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Abstract

Many animal and plant viruses rely on vectors for their transmission from host to host. Grapevine fanleaf virus (GFLV), a
picorna-like virus from plants, is transmitted specifically by the ectoparasitic nematode Xiphinema index. The icosahedral
capsid of GFLV, which consists of 60 identical coat protein subunits (CP), carries the determinants of this specificity. Here, we
provide novel insight into GFLV transmission by nematodes through a comparative structural and functional analysis of two
GFLV variants. We isolated a mutant GFLV strain (GFLV-TD) poorly transmissible by nematodes, and showed that the
transmission defect is due to a glycine to aspartate mutation at position 297 (Gly297Asp) in the CP. We next determined the
crystal structures of the wild-type GFLV strain F13 at 3.0 Å and of GFLV-TD at 2.7 Å resolution. The Gly297Asp mutation
mapped to an exposed loop at the outer surface of the capsid and did not affect the conformation of the assembled capsid,
nor of individual CP molecules. The loop is part of a positively charged pocket that includes a previously identified
determinant of transmission. We propose that this pocket is a ligand-binding site with essential function in GFLV
transmission by X. index. Our data suggest that perturbation of the electrostatic landscape of this pocket affects the
interaction of the virion with specific receptors of the nematode’s feeding apparatus, and thereby severely diminishes its
transmission efficiency. These data provide a first structural insight into the interactions between a plant virus and a
nematode vector.
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Environnement (SPE-INRA) and from the Conseil Interprofessional des Vins d’Alsace (CIVA). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: gerard.demangeat@colmar.inra.fr (GD); ritzenth@unistra.fr (CR)

¤ Current address: Division of Structural Biology, Oxford Particle Imaging Centre, Oxford, United Kingdom

" These authors share senior authorship.

Introduction

Efficient transmission from host to host by vectors is an

important biological feature shared by many animal and plant

viruses. Arthropods transmit many viruses to mammals and plants.

Examples include highly pathogenic viruses such as Rift Valley fever

virus, Dengue virus or Chikungunya virus, primarily transmitted to

animals and humans by Aedes spp. mosquitoes [1,2], Tick-borne

encephalitis virus transmitted by ticks [3] or Sharka/plum pox virus

disease affecting stone fruits and vectored by aphids. In animals,

transmission by vectors is limited to some genera such as Alphavirus

Flavivirus, Rhabdovirus or Reoviridae and requires a replication cycle

in the vector [4]. In contrast, nearly all plant viruses depend on

vectors for their transmission. Non-enveloped viruses - the vast the

majority of all plant viruses - are generally specifically acquired by

their vectors, but do not replicate in them [5,6,7,8].

Over the years, virus transmission has gradually been

recognized as a specific process but the molecular mechanisms

governing the recognition between a virus and its vector are far

from being unraveled. Comparative studies of transmissible and

non-transmissible plant virus isolates have led to the identification

of determinants in capsid proteins (CP) [9,10,11,12]. In addition to

the CP, some viruses require additional viral proteins referred to as

helper components for their transmission by vectors (HC) [7,8,13].

HCs are viral proteins capable of engaging interactions with the

viral CP and putative receptor molecules from the vector. Thus,

they act as bridging molecules.

Various motifs in CPs or HCs required for transmission are

described for a broad range of plant viruses, in particular members

of the genera Potyvirus, Caulimovirus and Cucumovirus vectored by

aphids. For example, the rod shaped potyviruses have DAG and

PTK motifs in their CP and HC-pro, respectively [14,15,16]. In

contrast, in the icosahedral Cucumber mosaic virus (CMV), the CP is

the sole viral determinant of transmission [17]. There, the CP that

folds into ß-barrel domains exposes a conserved and negatively

charged bH-bI loop exposed at the surface of the virion to
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establish electrostatic interactions with components inside the

aphid’s mouthparts [18,19]. In Cauliflower mosaic virus (CaMV),

transmission necessitates two HC proteins named P2 and P3 in

addition to the CP. Together these proteins form a transmissible

viral complex whose assembly depends on interactions between

coiled-coil domains [20,21,22] and components of the host plants

[23]. This complex is thought to be specifically retained in the

acrostyle, a specialized anatomical structure in the aphid stylet

where virus receptor proteins accumulate [24,25].

Less is known about the transmission by ectoparasitic nematodes

of soil-borne viruses belonging to the genera Nepovirus and Tobravirus.

In the rod-shaped tobraviruses, the partly unstructured C-terminal

tail of the CP is necessary but not sufficient to promote transmission

and other viral proteins may act as HC [26,27,28]. In nepoviruses,

the CP that assembles into icosahedral particles is the sole viral

determinant involved in transmission specificity, as shown for

Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) which

are transmitted by two different species of Xiphinema nematodes, X.

index and X. diversicaudatum, respectively [29,30]. Recently, a 3D

homology model of GFLV based on the crystal structure of Tobacco

ringspot virus (TRSV) [31], revealed the existence of a stretch of 11

amino acids within the BC loop of the B-domain that differs

between GFLV and ArMV. The transmission of GFLV by X. index

was abolished when this sequence was replaced by the correspond-

ing region from ArMV. Hence, this loop has all the properties of a

determinant for GFLV transmission [32].

The general feature that emerges from all these analyses is that

transmission of non-circulative plant viruses involves well-defined

and precise interactions between viral and vector molecules. In this

respect, parallels can be established with virus-receptor interac-

tions used by animal viruses to enter host cells [33]. However, our

current knowledge of the vector-assisted transmission of animal or

plant viruses lags far behind that of animal virus-receptor

interaction whose details are known in some cases up to the

atomic resolution. In the coming years the challenge will be to

characterize the key molecules of the vectors engaged in

transmission and to gain high-resolution structural insights into

their interactions with the cognate viruses.

To understand the molecular details controlling virus-vector

interactions, we have use the model pathosystem GFLV - X. index.

Here, we have identified a GFLV variant (GFLV-TD) poorly

transmitted by X. index that differs from its parent strain (GFLV-

F13) by a single Gly297Asp mutation. Using X-Ray crystallography

in combination with cryo-electron microscopy 3D reconstruction,

we solved the crystal structures of GFLV-TD and GFLV-F13 at

2.7 Å and 3.0 Å resolution, respectively. These 3D structures

highlighted the dramatic effect of a single amino acid substitution

in GFLV transmission and helped identify a pocket at the virus

surface with predicted function in the specific recognition of

GFLV by X. index. Altogether, the presented results give a first

structural insight into the molecular mechanism needed for the

specific binding of a plant virus to its nematode vector.

Results

Identification and characterization of a GFLV variant
defective in nematode transmission

GFLV strain F13 (GFLV-F13) was first isolated from an

infected grapevine in southern France in 1964 [34]. In agreement

with its classification in the Nepovirus genus, it contains a bipartite,

linear, single stranded positive sense RNA genome. RNA1 plays

an essential role in replication and RNA2 is necessary for

movement and encapsidation (Figure 1A). Ever since its isolation,

GFLV-F13 was propagated by mechanical inoculation of the

systemic herbaceous host Chenopodium quinoa. After four decades of

successive passages onto C. quinoa, the nematode transmission of

varied GFLV-F13 inocula was assessed. This led to the

identification of a variant poorly transmitted by X. index named

GFLV-TD (Figure 1B). Beside the defect in transmissibility,

GFLV-TD was indistinguishable from its wild-type parental strain

GFLV-F13 in terms of symptom development on C. quinoa,

reactivity to GFLV antibodies in DAS-ELISA and virus

purification yields (data no shown). Similarly, in transmission

assays (Figure S1), no difference in the ability of X. index to ingest

GFLV-F13 and GFLV-TD was detected by RT-PCR after a

monthly acquisition access period (AAP) (Figure 1C, top panel).
However, at the end of the inoculation access period (IAP), GFLV-

TD was not detectable by RT-PCR in X. index (Figure 1C,

bottom panel), suggesting that it is poorly or not retained by

nematodes. These results were consistent with the transmission

deficiency of GFLV-TD likely due to the paucity or incapacity of

the virus to be retained by the vector at specific sites within its

feeding apparatus.

Since the CP is the sole determinant required for GFLV

transmission [29,30], the GFLV-TD CP coding sequence was

characterized by IC-RT-PCR and sequencing to identify potential

amino acid mutations. A single Gly to Asp mutation at position

297 was found. To assess whether this mutation explained the

deficiency in nematode transmission of GFLV-TD, it was

introduced into the GFLV-F13 RNA2-encoded CP gene by site-

directed mutagenesis of the corresponding cDNA infectious clone

[35]. Similar to the natural GFLV-TD variant, the site-directed

mutant, named GFLV-G297D, was poorly transmitted by X. index

(Figure 1B). In addition, GFLV-G297D was not retained by the

vector after the IAP, therefore mimicking GFLV-TD (Figure 1C).

These results confirm the critical role of Gly297 in GFLV

transmission efficiency.

GFLV-F13 and GFLV-TD structures
To determine their atomic structures, GFLV-TD and GFLV-

F13 virions were crystallized as described [36]. Two crystal forms

were obtained and analyzed (Table 1). The asymmetric unit of

Author Summary

Numerous pathogenic viruses from animals and plants rely
on vectors such as insects, worms or other organisms for
their transmission from host to host. The reasons why
certain vectors transmit some viruses but not others
remain poorly understood. In plants, Grapevine fanleaf
virus (GFLV), a major pathogen of grapes worldwide and its
specific vector, the dagger nematode Xiphinema index,
provides a well-established model illustrating this speci-
ficity. Here, we determined the high-resolution structures
of two GFLV isolates that differ in their transmissibility. We
show that this difference is due to a single mutation in a
region exposed at the outer surface of the viral particles.
This mutation does not alter the conformation of the
particles but modifies the distribution of charges within a
positively-charged pocket at the outer surface of virions
which likely affects particle retention by X. index and,
thereby also transmission efficiency. Therefore, we pro-
pose that this pocket is involved in the specific recognition
of GFLV by its nematode vector. This work paves the way
towards the characterization of the specific compound(s)
within the nematodes that trigger vector specificity and
provides novel perspectives to interfere with virus
transmission.
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the GFLV-TD crystal (PDBid 2Y26) contains 20 CP subunits and

that of GFLV-F13 contains 60 subunits, i.e. the entire virion. The

structure of GFLV-TD was solved by molecular replacement using

a cryo-electron microscopy model at 16.5 Å resolution (Figure
S2) followed by solvent flattening, non crystallographic symmetry

(NCS) averaging and refinement at 2.7 Å (Table 1). The

complete GFLV-TD particle was generated by symmetry

operations and used as a model to solve the structure of GFLV-

F13 (PDBid 2Y7T, 2Y7U, 2Y7V) by molecular replacement at

3.0 Å (Table 1).

In both cases, the icosahedral GFLV capsid is formed by 60

copies of the CP arranged according to a pseudo T = 3 symmetry

(Figure 2A). The CP folds into three jelly-roll b sandwiches. To

follow the TRSV nomenclature, the three jelly-roll domains were

named C, B, and A from the N- to C- termini, respectively. Two

linking peptides connect the C-B and B-A domains (Figure 2B).

The B and C domains clustered at the 3-fold axis. Five A-domains

organized around the 5-fold axis form a protrusion at the capsid’s

surface (Figure 2A). The particle outer radius seen down the 5-

fold, 3-fold and 2-fold axes is 155 Å, 141 Å and 130 Å,

respectively (Figure 2C). The A-domain deviates most from the

b sandwich fold of the other domains with an extensive insertion

between the bC and the bD strands that comprises one additional

strand (Figure 3). This is in contrast with the capsid structures of

closely related comoviruses where two strands are added at this

position [37]. Along each 5-fold axis, i.e. the summit of the

pentamers, a channel with an inner diameter of 7.1 Å contains an

additional electron density that may be attributed to an ion

(Figure 2D). However, the distance to the neighboring Lys atoms

is incompatible with direct hydrogen or ionic bonding

(Figure 2D), and suggests, in agreement with the presence of

surrounding density peaks, that the ion is linked via intermediate

water molecules.

The structural variability of CP subunits within a capsid was

very low. The average root-mean-square distances (r.m.s.d.) of

pair-wise CP superposition were 0.0760.01 Å and 0.0960.02 Å

for GFLV-TD (20 CPs) and for GFLV-F13 (60 CPs), respectively

(Table S1). The superposition of the GFLV-F13 asymmetric unit

(20 CPs) onto one third of the GFLV-TD caspid as rigid blocks,

led to an r.m.s.d. of 0.4 Å for 10080 Ca positions. Higher

deviations were found locally with a maximum distance of 1.9 Å at

crystal packing contacts. At the level of individual CPs, the two

viruses were very similar with an average r.m.s.d. of 0.1360.01 Å

over 504 Ca atoms (Table S1, Figure S3A). Overall we could

not find any significant conformational change, neither between

the two variants, nor inside their respective capsid.

Comparison of GFLV and TRSV structures
GFLV and TRSV are both transmitted by Xiphinema nematodes

[38,39]. As mentioned above, a 3D model of GFLV based on the

crystal structure of TRSV helped identify a region at the virion’s

surface with function in nematode transmission [32]. As expected

from CP sequence homology, the CP of GFLV and TRSV display

similar 3D architectures with a good superimposition of the CP

folds (Figure S3B). Both virions have about the same outer

dimensions but those of TRSV are slightly smaller than those of

GFLV. The greatest capsid radius of TRSV measured down the 5-

fold, 3-fold and 2-fold symmetry axes is 155, 137 and 123 Å [31].

Overall contacts between the CP subunits of GFLV are the same

as those described for TRSV [31]. Subunit interfaces on the 2-fold

Figure 1. Involvement of capsid protein residue 297 in nematode transmission. (A) Genomic organization of GFLV. The 59 and 39
untranslated regions are denoted by single lines and the VPg is represented by a black circle. Polyproteins encoded by RNA1 and RNA2 are cleaved in
five (1A–1E) and three (2A–2C) final maturation products (open boxes), respectively. 1B, helicase (Hel); 1C, viral protein genome-linked (VPg); 1D,
protease (Pro); 1E, RNA-dependent RNA polymerase (Pol); 2A, homing protein (HP); 2B, movement protein (MP) and 2C, coat protein (CP). As
indicated, the CP is composed of three domains called C, B, and A. In the variant GFLV-TD, the CP residue Gly at position 297 is replaced by Asp. (B)
Transmission of wild type GFLV-F13, GFLV-TD and GFLV-G297D (the two latter with a Gly297 to Asp297 substitution) and wild type ArMV by X. index and
X. diversicaudatum. Transmission rates are expressed as the percentage of ELISA-positive plants. (C) Virus detection in X. index at the end of the AAP
and the IAP showed that the mutated viruses and ArMV were ingested but not retained by nematodes. Thirty nematode specimens exposed to
source plants infected with GFLV-F13 (lane 1), GFLV-TD (lane 2), GFLV-G297D (lane 3), ArMV (lane 5), or mock inoculated plants (lanes 4 and 6) were
randomly collected and tested by RT-PCR with GFLV (lanes 1–4) or ArMV (lanes 5 and 6) specific primers. DNA products were analyzed by
electrophoresis on 1.5% agarose gels.
doi:10.1371/journal.ppat.1002034.g001

Table 1. Crystallographic analysis of GFLV particles.

Virus GFLV-TD GFLV-F13

Data collection statistics £

Beamline ESRF/BM30 SLS/X06DA

Space group (number) P213 (198) P1 (1)

Unit cell lengths a, b, c (Å) 408.0 279.4 279.5 293.3

Unit cell angles alpha, beta,
gamma (u)

90.0 102.4 116.4 108.2

Resolution range (Å) 36 – 2.7 135 – 3.0

Highest resolution shell (Å) 2.77 – 2.7 3.08 – 3.0

No. of unique reflections 563009 (32448) 1214336 (73170)

Completeness (%) 92.0 (72.0) 88.1 (71.7)

Multiplicity 11.0 (3.1) 2.0 (1.9)

Rmerge (%){ 12.5 (68.1) 10.0 (35.0)

,I/sigma(I). 18 (1.9) 9.2 (2.4)

Molecular replacement

Resolution range (Å) 30 – 15 15 – 6.0

Asymmetric unit content 20-mer 60-mer

Model EM map GFLV-TD

Correlation/R-factor(%)# 60.4/56.4 70.6/34.7

Refined atomic structure

Resolution range (Å) 36 – 2.7 135 – 3.0

R-factor/R-free (%)* 19.3/21.0 19.0/20.7

Number of capsid and solvent
atoms

79100/556 237060/–

Protein and solvent ADPs
(Å2)**

40.9/36.9 35.7/–

R.m.s.d. on bonds (Å) and
angles (u)

0.009/1.19 0.010/1.20

£Statistics are given for reflections with I. = 0 and values in parentheses are for
the highest resolution shell.
{Rmerge = shkl si |Ii(hkl) - ,I(hkl).|/shkl si Ii(hkl).
#The high R-factor can be explained, among other reasons, by the model used

(a low resolution EM reconstruction, without filtering) and the absence of a
bulk solvent correction.

*The cross-validation (R-free) was calculated with 5% of the data.
**ADPs: Atomic displacement parameters.
doi:10.1371/journal.ppat.1002034.t001
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Figure 2. Crystal structures of GFLV-F13 and GFLV-TD. (A) The structures of GFLV-F13 and of GFLV-TD are very similar as illustrated by the
extremely low r.m.s.d. values (see Table S1). For this reason only the highest resolution model (GFLV-TD) is represented in this figure. The ribbon
diagram of the virus capsid is viewed down an icosahedral 2-fold axis normal to the plane of the paper. Sixty copies of the CP are arranged in an
icosahedral pseudo T = 3 symmetry. The black line delineates one CP position. The grey pentagon, triangle and oval symbolize the icosahedral 5-fold,
3-fold and 2-fold symmetry axes, respectively. (B) Each CP comprises three jellyroll b sandwiches termed C, B and A domains from the N- to the C-
terminus and are depicted in green, red and blue, respectively. A star indicates the position of residue 297. (C) The central section of the 2Fo-Fc
electron density map (2 s contour level) of a GFLV-F13 particle is viewed down a viral 2-fold axis. The outer radial dimensions along the icosahedral
symmetry axes are indicated. (D) A thin slice of 2Fo-Fc electron density map (contoured at 1s) reveals a strong density peak (about 3 s in the 2Fo-Fc
and 17 s in the Fo-Fc map) on the 5-fold axis of GFLV-TD. The arrow symbolizing the axis points towards the outer surface of the particle as well as
neighbouring charged residues (Lys414 and Glu411) whereas Phe412 side chains are directed towards the viral cavity. The right panel shows a slightly
shifted top view illustrating the organisation of the residues around the 5-fold axis. Five water molecules bridge Gly413 carbonyl groups and Asp411

side chains to the large central ion, possibly a phosphate coming from the crystallization medium.
doi:10.1371/journal.ppat.1002034.g002
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and 3-fold axes involve the aA’ helix in the C domain and the bHI

and bBC loops in the B and C domains, respectively (Figure S4).

The three jelly-roll domains of the GFLV and TRSV CPs are

nearly identical, except for the presence of extra a helices and two

supplementary b sheets in the GFLV structure (Figure 3). The

independent superimposition of the C, B and A domains showed

the A is the most divergent and C domains the most conserved

(Table S1). The most striking difference between TRSV and

GFLV is the GH loop located at the outer surface of the B

domain. In GFLV this loop is longer and much more prominent

than in TRSV (Figure S3B). Also, the N-terminal tail facing the

interior of the capsid in TRSV is absent in GFLV (Figure S3B).

This tail accounts almost exclusively for the size differences

between the two CPs (504 residues in GFLV vs 513 in TRSV).

Functional role of residue 297 in transmission
We previously hypothesized that residues important for

transmission are exposed at the virion outer surface [32].

According to the GFLV crystal structures, 381 out of 504 CP

residues are accessible to the solvent and 208 of them are located

at the surface of the virion (underlined in Figure 3). Remarkably,

among those, residue 297 lies in the most exposed part of the GH

loop in the B-domain and is highly accessible to the solvent

(Figure 2B, Figure S5). Sequence information and experimental

electron density unambiguously helped identify an Asp side chain

at this position in GFLV-TD (Figure 4). The conformation of the

GH loops in the structures from GFLV-F13 and GFLV-TD is

nearly identical with a maximum distance of 0.18 Å between

equivalent atoms (Figure 4) and therefore, cannot account for the

Figure 3. Alignment of the CP amino acid sequences of GFLV, ArMV and TRSV. Secondary structures observed in GFLV and TRSV crystal
structures are indicated by arrows (b strands) and grey blocks (a helices). The sequence alignment was created with Clustal X. The same color code as
in Figure 2 is used for strands to indicate the three CP domains: green, red and blue for the C, B, and A domains, respectively. Residues located at the
outer surface of the GFLV capsid are underlined. Residues present at position 297 in GFLV-TD, GFLV-F13, ArMV and TRSV are boxed in red. Regions R2,
R3 and R5 (see [32] are indicated below the alignments. Stars indicate residues at the bottom of the putative ligand-binding pocket.
doi:10.1371/journal.ppat.1002034.g003

Grapevine fanleaf virus Structure and Transmission

PLoS Pathogens | www.plospathogens.org 6 May 2011 | Volume 7 | Issue 5 | e1002034



loss of GFLV-TD transmission. Consequently, in the absence of

major differences between both structures, the addition of a

negatively charged side chain per CP resulting from Gly297Asp

substitution is presumably responsible for the loss of transmissibil-

ity by the nematode.

As mentioned above, a stretch of 11 residues within the CP

named region 2 (R2) is essential for GFLV transmission by X. index

[32]. Knowing that CP amino acid 297 also affects transmission

efficiency and that Gly297 and R2 are relatively close together

(Figure S5), we investigated whether both could act synergisti-

cally. To address this issue, GFLV amino acid residues in both

locations were exchanged by their ArMV counterparts. The single

substitution Gly297Ala generated a recombinant named GFLV-

G297A and the dual substitution of R2 and Gly297 generated a

recombinant named GFLV-R2G297A. Transmission assays

showed that GFLV-G297A was transmitted by X. index but not

by X. diversicaudatum (Figure 5). In contrast, GFLV-R2G297A was

no longer transmitted by either nematode species (Figure 5),

although virions were ingested by nematodes during AAP (Figure
S6). These results indicate that Gly297 can be substituted by Ala

but not by Asp without effect on transmission by X. index.

Moreover, the simultaneous substitution of Gly297 and R2 by

ArMV sequences is not sufficient to confer transmission by X.

diversicaudatum, suggesting that additional residues may be involved.

Identification of a putative ligand-binding pocket
The GFLV structure was inspected in the proximity of the

residue Gly297 and of the region R2 to identify additional residues

that may act as transmission determinants. Gly297 and R2 are

located at the edge of a positively charged pocket within the B-

domain, whereas most of the GFLV outer surface is negatively

charged (Figure 6A). The walls of this pocket are formed

essentially by the GH, BC and C9C0 loops encompassing Gly297,

R2 and the previously defined region R3 [32], respectively

(Figure 6B). The base of the pocket (Figure 6B, purple residues)

is formed by at least 11 residues deeply embedded in the capsid

shell but still accessible to the solvent (Figure 3, stars). In the

crystal structures of GFLV-F13 and GFLV-TD, the residues of the

GH, BC and C9C0 loops are well exposed at the outer surface of

the capsid (Figure 3, Figure S5). This includes the residues

Phe188+189, Thr192+195 and Leu197 from R2 which are different

between GFLV and ArMV and may participate in the specific

binding of GFLV to X. index (Figure 3 and [32]). Altogether, our

data suggest that a positively charged pocket located within the

GFLV CP B-domain between the 3-fold and 5-fold axes may

constitute a ligand recognition site.

Discussion

GFLV-TD is a natural variant of GFLV-F13 that emerged

spontaneously in the greenhouse after multiple mechanical

passages in C. quinoa plants over time. Loss of virus transmission

is not uncommon under such experimental conditions

[12,40,41,42,43]. However, to our knowledge this is the first

isolation and characterization of a spontaneously occurring

transmission-deficient nepovirus. In the case of GFLV-TD, CP

sequencing revealed that a single Gly297Asp mutation had

occurred. A reverse genetics approach confirmed the involvement

of CP residue 297 in the transmission deficiency of GFLV-TD by

X. index. In addition, the defect in transmission was correlated with

a lack of virus retention by X. index, although virus acquisition by

nematodes was not affected. Therefore, Gly297 is a bona fide

determinant of GFLV transmission efficiency.

The high-resolution structure of GFLV reveals an overall

organization well in agreement with its classification in the order

Picornavirales within the picorna-like super family [44,45]. The

GFLV capsid consists of 60 subunits, each containing three

distantly related jellyroll domains that may have arisen by

triplication of a single copy present in some ancestor virus and

Figure 4. Close-up view of the protruding GH loop within the CP B domain of GFLV-F13 and GFLV-TD. The conformation of the GH loop
in GFLV-F13 (A) and GFLV-TD (B) are identical. The only difference is restricted to the presence of additional electron density corresponding to the
Asp297 side chain in GFLV-TD in (B, star). 2Fo-Fc electron density maps are contoured at 1.2 s.
doi:10.1371/journal.ppat.1002034.g004
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subsequent divergent evolution [31,46]. The high degree of

similarity of the 3D structures of GFLV and TRSV (Figure S3,
Table S1) is in agreement with their classification in the same

genus [47]. Yet, the superposition of their capsid proteins is not

perfect. This is mainly due to small differences in the orientation of

subunits within particles and the length of surface loops, e.g. GH

loop in the B-domain. These differences certainly explain why

classical molecular replacement using homology models was

unsuccessful. Indeed, our initial 3D model of GFLV [32]

resembled more TSRV from which it was derived than the actual

Figure 6. Putative ligand-binding pocket. (A) Representation of the GFLV-F13 capsid with red, blue and white regions showing negative,
positive and neutral electrostatic surface potentials, respectively. The black line highlights a single CP subunit and arrows denote the 5-, 3-, and 2-fold
axes. (A1) Residue 297 is indicated by an open black circle on the left side of the positively charged pocket. (A2) Detailed view of the positively
charged pocket. The electrostatic potential was calculated with APBS and visualized from -3 to 3 k/e- with Chimera using a probe of 3 Å to display a
smoother surface. (B) Top views of the putative ligand-binding pocket at the surface of the GFLV-F13 capsid. (B1) View of GFLV-F13 outer-surface
residues at the same magnification and orientation than in A2. Residues of the putative ligand-binding pocket are colored using the following color
code: GH loop (purple), BC loop (yellow), C9C0 loop (blue) and base of the pocket (red). A green line delineates the Gly297 and region R2. (B2) Ribbon
view of the putative ligand-binding pocket using the same color code as in B1.
doi:10.1371/journal.ppat.1002034.g006

Figure 5. Nematode transmission of GFLV CP mutants. (A) The mutants differed in their CP B domain, some of them containing modifications
in the R2 region (residues 188 to 198) and/or at position 297. The nature of residue 297 is indicated and the R2 region consisted of GFLV (open
rectangle with orange border) or ArMV (grey rectangle with orange border) sequences. The sequence differences are highlighted in grey in the
enlargement of ArMV CP R2 region. (B) Transmission rate is expressed as the percentage of infected plants over the plants tested.
doi:10.1371/journal.ppat.1002034.g005
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crystal structure (Figure S3C). In contrast, the 16.5 Å cryoEM

map of GFLV (Figure S2) rapidly led to an unambiguous

solution. Overall, the resulting structures of GFLV-F13 and

GFLV-TD have identical architectures although they were

determined in different crystalline packings [36]. These findings

indicate that particles are quite rigid and, more importantly, that

the differential ability to be transmitted is not due to a

conformational modification but rather to an alteration of the

physical-chemical properties of their outer surface.

Single point mutations detrimental to virus transmission often

affect highly conserved residues. For instance, single mutations in

the conserved HI loop of CMV either reduce or abolish aphid

transmission [18]. Also, single mutations in the conserved PTK

motif of ZYMV HC-Pro [14] or in the DAG motif of TYMV CP

[48] hinder aphid transmission of potyviruses. In GFLV, Gly297 is

a highly conserved amino acid of the GH loop and our structure

shows that it is very accessible to the solvent. Out of the 238 GFLV

CP sequences available to date in GenBank, only three allelic

variants exist at this position: Ser297 (accession number 38604190),

Asn297 (accession number 86450421) and Asp297 (reported for

GFLV isolate CACSB5 from California with accession number

299118269 [49] and this work). The transmissibility of the Ser297

and Asn297 allelic variants and CACSB5 isolate is unknown. Here

we show that the Gly297Asp strongly affects transmission. We also

found that the Gly297Ala single mutant (GFLV-G297A) is still

transmitted by X. index, although Ala is the most frequent residue

at position 297 in the CP of ArMV strains. Altogether, this

indicates that the nature of the side chain of residue occupying the

position 297 is decisive for vector recognition.

Since the same structure is observed in GFLV-TD and GFLV-

F13, a conformational effect of the Gly297Asp mutation cannot

account for the deficiency in transmission of GFLV-TD. However,

the Asp297 side chain could create a steric hindrance and thereby

interfere with proper recognition of a ligand within the nematode

feeding apparatus. A more likely scenario is that Asp297 perturbs

the electrostatic potential at the surface of the virions and their

solvation shell via the addition of 60 negative charges in GFLV-

TD. A striking consequence of this alteration is a 2.5-fold increase

of the solubility of GFLV-TD with respect to that of wild-type

GFLV-F13. Another one is the different crystal packing [36]. In

the same way, alteration of the electrostatic potential may also

impair the binding and retention of GFLV inside the nematode

feeding apparatus, thereby reducing its transmissibility. Future

work will clarify which hypothesis, electrostatic potential or steric

hindrance, contributes most to the loss of transmission of GFLV-

TD.

Our results show that Gly297 and region R2 are transmission

determinants but they cannot alone explain the strict transmission

specificity between GFLV and X. index. Thus, these residues may

be part of an ensemble of surface residues with ligand binding

properties. In view of our structural data, it appears that they are

located at the edge of a pocket near the 3 fold axis whose walls are

formed essentially by the GH, BC and C9C0 loops within the B-

domain. This pocket is remarkable in several respects. First, it is

positively charged whereas most of the GFLV outer surface is

negatively charged (Figure 5A). Second, all three loops contain

residues that are protruding from the capsid outer surface

(Figure 3, Figure S5) and are therefore likely to be recognized

by compounds of the nematode feeding apparatus. Finally, these

three loops were previously identified for their possible involve-

ment in nematode transmission and the function of region R2

encompassing the BC loop was experimentally proven [32]. For all

these reasons, we suggest that this pocket may constitute a ligand

recognition site with critical function in GFLV transmission by X.

index. We also note that its topology resembles the receptor-binding

site of other picorna-like viruses, in particular the heparin binding

site of Foot-and-mouth disease virus (FMDV) where the pocket

occupies a similar position within the icosahedral asymmetric unit

(Figure S7) and contains important polar and positively charged

residues with ligand binding properties [50,51]. Whether the

occurrence of negatively charged residues in the pocket is

detrimental for GFLV transmission by its vector needs to be

confirmed. Indeed, so far only two mutants, namely Phe188Glu (i.e.

the first residue of R2, [32]) and Gly297Asp (described as GFLV-

TD in this work) have been identified in which an alteration of the

net electrostatic charge inside the putative ligand-binding pocket

was correlated to a defect in virus transmission.

This work provides a new framework for further analyses

aiming at precisely defining the structure and charge properties of

the binding pocket and of its importance for GFLV transmission

by nematodes. The knowledge of the underlying molecular

mechanisms is a prerequisite for the identification of a ligand

within the nematode feeding apparatus and the subsequent

development of novel strategies to control virus propagation in

vineyards.

In conclusion, effective virus transmission from host to host

relies on a specific interaction with a vector. Here, we have

identified structural features involved in such interaction on the

surface of a 30 nm icosahedral nepovirus. We showed that a single

mutation (Gly297Asp) in the GH loop within the CP B domain is

sufficient to diminish GFLV transmission by its ectoparasitic

nematode vector X. index. In the absence of any detectable

difference in the resolved 3D structures of the wild-type virus and a

transmission deficient mutant, we come to the conclusion that the

introduction of a negative charge at a precise position in each of

the 60 protein subunits of the capsid is sufficient to diminish virus

retention inside the nematode’s feeding apparatus and thereby

hinder virus transmission. We have also delimited a positively

charged pocket formed at the surface of the protein capsid which

may constitute a binding site for the vector. These findings open

new perspectives for the mapping of the ligand recognition site on

the virus and the identification of a viral receptor or ligand in the

nematode. Providing deeper insights into virus-vector interactions

at the atomic level will help understand the origin of the specificity

of virus-vector interactions and facilitate the implementation of

new strategies to break the viral cycle.

Materials and Methods

Virus strains and plant infection with viral transcripts
GFLV and ArMV strains were isolated from naturally infected

grapevines and propagated in the systemic host C. quinoa. Full-

length cDNA clones of GFLV-F13 RNA1 and RNA2 are available

[35]. They were used to produce RNA molecules by in vitro

transcription as described previously [52]. Transcripts of either

wild-type GFLV RNA1 and RNA2 or GFLV RNA1 and mutated

RNA2 were mechanically inoculated to C. quinoa [35]. Virus

infection was assessed in uninoculated apical leaves of C. quinoa

plants 2 to 3 weeks post-inoculation by double-antibody sandwich

(DAS)-enzyme-linked immunosorbent assay (ELISA) with specific

c-globulins to GFLV and ArMV. Samples were considered

positive if their optical density (OD405nm) readings were at least

three times those of healthy controls after 120 min of substrate

hydrolysis.

GFLV purification and crystallization
Viral particles were purified mainly as described in [53] with

one additional 60 to 10% (m/v) sucrose gradient that was
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performed at 210,0006 g in SW41 rotor (Beckman) for 2.5 h.

Purified virions were resuspended in sterile water and filtered

through a 0.22 mm pore-size Ultrafree-MC membrane (Millex)

prior to storage at 4uC. Crystallization by vapor diffusion at 20uC
in sub-microliter sitting drops and structural analyses were

performed as described [36].

Mutagenesis of GFLV RNA2
Plasmid pVecAcc65I2ABC, carrying a full-length cDNA copy of

GFLV RNA2 was used as template for the production of chimeric

CP genes harboring a mutated amino acid in position 297 by PCR

site directed mutagenesis overlap extension mutagenesis [32].

Plasmid pVecAcc65I2ABCG2 is a derivative of pVecAcc65I2ABC

carrying the CP region R2 in position nts 2,609–2,640 (nucleotide

positions are given according to the GFLV-F13 RNA2 sequence,

GenBank accession no. NC_003623) [32]. Residue 297 (corre-

sponding to codon nts 2,936–2,938) was mutated into an aspartic

acid, using pVecAcc65I2ABC as template, the mutagenic primer

pair mutDF/mutDR and the external primer pair 18/36

(Table S2). Mutagenic PCR-amplified products were digested

with Acc65I (nts 2,678–2683) and BglII (nts 3,055–3,060) and

cloned into the corresponding sites in pVecAcc65I2ABC to yield

pVecAcc65I2ABCG297D. Residue 297 was mutated into Alanine

with the mutagenic primers mutAF/mutAR and the external

primers 18/36 (Table S2); PCR-amplified products were digested

with Acc65I and BglII, and cloned into the corresponding sites

in pVecAcc65I2ABC and pVecAcc65I2ABCG2 to yield pVecAcc65I-

2ABCG297A and [54] pVecAcc65I2ABCG2-G297A, respectively. Each

PCR reaction was carried out as described [32]. For simplicity,

transcripts and mutant viruses derived from these constructs were

referred to as GFLV-G297D (plasmid pVecAcc65I2ABCG297D),

GFLV-G297A (plasmid pVecAcc65I2ABCG297A), and GFLV-

R2G297A (plasmid pVecAcc65I2ABCG2-G297A). The integrity of all

GFLV RNA2 clones was verified by DNA sequencing.

Nematode transmission tests and detection of GFLV and
ArMV in nematodes

Nematode transmission assays were performed in two steps of 4

weeks each, the acquisition access period and the inoculation

access period [30]. C. quinoa and Nicotiana benthamiana were used as

source and bait plants for transmission assays with X. diversicau-

datum and X index, respectively. Transmission tests were performed

using 200 nematodes per plant. The presence of GFLV and

ArMV was verified in total RNA extracts from nematodes by

reverse-transcription (RT)-polymerase-chain reaction (PCR) as

described [30].

Characterization of GFLV RNA2 progeny
The progeny of GFLV RNA2 CP sequence was characterized

in infected plants by immuno-capture (IC)-RT-PCR and sequenc-

ing as described in [29], except that two cDNA fragments were

amplified with primer pairs 397/227 and 115/18 (see Table S2).

Sequences were analyzed with ContigExpress (Vector NTI

Software, InforMax).

Cryo-electron microscopy 3D reconstruction
Purified GFLV particles were applied to a quantifoil R 2/2

carbon grid (Quantifoil Micro Tools GmbH, Germany), blotted by

filter paper, and flash-frozen in liquid ethane to make a vitreous-

ice embedded sample. Electron micrographs were recorded under

low-dose conditions at liquid-N2 temperature with a JEOL 2010

operating at 200 kV microscope. Micrographs collected at X

50,000 magnification with a defocus range of 1.3–2.5 mm were

digitized on a Nikon Coolscan 9000 ED with a step size of 10 mm.

The images were coarsened by a factor of 2, resulting in a pixel

size corresponding to 4 Å at the specimen level. The semi-

automatic X3D program (J.F. Conway) was used for picking

particles. The defocus value was estimated for each micrograph

using CTFFIND3 [55], and phases flipped using CTFMIX [56].

Particle origins and orientations were determined and refined

using the model-based orientation determination method [57].

The GFLV reconstruction was determined using as starting model

the 3D reconstruction of TRSV filtered at 40 Å resolution. The

density map was calculated by Fourier-Bessel formalism as

described [57], and implemented in the EM3DR program.

Resolution was estimated using the Fourier shell correlation

(FSC) criterion with a cutting level of 0.5 [58]. The final density

map computed at 16.5 Å resolution includes 2,424 particles

extracted from 8 micrographs.

X-ray structure determination and analysis
X-ray diffraction data from GFLV-F13 and GFLV-TD were

collected on crystal-cooled samples (Table 1) at FIP-BM30

beamline (ESRF, Grenoble, France) and at X06DA beamline

(SLS, Villingen, Switzerland). They were reduced using the XDS

package [59].

Diffraction data were phased by molecular replacement using

AMoRe [60] followed by non-crystallographic symmetry (NCS)

averaging and solvent flattening using RAVE [61,62]. Attempts to

phase data using TRSV-based homology models generated by

Modeller [63] were not successful. In contrast, the 3D EM

reconstruction led to a clear molecular replacement solution with

cubic data in the 30-15 Å resolution range. The orientations of

viral particles within the cubic crystal were identified by inspection

of the self-rotation function calculated at the highest resolution

available (4.5 Å for GFLV-F13 and 2.85 Å for GFLV-TD). Self-

rotations corresponding to four differently oriented icosahedral

particles were found. Calculation of the translation-function using

the correctly oriented 3D EM model showed that four icosahedral

particles were present in the unit cell, each sharing one of its 3-fold

axis with the crystal. The molecular replacement solutions defined

the molecular boundaries (masks) of the particles within the cubic

crystals. Based on the icosahedral symmetry of the 3D EM model,

the rigid-body operators relating equivalent regions within the

molecular boundaries were defined (20 NCS x 3 crystallographic

transformations). An iterative procedure of phase extension from

16.5 Å to the maximum available resolution was then carried out

by using density modification techniques, including NCS map

averaging, solvent flattening and intermediate steps where the

molecular masks and the NCS operators were refined.

The incorporation of high-resolution data finally converged to

an experimental map at 2.85 Å which allowed the rapid rebuilding

of GFLV subunit from homology models. The atomic model of

GFLV-TD was refined with PHENIX [64] with cubic data

reprocessed at 2.7 Å resolution. NCS constrains were applied to

the ensemble of monomers in the asymmetric unit except three

regions which changed conformation due to packing contacts (Tyr

9, loops 15–19 and 259–265). Water molecules were added after

convergence of capsid refinement. Strong peaks in the difference

map were examined in Coot [65] to identify 28 solvent molecules

around one monomer A. They were then transferred by symmetry

to subunits B-T and a total of 556 solvent sites were assigned in the

final model. Strong density peaks were also observed on the 5-fold

axes of the capsid indicating the presence of a large ion, possibly a

phosphate. A ring of solvent molecules bridging the ion to the CP

monomers was clearly seen in 2 out of 4 pentamers of the cubic

asymmetric unit. However, this ion could not be explicitly identify
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(no exploitable anomalous signal) and was not included in the

model. The structure of the GFLV-F13 particle was solved by MR

using the GFLV-TD model and was refined at 3 Å resolution. No

solvent molecule was included, since it was not possible at this

resolution to describe a common hydration pattern for the 60 viral

subunits in the asymmetric unit. The stereochemical quality

(Table 1) of final models was assessed with Coot and Procheck [65]

and all residues were in the allowed regions of the Ramachandran

plot. The totality of the CP amino acids (504 residues per subunit)

was observed in both GFLV-F13 and -TD GFLV structures.

Atomic coordinates have been deposited in the Protein Databank

(GFLV-TD: pdb ID 2Y26; GFLV-F13: 2Y7T, 2Y7U, 2Y7V).

GFLV structures were compared with lsqman [61]. R.m.s.d. on

Ca positions were calculated for each pairwise superimposition of

CPs observed in the cubic (GFLV-TD) and in the monoclinic

(GFLV-F13) asymmetric units. Average r.m.s.d. were derived from

the former analysis and are reported in Table S1, as well as the

r.m.s.d of GFLV CP vs TRSV CP and GFLV CP model based on

TRSV.[61]. Solvent accessible surface was calculated with a probe

radius of 1.4 Å, with the program MSMS [66]. The analysis of the

surface potential was performed with APBS [57,67]. Figures were

prepared using PyMol (http://www.pymol.org/) and Chimera [67].

Supporting Information

Figure S1 Nematode transmission assays. Prior to the transmis-

sion assays, the infectious status of all source plants - C. quinoa or

N. benthamiana - was verified by DAS-ELISA using specific

GFLV and ArMV antibodies. 200 aviruliferous nematodes were

allowed to feed on the roots of a virus source plant for a four-week

acquisition access period (AAP). Then, nematodes were exposed to

the roots of healthy bait plants for a four-week inoculation access

period (IAP). The successful transmission of viruses by nematodes

was verified in the roots of each bait plant by DAS-ELISA using

specific GFLV and ArMV antibodies.

(TIF)

Figure S2 Isosurface representation of the GFLV-TD recon-

struction at 16.5 Å resolution obtained after cryoelectron micros-

copy. The symmetry axes are marked with a pentagon (five-fold),

triangle (three-fold) and bar (two-fold).

(TIF)

Figure S3 Structural similarity of GFLV and TRSV. This

stereoview shows a superposition of the GFLV-F13 CP (Ca trace

representation) and that of GFLV-TD (A), TRSV (B) and GFLV

homology model derived from the TRSV crystal structure (C),

respectively. The C, B and A domains in GFLV are shown in

green, red and blue, respectively. The subunit is viewed from the

outside of the capsid. Other structures are depicted in grey. The

position of GFLV residue 297 in the GH loop is indicated. The

structures were superimposed using lsqman [61]. Corresponding

r.m.s.d. values are listed in Table S1.

(TIF)

Figure S4 Capsid protein contacts on 3-fold and 2-fold axes. (A)

The black line delineates one CP position. The figure indicates the

contact between different domains on the 3-fold and 2-fold axes.

The grey pentagon, triangle and oval symbolize the icosahedral 5-

fold, 3-fold and 2-fold symmetry axes, respectively. Domains of the

same CP are labelled with the same number. The A domains are

exclusively clustered around the 5-fold axis. (B) Six b-barrels from

B and C domains belonging to different CPs interact around the 3-

fold axis. (C) Two B and C domains from four CPs interact on the

2-fold axis.

(TIF)

Figure S5 Position of nematode transmission determinants on

GFLV capsid surface. (A) This close-up view of the capsid reveals

that residue Gly297 (purple) and region R2 comprising residues

188 to 198 (orange) are facing the outer surface of the capsid. (B)

In this stereoview, a single CP is seen from the outside of the

capsid with C, B, and A domains colored blue, red and green,

respectively. The distances in Å between Gly297 (purple) and

residues from region R2 (orange) are indicated.

(TIF)

Figure S6 Virus detection in Xiphinema species at the end of the

acquisition access period (AAP). Nematodes exposed to source

plants infected with GFLV-F13 (2), GFLV-G297D (3), GFLV-

G297A (4), GFLV-R2G297A (5), or ArMV (6) and mock inoculated

plants (1 and 6) were randomly selected and characterized by RT-

PCR. The amplification of specific DNA products confirmed that

the nematodes had ingested all types of viruses during AAP.

(TIF)

Figure S7 Comparison between the GFLV putative ligand-

binding pocket and the FMDV heparin sulphate binding site. (A)

GFLV CP is seen from the outside of the capsid with the C, B, and

A domains colored as in Figure 2, and the putative ligand binding

pocket in white. (B) FMDV viral proteins VP1, VP2, VP3 and

VP4 (pdb ID, 1QQP) are colored in blue, red, green and yellow,

respectively. Residues involved in heparin sulphate binding

[50,51] appear in white. Grey pentagon, triangle and oval

symbolize the icosahedral 5-fold, 3-fold and 2-fold symmetry

axes, respectively.

(TIF)

Table S1 Comparison of capsid proteins and of CP domains A,

B, and C.

(DOC)

Table S2 Primers used to produce gene 2CCP with mutated

residues and to characterize GFLV RNA2 progeny.

(DOC)
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