IB patients who received adjuvant chemotherapy. (D) 
The RF algorithm was used to screen for the most important genes associated with ICB therapy response. (E) 16 genes were overlapped in two ranking methods. (F) LASSO 
logistic regression analysis was further used to construct a robust signature to predict immunotherapeutic response. (G) HIRS exhibited the AUC of 0.809 to predict 
immunotherapeutic response in the training set. (H) In the testing TCGA cohort, HIRS showed the highest AUC of 0.727 compared to other common biomarkers for 
immunotherapy. (I) HIRS could completely discriminate responders and non-responders (AUC = 1) in 20 BALB/c mice subcutaneously inoculated with AB1-HA cells received 
anti-CTLA-4 treatment, even outperformed CTLA-4 expression (AUC = 0.960). 

 
Considering that hypoxia influences the efficacy 

of immunotherapy for cancer patients, we developed 
another hypoxia-derived gene signature to predict 

ICB therapy response using RF and LASSO logistic 
algorithms. With optimal values of two parameters 
(mtry = 133, ntree = 3,000; Figure 8D), the 199 stage I 
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LUAD-specific hypoxia-related candidates were 
ranked according to their importance associated with 
immunotherapeutic response, and 16 genes were 
overlapped in two ranking methods (Figure 8E). 
Subsequently, in the LASSO logistic regression 
analysis, 10-fold cross-validation was applied to 
overcome over-fitting effect (Figure S4A), and an 
optimal λ value of 0.0188 was selected (Figure 8F). 
Nine genes (MEGF9, BICD1, TUBB3, ADAMTS4, 
PI15, FBXO32, ST3GAL4, GPX8, CERCAM) finally 
remained with individual coefficients (Figure S4B). In 
the training cohort, HIRS exhibited the AUC of 0.809 
(Figure 8G) to predict immunotherapeutic response. 
In the testing TCGA cohort, HIRS showed the highest 
AUC of 0.727 compared to some common biomarkers 
for immunotherapy including TMB, CD8+ T cell 
infiltration, PD-1 and PD-L1 expression (Figure 8H). 
Surprisingly, HIRS could completely discriminate 
responders and non-responders (AUC = 1; Figure 8I) 
in 20 BALB/c mice subcutaneously inoculated with 
AB1-HA cells received anti-CTLA-4 treatment, even 
outperformed CTLA-4 expression (AUC = 0.960; 
Figure 8I). 

Discussion 
Hypoxia is a common feature existing in most 

solid tumours [11]. The hypoxic environment is a 
result of the imbalance between increased oxygen 
demand and insufficient oxygen supply, which is 
associated with a high proliferative rate in tumour 
[43]. Hypoxia has a wide-ranging impact on various 
biological processes, such as metabolism, 
angiogenesis and metastasis [12, 44, 45]. On the 
cellular level, hypoxia evokes a complex molecular 
response mainly dependent on the central role of 
transcription factor HIF1A [46]. In solid tumours, 
crosstalk between hypoxia and other cancer-related 
hallmarks and pathways contributes to aggressive 
phenotypes and therapeutic resistance, which might 
lead to treatment failure and poor clinical outcome 
[11]. These observations seem to explain why hypoxia 
is becoming an emerging biomarker and target in 
cancer therapy [47]. 

So far, some hypoxia gene signatures have been 
established for survival prediction in different cancer 
types including head and neck, prostate, bladder and 
breast cancer [48-51]. Some studies established their 
gene signatures by testing candidate genes which 
were collected from previously published literatures, 
or used one single evaluative method such as 
Kaplan-Meier analysis to discriminate high-risk 
subset in the total patient cohort [48, 50]. However, 
taking the fact into account that hypoxia is a complex 
process which involves regulation networks of many 
different genes, we established a hypoxia-related gene 

signature to predict survival in stage I-II LUAD 
patients in our previous study [14]. Nevertheless, the 
relationships between hypoxia with clinical outcomes, 
oncogenic pathways, genomic alterations and 
therapeutic responses remain obscure in absolute 
early-stage (stage I) LUAD. 

