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Abstract

Inflammatory bowel diseases (IBDs), primarily ulcerative colitis and Crohn’s disease, are inflammatory disorders caused by
multiple factors. Research on IBD has often used the dextran sodium sulfate (DSS)-induced colitis mouse model. DSS
induces in vivo but not in vitro intestinal inflammation. In addition, no DSS-associated molecule (free glucose, sodium sulfate
solution, free dextran) induces in vitro or in vivo intestinal inflammation. We find that DSS but not dextran associated
molecules established linkages with medium-chain-length fatty acids (MCFAs), such as dodecanoate, that are present in the
colonic lumen. DSS complexed to MCFAs forms nanometer-sized vesicles ,200 nm in diameter that can fuse with
colonocyte membranes. The arrival of nanometer-sized DSS/MCFA vesicles in the cytoplasm may activate intestinal
inflammatory signaling pathways. We also show that the inflammatory activity of DSS is mediated by the dextran moieties.
The deleterious effect of DSS is localized principally in the distal colon, therefore it will be important to chemically modify
DSS to develop materials beneficial to the colon without affecting colon-targeting specificity.
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Introduction

Inflammatory bowel diseases (IBDs), principally ulcerative

colitis (UC) and Crohn’s disease (CD), are inflammatory disorders

of the gastrointestinal tract caused by multiple genetic and

environmental factors [1,2,3]. Various models of experimental

IBD have been developed to investigate pathogenesis and to

improve treatment options such as gene knockout (KO) mod-

els:interleukin (IL)-2/IL-2 receptor-alpha [4], IL-10 [5], T cell

receptor [6], Tumor necrosis factor (TNF)-39 untranslated region

(UTR) [7] or transgenic models: IL-17 [8], HLA B27 [9]. Most

commonly, experimental colitis is induced by the heparin-like

polysaccharide DSS; this model is simple and affords a high degree

of uniformity and reproducibility of most lesions in the distal colon

[10,11]. By first interfering with intestinal barrier function, and

next stimulating local inflammation, DSS is often used to induce a

form of mouse colitis that mimics the clinical and histological

features of IBDs that have characteristics of UC [12,13,14]. The

typical features of colitis appear on day 3 and are maximally

expressed by day 7 [15]. Notably, expression of pro-inflammatory

cytokines and chemokines (IL-1, IL-6, KC, TNF-a, and

Interferon-c) are upregulated [15,16] whereas synthesis of anti-

inflammatory cytokines, such as IL-10, is downregulated

[16,17,18,19]. Other parameters such as decreases in body weight

and colon length, elevation in myeloperoxidase level (suggestive of

neutrophil infiltration into the epithelium), and higher histological

and endoscopic scores characterize murine colitis [20,21,22]. DSS

induces colitis, but the mechanism of action remains unknown.

Miyazawa et al. [23] showed that DSS caused disruption of

biological mechanisms (such as inhibitory effects on reverse

transcriptase activities that affect major cellular functions),

competing with poly(U) to this end [23]. Previously, it was shown

that dextran sulfate inhibited ribonuclease action [24,25]. Other

natural and synthetic polyanionic polymers play important roles in

establishing the association of mRNA with ribosomes and can

disturb mRNA translation [23]. But the mechanism of how DSS

penetrates the cell is unknown as it could be through passive or

active uptake by the cell via a specific receptor, or DSS could

penetrate the cell after complexation with another molecular form

(such as polycationic forms). Other studies have shown that DSS

induced significant macrophage infiltration into the epithelium of

the colon [26]. Our study attempted to correlate this last

hypothesis by increasing medium-chain-length fatty acids

(MCFAs) in the mouse colon. MCFAs are increased by a high

fat diet. The role of MCFAs in inflammation is not clear as the size

of the carbon chain is intermediate between small and long chains.

The sodium salts of several MCFAs, particularly capric (C10) and

lauric (C12) acids, have been shown to increase rectal drug

absorption, presumably by causing alterations in intestinal tight

junctions (TJ) barrier function. C10 has also been shown to lead to
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profound alterations in the barrier function of the TJ and has been

investigated as an agent to enhance viral-mediated a gene transfer

[27]. These agents are attractive as potential therapies to enhance

absorption of gene transfer vectors due to the rapid onset of action

(within minutes) and their relatively rapid recovery (within hours)

after treatment [28,29,30,31] [27].

Although MCFAs have been widely investigated as agents to

increase the delivery of therapeutic agents, relatively little is known

regarding their primary mechanism of action. The ability of

intercellular TJs to function as a barrier to the diffusion of

macromolecules is dynamically regulated by numerous intracellu-

lar signals and the permeability properties of the TJ vary in

response to changes in physiological state. Therefore, agents that

regulate the TJ likely do so by direct or indirect actions on

intracellular signals and/or the protein components of the TJ.

It has been extensively shown that short chain fatty acids, like

butyrate, attenuate inflammation in DSS-induced colitis

[32,33,34,35]. Conversely, long chain fatty acids, like palmitic

acid (C16) or palmitic acid (monosaturated or polysaturated forms)

have been shown to promote inflammation [26]. Kim et al. have

shown that corn oil, mainly constituted with the long chain fatty

acid cited above, have a significant effect on the aggravation of

inflammation related colorectal cancer [26].

In the present study we investigated the mechanism of DSS

action in the distal colon using in vitro and in vivo approaches.

Materials and Methods

Animal studies
All studies were performed in accordance with the Institutional

Animal Care and Use Committee at Emory University (Atlanta,

GA). All procedures were approved and are registered in the

protocol IACUC ID: 156–2008, approval date 7/8/2010 to 7/8/

2011. Strains, ages, and the number of animalsfollow the

established protocol.

Female C57BL/6 mice (aged 8 weeks, weight 18–22 g, Jackson

Laboratories, Bar Harbor, ME) used for this study were group-

housed under controlled temperature (25uC) and photoperiod

(12:12-hour light–dark cycle) conditions, and given unrestricted

access to standard diet and tap water (or specified drinking

solution). Mice were allowed to acclimate to these conditions for at

least 7 days before inclusion in experiments.

High fat diet (60% kCal of fat, 20% kCal of protein, and 20%

kCal of carbohydrate) and control diet (10% kCal of fat, 20% kCal

of protein, and 70% kCal of carbohydrate) were purchased from

Research Diets (New Brunswick, NJ). Supplementation of fat is

provided by soybean oil (10%) and lard (90%).

Histology
Distal colonic sections were fixed in 10% formalin and

embedded in paraffin. 5-mm sections were stained with H&E.

Images were acquired using a Zeiss Axioskop 2 plus microscope

(Carl Zeiss MicroImaging) equipped with an AxioCam MRc5

CCD camera (Carl Zeiss).

Histological score assessment of colitis
H&E-stained colonic sections were coded for blind microscopic

assessment of inflammation (i.e., DSS-induced colitis). Histological

scoring was based on 3 parameters. Severity of inflammation was

scored as follows: 0, rare inflammatory cells in the lamina propria;

1, increased numbers of granulocytes in the lamina propria; 2,

confluence of inflammatory cells extending into the submucosa; 3,

transmural extension of the inflammatory infiltrate. Crypt damage

was scored as follows: 0, intact crypts; 1, loss of the basal one-third;

2, loss of the basal two-thirds; 3, entire crypt loss; 4, change of

epithelial surface with erosion; 5, confluent erosion. Ulceration

was scored as follows: 0, absence of ulcer; 1, 1 or 2 foci of

ulcerations; 2, 3 or 4 foci of ulcerations; 3, confluent or extensive

ulceration. Values were added to give a maximal histological score

of 11.

Endoscopic assessment of colitis
Direct visualization of DSS-induced colonic mucosal damage in

vivo was performed using the Coloview (Karl Storz Veterinary

Endoscopy, Tuttlingen, Germany). Mice were supplied with food

and water until the endoscopy was performed. Mice were

anesthetized with 1.5 to 2% isoflurane and 3 cm of the colon

proximal to the anus was visualized after inflation of the colon with

air. The endoscopic damage score was determined using a

previously described scoring method with one modification:

assessment of colon translucency (0–3 points), presence of fibrin

attached to the bowel wall (0–3 points), granular aspect of the

mucosa (0–3 points), morphology of the vascular pattern (0–3

points), and stool characteristic (normal to diarrhea; 0–3 points)

[21]. Since this scoring method did not include assessment for the

presence of blood in the lumen, we added this parameter (0 points:

no blood; 1 point: slight bleeding; 2 points: frank bleeding) to

generate a range in total score from 0–17 points.

Pro-inflammatory chemokine and cytokine analysis
Total RNA was extracted using TRIzol reagent (Invitrogen,

Carlsbad, CA) and reverse-transcribed using the cDNA Synthesis

kit (Fermentas, Glen Burnie, MD). RT-PCR was performed using

the GeneJET Fast PCR kit (Fermentas, Glen Burnie, MD). Real-

time RT-PCR was performed using an iCycler (Bio-Rad,

Hercules, CA). Briefly, cDNA was amplified by 40 cycles of

95uC for 15 s and 60uC for 1 min, using the iQ SYBR Green

Supermix system (Biorad, Hercules, CA) and the following specific

primers:

KC sense 59-TTGTGCGAAAAGAAGTGCAG-39, KC anti-

sense 59-TACAAACACAGCCTCCCACA-39,

IL-1b sense 59-TCGCTCAGGGTCACAAGAAA-39, IL-1b
antisense 59-CATCAGAGGCAAGGAGGAAAA C-39;

TNF-a sense 59-AGGCTGCCCCGACTACGT-39, TNF-a
antisense 59-GACTTTCTCCTGGTATGAGATAGCAAA-39;

IL-6 sense 59-ACAAGTCGGAGGCTTAATTACACAT-39,

IL-6 antisense 59-TTGCCATTGCACAACTCTTTT C-39;

IFN-c sense 59-CAGCAACAGCAAGGCGAAA-39, IFN-c
antisense 59-CTGGACCTGTGGGTTGTTGAC-39;

IL-10 sense 59-ACCTGGTAGAAGTGATGCCCCAGGCA-

39 and 59-CTATGCAGTTGATGAAGATGTCAAA-39

18S sense 59-CCCCTCGATGACTTTAGCTGAGTGT-39,

18S antisense 59-CGCCGGTCC AAGAATTTCACCTCT-39;

mouse 36B4 sense 59-TCCAGGCTTTGGGCATCA-39,

mouse 36B4 antisense 59-CTTTATCAGCTGCACATCACT-

CAGA-39.

18S and 36B4 were used as housekeeping genes. Fold-induction

was calculated using the Ct method, DDCT = (CtTarget-Cthousekee-

ping)infected 2 (CtTarget-Cthousekeeping)uninfected, and the final data

were derived from 22DDCT.

Myeloperoxidase (MPO) assay
Colonic tissue samples were homogenized in ice-cold potassium

phosphate buffer (50 mM K2HPO4 and 50 mM KH2PO4,

pH 6.0) containing 0.5% hexadecyltrimethylammonium bromide

(Sigma). The homogenates were then sonicated, freeze-thawed

three times, and centrifuged at 17,500 rcf for 15 min. Superna-

tants (20 ml) or MPO standard were added to 1 mg/mL o-
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dianisidine hydrochloride (Sigma) and 0.0005% H2O2, and the

change in absorbance at 450 nm was measured. One unit of MPO

activity was defined as the amount that degraded 1 mmol

peroxidase per minute. The results were expressed as relative

MPO activity compared to water-treated mice (normalized to 1).

DSS-induced colitis
Colitis was induced by 3% (w/v) dextran sodium sulfate (DSS;

molecular weight 42 kDa; ICN Biochemicals, Aurora, OH) added

to the drinking water. Colonic inflammation was assessed 7 to 8

days after DSS treatment. Twelve mice were included in each

group. To evaluate the effects of each drinking solution on induced

colitis, the mice were given a bottle of each solution with

equivalent number of moles of the studied molecules: DSS 30 g/L,

dextran 14.9 g/L, glucose 17.33 g/L, and sulfate 25.99 g/L. The

concentrations were obtained by calculating the concentration of

dextran sodium sulfate: 6.9861024 mol.L21. The DSS supplier

(MP Biomedicals) verified that the sulfate (SO3H) substitution rate

was 1.9 groups per glycosyl residue of DSS. We approximated

Mn = Mw = 43000 g/mol and calculated the degree of polymer-

ization (DPn) of DSS:

DPn =
Mn

M0
Mn = numbered molecular mass of DSS

M0 = Molecular mass of a single glycosyl residue grafted with

1.9 sulfate group

DPn = 43000/310.6 = 138

In one polymer chain of DSS, there are 138 glycosyl residues.

Equivalent concentrations for DSS associated molecules have to

be calculated according to (DSS = 138 residues = 30 g/L; dex-

tran = 138 residues = 14.9 g/L; sodium sulfate = 138*1.9 = 262.2

residues = 25.99 g/L; glucose = 138 residues = 17.33 g/L).

Osmolarity of mice feces
Feces was collected and dried in an incubator at 37uC (n = 6 per

drinking solution treatment). 50 mg of feces was dissolved in 1 mL

of NaCl (0.15 M). Osmolarity of water treated mice was set to 1

arbitrary unit (AU) as negative control. All osmolarities were then

measured and calculated as relative osmolarity (Osmolarity of

Figure 1. DSS induces colitis. (A) Mouse body weight changes during DSS treatment compared to that of control animals (drinking water). C57BL/
6 mice were exposed to 3% (w/v) DSS in the drinking water for the indicated numbers of days. Body weight changes are shown as means6SEMs.
* P,0.05, ** P,0.01. (B) Hematoxylin-stained colonic sections of mice treated with DSS; the mice were sacrificed on day 8. (C) Associated histological
scores. *** P,0.001. (D) Macroscopic inflammation was assessed using a mouse colonoscope. Photographs were obtained on the day of sacrifice and
(E) an endoscopic score was calculated. *** P,0.001. (F) KC mRNA expression was measured in test and control animals. *** P,0.001. (G)
Determination of MPO enzymatic activity as an index of neutrophil infiltration into injured tissue. Results are expressed as MPO –fold increases
compared to those of control mice and represent means6SEMs of three independent determinations. *** P,0.01.
doi:10.1371/journal.pone.0032084.g001
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sample feces/Osmolarity of water-treated mice feces). Osmolarity

measurement was performed by an osmometer (Osmette III,

Precision Systems, Natick, MA).

Epithelium resistance measurement by Electric Cell-
substrate Impedance Sensing (ECIS)

For ECIS, cell-attachment assays were performed using ECIS

technology (Applied BioPhysics, Troy, NY) [36]. The ECIS model

1600R (Applied BioPhysics) was used for these experiments. The

measurement system consists of an 8-well culture dish (ECIS

8W1E plate), the surface of which is seeded with cell cultures. Each

well contains a small, active electrode (area = 5.1024 cm2) and a

large counter electrode (area = 0.15 cm2) on the bottom of each

well. A lock-in amplifier, with an internal oscillator, relays a signal

to switch between the different wells, and a personal computer

controls the measurement and stores the data. Attachment and

spreading of cells on the electrode surface change the impedance

in such a way that morphological information about the attached

cells can be inferred. Caco2-BBE cells (1 million cells per mL) were

seeded in ECIS 8W1E plates in DMEM (Invitrogen) supplement-

ed with 10% (v/v) heat-inactivated fetal bovine serum (Invitrogen)

and 1.5 mg/mL plasmocin (Invitrogen). Once cells reached

confluence, the different solutions were added at a concentration

given in the results section. Controls in DMEM medium cell

cultures were used for each experiment. Basal resistance

measurements were performed using the ideal frequency for

Caco2-BBE cells, 500 Hz, and a voltage of 1 V.

Dextran-loaded nanoparticles synthesis
Poly (D,L-lactide) (PLA) was purchased from Sigma-Aldrich (St

Louis, MO) (Mw of 75–120 kg/mol). The nanoparticles were

produced by the double emulsion/solvent evaporation procedure

previously described [37] for the elaboration of polyvinylic alcohol

(PVA)-covered PLA nanoparticles. This method involves use of an

Figure 2. DSS but not DSS-associated molecules induce colitis. (A) Mouse body weight changes during consumption of water, DSS (3% w/v),
dextran (1.49% w/v) in sulfate solution (2.6% w/v), dextran (1.49% w/v), sulfate solution (2.6% w/v), glucose (1.73% w/v), and glucose (1.73% w/v) in
sulfate solution (2.6% w/v). C57BL/6 mice were given the various solutions as drinking water for the indicated numbers of days. Body weight changes
are depicted as means6SEMs for each group. * P,0.05. (B) DSS significantly increased production of chemokine KC mRNA compared to the rises
seen when DSS-associated molecules were given. KC mRNA expression was measured via qRT-PCR of extracts of colonic cells. *** P,0.001. (C)
Determination of MPO enzymatic activity as an index of neutrophil infiltration into injured tissue. (D) