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Glioblastoma (GBM) is uniformly fatal with a median survival of just over 1 year,

despite best available treatment including radiotherapy (RT). Impacts of prior brain

RT on recurrent tumors are poorly understood, though increasing evidence suggests

RT-induced changes in the brain microenvironment contribute to recurrent GBM

aggressiveness. The tumor microenvironment impacts malignant cells directly and

indirectly through stromal cells that support tumor growth. Changes in extracellular

matrix (ECM), abnormal vasculature, hypoxia, and inflammation have been reported to

promote tumor aggressiveness that could be exacerbated by prior RT. Prior radiationmay

have long-term impacts on microglia and brain-infiltrating monocytes, leading to lasting

alterations in cytokine signaling and ECM. Tumor-promoting CNS injury responses are

recapitulated in the tumor microenvironment and augmented following prior radiation,

impacting cell phenotype, proliferation, and infiltration in the CNS. Since RT is vital to

GBM management, but substantially alters the tumor microenvironment, we here review

challenges, knowledge gaps, and therapeutic opportunities relevant to targeting pro-

tumorigenic features of the GBM microenvironment. We suggest that insights from RT-

induced changes in the tumor microenvironment may provide opportunities to target

mechanisms, such as cellular senescence, that may promote GBM aggressiveness

amplified in previously radiated microenvironment.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most common and lethal adult primary brain malignancy
(1, 2). Interactions within the brain extracellular matrix (ECM) facilitate diffuse infiltration, making
GBM surgically incurable (3–5). After standard treatment involving maximal safe resection, RT,
and chemotherapy, most tumors recur within 18 months. Eighty percent of recurrences occur at
the resection margin, wherein highest radiation doses are delivered (6–8). Following recurrence,
patients are managed only with palliative care and clinical trials, which rarely achieve prolonged
remission of recurrent lesions (9, 10).

Since GBM recurrences typically occur within previously radiated brain parenchyma,
understanding altered biology of the radiated microenvironment is critical. We here
review evidence suggesting RT has lasting effects on structure and milieu of the GBM
microenvironment, facilitating tumor aggressiveness upon recurrence. Such alterations include
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hypoxia, innate immune activation, and ECM changes.
The extent these changes may impact drug penetration,
pharmacokinetics, pharmacodynamics, and facilitate cellular
resistance requires further investigation (11–13). Radiation,
aging, and DNA damage promote senescence—a cellular
state defined by a senescence-associated secretory profile
(SASP), characterized by pro-inflammatory cytokine and
ECM-degrading enzyme production. Given recent advances in
therapies targeting senescence, we hypothesize senolytics may
attenuate pro-tumorigenic features of GBMmicroenvironments.

GLIOBLASTOMA MICROENVIRONMENT

GBM cells coexist with genetically normal stromal cells in a
dynamic tumormicroenvironment (TME) (14).Within the TME,
the extracellular matrix (ECM) provides scaffolding for inter-
cellular communication and cell migration. The GBM ECM
is notable for altered ECM synthesis/degradation and aberrant
cell surface profiles (15). GBM heterogeneity adds to GBM
microenvironment complexity, spanning hypoxic, proliferative,
and infiltrative regions, superimposed upon genetically and
transcriptionally heterogeneous cells (16). With hypoxic and
other hyper-perfused tumor regions, redox state gradients,
oxygen tensions, and pro-inflammatory cytokines, a dynamic
GBM microenvironment is formed, which promotes cell
proliferation, and tumor infiltration (3–5).

Tumor heterogeneity is a formidable impediment to
identifying effective GBM therapies. Variable distribution of
soluble factors throughout tumors creates chemotactic gradients
(5). Furthermore, infiltrating cells in surrounding brain tissue
differ in type and number of genetic alterations compared to
cells harvested from the ischemic core or proliferative zone of
the tumor (16). Tumor hypoxia promotes matrix production
and remodeling, facilitating cell resilience and crosstalk between
ECM and the pro-tumorigenic microenvironment (17).

The GBM ECM Promotes Tumor Growth
and Cell Invasion
Distinct from normal brain and other solid tumors, the
GBM ECM is comprised of a diverse array of glycoproteins,
proteoglycans, and polysaccharides that form specialized
structures that signal through cell surface receptors (18).
The GBM ECM is mechanically rigid compared to normal
brain. Fibrillar proteins, like fibronectin, laminin, and
collagen, contribute to rigidity (19) and promote proliferation
and migration (20). Upregulation of specific glycoproteins
(collagen-IV, fibronectin and vitronectin) and proteoglycans
(lecticans), promote surface receptor interactions with other
molecules as hyaluronan, CD44, tenascins promoting cell
invasion pathways (21–31) and can promote neo-angiogenesis,
causing vessel leakiness, which facilitates macrophage entry
and microglial activation (32). GBM ECM degradative
changes are caused by matrix metalloproteinases (MMPs)
as MMP-2, MMP-9, which are essential for cell invasion
(33). Increased MMP expression alters cell attachment,
allowing GBM cells to spread on myelin pathways, facilitating

parenchymal disruption and tumor infiltration (34, 35).
Furthermore, immune-active proteoglycans as heparan sulfate
proteoglycans (HSPGs) are upregulated in GBM (21, 36)
and can act as co-receptors for chemokines, cytokines and
growth factors (such as CCL2, IL-1β; tumor necrosis factor-α,
TNF-α; transforming growth factor-β, TGF- β), harnessing
pathways of progenitor proliferation, cell migration, and
axonal pathfinding to facilitate tumor cell proliferation
and infiltration (21, 37). Elevated extracellular adenosine
in GBM also promotes proliferation, metastasis, microglial
phagocytic activity, and adaptive tumor immune responses
(38, 39). As critical mediators of tumor growth and cell
invasion, various ECM components and associated receptors
are hypothesized as therapeutic targets for GBM, including
glycoproteins (e.g., tenascin-c; collagen, and its receptor DDR-
1, discoidin domain receptor-1) (28, 29, 31) proteoglycans
(brevican) (30), and extracellular nucleotides (adenosine
triphosphate, ATP) (36, 40–44). Potential therapeutic targets of
the radiated brain and GBM microenvironment are enlisted in
Table 1.

Stromal Cell Populations and Functions in
GBM
Various non-neoplastic stromal cells are important in tumor
maintenance and recurrence. Resident microglia and infiltrating
macrophages are attracted to GBM and comprise approximately
30% of cells in the tumor (77, 78) and with other CNS
stromal cells spanning neurons, endothelial cells, astrocytes, and
oligodendroglia, create favorable milieu for glioma proliferation
and infiltration. Research on impacts of prior radiation on these
cells has only just begun.

Resident microglia orchestrate behavior of other immune
cells that enter the brain by secreting cytokines and chemokines
upregulated in GBM, leading to chronic inflammation. These
immune-modulatory factors include cytokines as TNF- α, TGF-
β, chemokines as CX3CL1/Fractalkine, CCL2, CCL5 and growth
factors as fibroblast growth factor, FGF-2, and granulocyte-
monocyte colony stimulating factor, GM-CSF (68, 69, 79–82).
Since microglia are difficult to distinguish from bone marrow-
derived macrophages, the term “TAM,” for tumor associated
macrophages, is often a blanket-term, describing all monocytic
cells within the tumor, regardless of specific origin (83, 84).
TAMs release various growth factors and cytokines in response to
GBM-secreted factors or microenvironment-associated factors,
facilitating tumor proliferation, survival, and invasion (83,
84). TAMs can express markers for pro-inflammatory/tumor-
suppressing M1 or anti-inflammatory/tumor-promoting M2
phenotypes (83, 85). M1 macrophages are mostly found in
oxygenated glioma regions and M2-polarized macrophages
are increased in hypoxic areas (86, 87). Hypoxia causes
recruitment of macrophages and M2 differentiation through
Sema3/Nrp1 signaling (88). Colony stimulating factor 1 receptor
(CSF1R) is a key regulator of monocyte/macrophage survival
and proliferation and is upregulated in GBM and encourages
M2 polarization (89, 90). CSF-1 inhibitors have shown to
deter glioma recurrence after radiation in vivo (91), prevent
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TABLE 1 | Radiation-induced alterations to the GBM micro-environment.

Biological process Consequence RT-effect References

EXTRACELLULAR MATRIX COMPOSITION AND BIOSYNTHESIS

Collagen Migration and Invasion +/Up (38, 45, 46)

Tenascin C Tumor proliferation, Invasion +/Up (28, 29, 47)

Hyaluronin Invasion +/Up (48, 49)

Brevican Migration, Invasion +/Up (25, 30, 50)

Vitronectin Survival, Migration, Inflammation +/Up (26)

MDA-9/Syntenin Metastasis, tumor progression +/Up (51)

LOX Migration +/Up (52)

ECM-GLIOMA CELL (LIGAND-RECEPTOR) INTERACTION

DDR-1, ICAM-1, α5β1, αvβ3 Migration, Invasion +/Up (31, 53–55)

ECM DEGRADATION

MMPs Invasion +/Up (56–59)

TIMP Angiogenesis, Metastasis +/Up (60, 61)

TUMOR CELL ADAPTATION MECHANISMS

Oxygen tension: HIF-1 Hypoxia, malignancy +/Up (62)

Metabolism: ATP, NAD Proliferation +/Up (63)

Anti-apoptosis: BCL2/BAX Migration, invasiveness +/Up (55)

Redox regulation (ROS/RNS, NOX4) Senescence, inflammation +/Up (64–66)

Angiogenesis (VEGF, Ang) Angiogenesis +/Up (67)

Inflammation (Cytokines, Chemokines, Chemokine receptors) Tumor proliferation, migration, invasion +/Up (68–72)

Glia activation (MHC, CD68, GFAP) proliferation +/Up (70, 73–75)

Neurogenesis (NSC) Cognitive decline -/Impaired (76)

MDA-9, Melanoma differentiation-associated gene-9; LOX, Lysl oxidase; DDR-1, Discoidin domain receptor-1; ICAM-1, Intercellular Adhesion Molecule 1; Integrins α5β1; Integrin,

αvβ3; MMPs, Matrix metalloproteinases; TIMP, Tissue inhibitor of matrix metalloproteinase; NSC, Neural stem cell; HIF-1, Hypoxia-inducible factor 1; VEGF, Vascular endothelial growth

factor; Ang, Angiotensins; CALR, Calreticulin; HGMB1, High mobility group box 1 protein; NOX4, NADPH oxidase 4; ROS, Reactive oxygen species; RNS, Reactive nitrogen species;

MHC, Major histocompatibility complex; ATP, Adenosine triphosphate; GFAP, Glial acidic fibrillary protein; NAD, Nicotinamide adenine dinucleotide; CD, Cluster of differentiation; BCL2,

B-cell lymphoma-2; BAX, BCL2 Associated X. Cytokines: Tumor necrosis factor-α, TNF- α; Transforming growth factor-β, TGF-β, IL, Interleukins (IL-6, IL-8, IL-1β). Chemokines: CX3C

family (CX3CL1, Fractalkine), CCL family (CCL2, CCR3, CCL7, CCL8, CCL12), CXC family (CXCL4, CXCL12/stromal cell-derived factor 1, SDF1). Chemokine receptors: CC-chemokine

receptor family (CCR1, CCR2). RT-effects: +, positive; Up-upregulation/increased; –, negative.

radiation-induced cognitive impairment in preclinical models
(92, 93), and are well-tolerated in clinical trials (94).

Neurons can communicate with astrocytes, oligodendrocytes,
and microglia via signal molecule release from pre-synaptic
terminals. Similarly, tumor growth is stimulated by factors
such as electrical activity (95), release of neuroligin-3 (96,
97), neurotransmitters, and neurotrophins (96, 98). Within the
TME, glioma cells release microvesicles, transporting miRNAs,
mRNAs, angiogenic, and oncogenic factors which promote
TAMs, inducing proliferation, infiltration, and immune detection
evasion (99).

Astrocytes within the GBMTME exhibit a reactive phenotype,
characterized by increased expression of glial acidic fibrillary
protein (GFAP) (100). Reactive astrocytes release cytokines,
matrix metalloproteinases, stromal cell-derived factor 1 (SDF-
1) (101), and upregulate survival genes via gap junction
communication with glioma cells, promoting tumor invasiveness
and growth (102, 103).

The multiplicity of mechanisms by which the TME promotes
glioma growth creates both challenges and opportunities.
Although the various pro- tumorigenic activities of TAMs have
prompted interest in eliminating them from the TME via CSF1
inhibition (104), the importance of monocytes for innate defense

is suggested through increased gliomas in preclinical CSF1
mutants (105) and pharmacologic activation of macrophages
to promote glioma phagocytosis (106, 107). Pro-tumorigenic
features of the TME such as hypoxia, ECM changes, and
neuroinflammation may be augmented following RT. Despite
standard clinical use, certain impacts of prior radiation on the
TME likely nurture growth of recurrent glioma.

EFFECTS OF RADIATION THERAPY ON
THE GBM MICROENVIRONMENT

Although RT remains a first-line GBM therapy, dose-dependent
risk of devastating neurologic effects precludes doses sufficient
for disease eradication, making recurrence inevitable (12, 108,
109). Over 90% of GBM patients experience recurrence at
original lesions and 5% develop multiple lesions after RT (110–
112). In contrast to intracranial metastatic tumors, which can be
eliminated via localized or whole-brain radiation, glioma stem
cells survive RT and eventual recurrence is fostered by radiation-
induced changes in the TME (113, 114).

Many radiation-induced changes in the TME have been
documented (115, 116). Ionizing radiation (IR) generates
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reactive oxygen and nitrogen species (ROS/RNS) that directly
damage DNA, proteins, and phospholipid membranes (64). RT
is partially dependent upon double-stranded DNA breaks that
overwhelms cellular repair mechanisms, triggering apoptosis
in proliferating cells (117). GSCs that escape apoptosis persist
in a relatively non-proliferative state until recurrence. Changes
in irradiated TME include increased oxidative stress, hypoxia,
neuroinflammation, altered cell adhesion molecule expression,
changes in ECM, stem/progenitor cell death, cellular senescence
induction, and impaired neurogenesis (70, 118–121), followed by
neo-angiogenesis, vasculogenesis (114), and tumor recurrence.
The extent that these radiation-induced impacts may augment
aggressiveness of recurrent tumors is a growing research area.
However, the extent that radiation-induced senescence may
exacerbate pro-tumorigenic microenvironment following
RT is an underexplored avenue. We here discuss the key
pathophysiologic changes of the irradiated brain and GBM
microenvironment, and the central role ECM/cell-matrix
interactions play in manifesting these processes. Their collective
involvement in the establishment of a reactive TME that is
supportive of aggressive tumor growth, is illustrated in Figure 1.

Radiation-Induced Cellular Senescence
Senescence is a defensive mechanism in response to stress that
arrests cells at risk for malignant transformation. Radiation-
induced DNA damage and oxidative stress, cytotoxic exposure,
and/or aging, prompts apoptosis, unless upregulation of cyclin-
dependent kinase inhibitors such as p16 or p21 allows senescence
induction (122). GBM cells harbor a heterogeneous array
of mutations, leading to constitutive activation of repair
mechanisms that prevent apoptosis in response to RT, despite
damage that would otherwise render cells unviable (123). Such
mutations may facilitate upregulation of oncogene-induced
senescence (124, 125), prompting a baseline level of senescence-
associated signaling in GBM that is amplified following radiation
in a dose- and time-dependent manner (126, 127).

A hallmark feature of senescent cells is the “senescence-
associated secretory phenotype” (SASP), characterized by
release of proinflammatory signaling molecules, proteolytic
enzymes, and ECM components (128). Together with MMPs,
proinflammatory SASP components are thought to create a
microenvironment that promotes survival, proliferation, and
dissemination of neoplastic cells across brain parenchyma
(129, 130). Such adaptations may contribute to increased
aggression of recurrent GBM and have been shown in multiple
cancers to promote tumor progression and metastatic spread
(124). SASP also has paracrine effects, spreading the phenotype
to neighboring cells (131). Discovery of senolytic drugs and
their therapeutic combinations, such as dasatinib and quercetin
(D+Q) has raised hopes that senescent cell-induced diseases
may soon be curable (132, 133). Since radiation is among the
most reliable experimental strategies to induce senescence, it is
reasonable that the previously radiated tumor will be exposed
to SASP. Prior work has demonstrated that co- implantation of
radiated with non-radiated cells increases tumor aggressiveness.
We (134), and others (133, 135–137), have observed increased
tumor aggressiveness after implantation of glioma cells into

previously radiated hosts. Given the potential for senescent
cells to induce tissue dysfunction and inflammation, several
studies have addressed the potential of metabolically active
senescent cells and SASP factors to exacerbate recurrences of
various cancers (124, 138, 139). Though much work remains to
establish mechanisms, cellular senescence after radiation likely
has important implications for recurrent GBM.

Elevated levels of ROS cause matrix dysfunction through
remodeling and fragmentation of collagen and proteoglycans,
pronounced protease activity, and altering cytoskeletal
contractility (by modulating actin, and tubulin), fueling
senescent phenotypes marked by irregular collagen meshworks
and ECM degradation (140–142). These phenomena may
reduce tension and elasticity of affected tissue, supporting
invasion and metastasis. Oxidative stress and associated
mitochondrial function can further propagate RT-induced
senescence (143–145).

Radiation-induced bystander effects contribute to cellular
senescence, as well as tumor promotion and recurrence (146).
Bystander effects are defined by a cell’s reaction to its neighboring
irradiated cell, with consequences of damage to nearby healthy
brain regions. Irradiated GBM cells have shown to induce
bystander effects including increased cell growth, micronucleus
formation, and apoptosis in non-irradiated tumor cells (147–
149). These bystander processes can ignite ROS production and
mitochondrial dysfunction, leading to persistent or irreparable
DNA damage, activation of DNA damage responses, irreversible
cell cycle arrest, and culmination of cellular senescence (128).

Radiation-Induced Adaptations Facilitate
Aggressiveness of Recurrent GBMs
It has been said that what doesn’t kill you makes you stronger,
and in certain respects GBM exemplifies such adaptive behavior.
Tumors adapt to radiation-induced oxidative stress through
several mechanisms, including metabolic shifts (63), elevated
antioxidant peptide production, and intra-tumoral hypoxia
generation (150, 151).

Hypoxic conditions facilitate tumor radio-resistance and
recurrence, as ROS are insufficient for apoptosis induction
(152). Radiation-induced stabilization and activation of hypoxia-
inducible factor 1 (HIF-1) elicits protective processes through
regulating downstream target genes, such as nitric oxide (NO),
which can stimulate immunosuppressive and anti-apoptotic
responses (62, 67).

Vascular remodeling is a hallmark of IR injury. Radiation
affects vascular integrity, causing vasculopathy, vascular
depletion, hypoxia, and neo-angiogenesis (153–155). Levels of
vascular endothelial growth factor (VEGF) and angiotensin are
increased in GBM post-radiation, contributing to angiogenesis
and tumor growth (67, 156), while SDF promotes vasculogenesis
(114, 156). Radiation induces changes in cell density, tight
junctions, and increased BBB permeability to inflammatory cells,
and perhaps pharmacologic agents (11, 70, 154, 157).

Radiation-induced alterations in ECM composition have
incompletely understood impacts on cognitive function
and tumor infiltration and proliferation. Specific proteins

Frontiers in Oncology | www.frontiersin.org 4 November 2018 | Volume 8 | Article 503

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Gupta and Burns The Radiated Glioblastoma Microenvironment

FIGURE 1 | Effects of RT on the glioblastoma (GBM) tumor microenvironment (TME). ECM and its interaction with cellular components such as Glia (microglia and

astrocytes), glioma cells, endothelia, pericytes and peripherally derived tumor infiltrating leukocytes (TILs), play a central role in the GBM TME, which contributes to

tumor cell survival, proliferation, migration, and invasion. The illustration represents the key pathophysiological processes and their interactions within the radiated

TME. Outer blue circle represents biological phenomenon (1–8) that are directly impacted by RT. The inner green circle represents the reactive GBM TME, with its

various processes, alterations or adaptive mechanisms that are upregulated in effect of RT, described from (a–i). Blue arrows indicate the “cause and effect”

interactions between these processes facilitating GBM pathology and, dark blue arrows signify the primary role of the respective alterations in facilitating cell motility

and invasiveness and thus aggressive tumor recurrence. Radiation injury leads to neuronal damage, overactivation of M1 microglia, and elicits acute inflammatory

response, with high ROS production in neurons and glia cells. There is alteration in ECM composition, and ECM-cell interactions. MMP/TIMP disbalance degrades

Col-IV in basement membranes, which leads to blood brain barrier leakage. Pronounced inflammation causes infiltration of leukocytes (monocyte derived cell

populations, macrophages), which along with activated microglia form the TAMs. TME of progressive tumors favor M2 phenotype and establishment of chronic

inflammation. Redox dysregulation in effect of RT causes exacerbation of SASP phenotype and tumor cell adaptive processes, like Hypoxia, metabolic shifts, and

redox regulation (ROS/NO production), leading to neo-angiogenesis and ECM remodeling. These alterations collectively make the TME permissive to glioma cell

migration and invasion, thereby contributing to resistance and an aggressive tumor recurrence. All these biological processes in the reactive TME are potential

therapeutic targets for improved glioblastoma care, with having ECM-cell interactions central to the manifestation of each of these phenomenon. RT, Radiation

therapy; ECM, extracellular matrix; TAM, Tumor associated macrophages; TILs, Tumor infiltrating leukocytes; MMP, matrix metalloproteases; TIMP, Tissue inhibitor of

metalloproteases; Col-IV, collagen-type IV; BBB, blood brain barrier; ROS, reactive oxygen species; NO, Nitric oxide; SASP, Senescence associated secretory

phenotype; M1/M2, proinflammatory or immune suppressive phenotypes of TAMs, respectively.

involved in ECM biosynthesis (brevican, vitronectin, tenascin
C, hyaluronin, lysyl oxidase) (25–27, 47, 52), degradation
(matrix metalloproteinases) (56–59), signal transduction
(melanoma differentiation-associated gene 9/Syntenin) (51),
and ECM-glioma cell interactions (ICAM-1, DDR-1, integrins)
(53–55, 158) are upregulated following radiation. These
alterations may facilitate tumor cell infiltration and further

exacerbate impacts of radiation on tumor cells themselves. These
alterations include induction of a pro-migratory, p53-mediated
mesenchymal phenotype (159). Additional p53-independent
changes have been reported, including transcriptional regulation
(45), integrin expression, MMP expression and activity
(56, 57, 59, 160), altered membrane type 1 MMP and tissue
inhibitor of MMP-2 expression, and increased BCL-2/BAX
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expression (55), resulting in apoptosis resistance and enhanced
migration.

Effects of Radiation on Inflammation in the
GBM Microenvironment
Radiation-induced vascular permeability leads to infiltration
of immune cells into brain parenchyma. RT-induced chronic
inflammation promotes high intracellular NO in glioma
cells (161), causing stabilization of HIF-1 and inhibition
of tissue inhibitor of matrix metalloproteases-1 (TIMP-1)
(162, 163). HIF-1-induced expression of stromal-derived factor
1 (SDF-1) promotes recruitment of macrophages following
RT (71, 164). Elevated NO also inhibits tissue TIMP-1,
contributing to ECM remodeling and tumor cell invasion
(60, 165).

Radiation-induced cellular damage induces astrocyte gliosis,
characterized by increased GFAP expression (73, 74), mediated
by oxidative stress and microglial release of prostaglandins (74).
Radiation-induced redox signaling profoundly alters microglial
function. Differential expression of iNOS and arginase-1 in M1
vs. M2 profiles provides the basis of redox control in TAM
phenotypes (166). Nuclear factor (erythroid-derived 2)-like 2
(NRF2) regulates redox dynamics and favors an M2 phenotype
with cytoprotective effects (167, 168). Additionally, glioma cells
and stromal cells maintain a pool of antioxidant peptides, such as
glutathione and thioredoxin, protecting them against radiation-
induced redox (169, 170). Differential ability of glioma cells to
modulate redox reactions may be a mechanism by which certain
cancer cells are more radioresistant than others. Combinatorial
effects of RT on the TME lead to increased aggressiveness of
recurrent GBM.

The extent that M1 vs. M2 polarization states relate to
radiation-induced changes in microglia remains unclear. The
M1 polarization state is most characteristically defined as that
exhibited by systemic monocytes upon in vivo exposure to
lipopolysaccharide, compared to M2 phenotype following IL4
exposure. Though this terminology has been widely extended
to microglia, the actual microglia activation states are almost
certainly more complex. To date, the transcriptional profiles
of radiated mouse microglia have been described 24 h and
1 month after whole brain radiation, yielding phenotypes
unique from, but partially overlapping with published M1
and, to a lesser extent, M2 phenotypes. Notably, the degree
of ECM changes induced in radiated microglia exceeded both
M1 and M2, while closely approximating changes observed
in aged microglia (171). How this pertains to radiation-
induced changes in the radiated TME is unclear, however, our
unpublished observations demonstrate strongest enrichment
of radiated microglial genes in the mesenchymal GBM
subtype, as well as patients with the worst prognosis. Poorer
prognosis of aged patients with GBM is well-documented.
Whether the more radiation-like polarization state of aged
microglia contributes to such poorer outcomes remains
unknown. However, given the recurrent theme of chronic
inflammation, in GBM, radiation, aging, and neurodegeneration,
efforts to modulate the inflammatory microenvironment of

both primary and recurrent GBM are of broad interest to
attenuate tumorigenesis and enhance cognitive outcomes
following radiation (172, 173). Given the differences in
the neuroinflammatory phenotype of rodents and humans,
mechanistic studies specifically interrogating human disease will
be paramount (174).

THERAPEUTIC IMPLICATIONS AND
FUTURE DIRECTIONS

Most mortalities are due to GBM recurrence. Most recurrent
tumors arise from the previously radiated location. As such,
understanding and combating mechanisms via which RT
may augment pro-tumorigenic mechanisms in the GBM
microenvironment is necessary to facilitate long-term survival.
GBM invasiveness is induced by radiation and facilitates distant
failures in the event of prolonged local control. Systemic
radiosensitizers in combination with RT are being explored to
enhance the effects of radiation with aims of lowering radiation
and chemotherapy doses with improved efficacy (175). Whether
senolytics may complement other classes of radiation sensitizers
remains unknown.

RT-induced ECM alterations for GBM infiltration are
potentially important therapeutic targets. Prior studies on
inhibition of ECM biosynthetic and degradative processes,
and receptor blockade to prevent ECM-cell interactions for
cancer prevention, further support this idea (176, 177).
Targeting cytoskeletal dynamics is also a proposed therapeutic
strategy (178). Targeting microglial-ECM interactions that
promote pro-tumorigenic phenotypes in GBM may also
offer opportunities for therapeutic intervention. Developing
technologies to anatomically direct targeted therapies to a
radiated region may provide capabilities akin to limit off-target
effects through use of radiation sensitizers, senolytics, or other
agents selectively active in radiated tissue (179).

This work has discussed a variety of challenges for recurrent
GBM management, highlighting important roles of the
TME and associated matrix-cell interactions in instigating
pathophysiological processes. Radiation-induced alterations
in the microenvironment that can serve as targets for
therapeutic intervention are summarized in Table 1, whereas
the immunostimulatory role of hypofractionated radiation as an
immunotherapy component is described by others (180) and us
(Rajani et al, article under preparation). Importantly, it should
be emphasized that no single therapy will likely be sufficient for
tumors as heterogeneous as GBM and combinatorial treatment
may be required. Balancing pros and cons of RT in concert with
targeted therapies will provide an ongoing focus of therapeutic
efforts for glioblastoma. Translational strategies are needed that
can yield mechanistic biomarkers of efficacy for optimization of
multi-drug approaches.

CONCLUSIONS

Understanding and targeting the GBM microenvironment
is no less important than targeting the biology of GBM
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cells. GBM infiltration depends on unique features of the
CNS microenvironment. Several lines of evidence suggest
long-term sequelae of radiation can exacerbate recurrent
glioma. Understanding lasting impacts of radiation and
other therapies on the TME will be necessary to overcome
recurrent disease. Two other take-home points are worth
emphasizing:

1) Unlike heterogeneous GBM cells that can out-mutate targeted

therapies, the genetic stability and thus inherently greater

predictability of tumor stroma should offer a tangible focal

point for targeted therapies
2) The many mechanisms by which GBM cells harness the TME

to their advantage should encourage multidisciplinary efforts

to develop and translate synergistic multi-target therapies

optimized to the unique biology of the CNS.
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