In this study, as many as possible (a total of 
1,400) stage I LUAD patients were collected from 14 
public datasets. Among various hallmarks of cancer, 
hypoxia was identified as a dominant risk factor in 
stage I LUAD. WGCNA was performed to identify a 
stage I LUAD-specific hypoxia-related co-expression 
network based on transcriptome profiling data. 
Considering HIF1A as a pivotal regulator in hypoxia, 
we intersected the “hypoxia-related module” with 
HIF1A targets in LUAD and a total of 199 stage I 
LUAD-specific hypoxia-related genes were identified. 
Next, we validated the 199 candidate genes in three 
aspects, including tumour tissues, single cells and cell 
lines. LASSO Cox regression model was used to 
screen for the most robust biomarkers to establish a 
prognostic signature, and a formula for calculation of 
hypoxia-related prognostic risk score (HPRS) was 
established. Subsequently, the prognostic capacity 
was validated in five independent cohorts across 
different platforms. Notably, in the pooled cohort of 
stage I patients, we observed that HPRS exerted a 
more significant risk on overall survival than 
pathological stage (IB vs IA), indicating there is an 
urgent need to introduce molecular classification into 
tumour staging. Even in the stage IA patients with 
tumour size smaller than 2 cm, HPRS retained its 
prognostic capacity to discriminate the high-risk 
subset, which might benefit from adjuvant 
chemotherapy. Enriched pathways, genomic 
alterations and CNVs were also analysed and 
compared in different HPRS groups, and we observed 
that high HPRS was significantly correlated with 
more aggressive molecular changes such as TP53 
mutation and amplifications of driver oncogenes. 
These genomic alterations drive rapid proliferative 
rate by consuming oxygen as well as generating 
aberrant vasculature at the early stage of tumor 
progression. Especially, mutant p53 cooperates with 
HIF-1 in transcriptional regulation of a specific subset 
of pro-tumorigenic genes to induce hypoxic condition 
and thus to promote NSCLC progression [52]. On the 
basis of aforementioned findings, intratumoral 
hypoxia seemed to be a major cancer hallmark, 
associated with the worse survival in stage I LUAD 
patients. 

A survival decision tree was built to improve 
risk stratification based on HPRS, age, gender and 
pathological stage for stage I patients. Only two 
components remained in the decision tree: HPRS 
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acted as the major determinant, and older age (64 
years as cut-off point) the secondary. Furthermore, a 
nomogram was generated to quantify risk assessment 
and survival probability. Compared to other 
traditional features, the nomogram exhibited the 
highest accuracy and discrimination in survival 
prediction. 

Reliable biomarkers to predict immunothera-
peutic responses in stage I LUAD remain unmet in 
clinical practice. Accumulating evidence have 
demonstrated that hypoxia influences the efficacy of 
immunotherapy [53]. Thus, we developed a 
hypoxia-related immunotherapeutic response score 
(HIRS) to predict ICB therapy response for stage I 
patients using RF and LASSO logistic algorithms. The 
utility of HIRS was further validated in different 
cohorts, even outperformed conventional immuno-
therapy biomarkers. 

The retrospective nature of our study is an 
inevitable limitation. Although we included as many 
datasets as possible for rigorous validation, and 
different approaches such as RMA and Combat were 
combined to reduce batch effects, we have to 
acknowledge the fact that sampling bias caused by 
tumour genetic heterogeneity and cross-platform 
integration could only be reduced, but not completely 
eliminated. Meanwhile, further experimental studies 
are expected to elucidate tumour hypoxia-related 
biological functions underlying the gene signature in 
LUAD. 

In this study, we identified hypoxia as a primary 
prognostic risk factor for stage I LUAD among all the 
cancer-related hallmarks. Two hypoxia-related 
signatures were established to predict overall survival 
and immunotherapeutic response for stage I LUAD 
patients, respectively. A survival decision tree was 
built to optimize risk stratification, and a nomogram 
was generated to quantify risk assessment. The 
enriched pathways, genomic alterations and CNVs 
were analysed and compared between different risk 
groups. In summary, our study might provide some 
useful clues for introducing molecular classification 
into tumour staging and guiding treatment 
decision-making, finally promoting personalized 
management of stage I LUAD. 
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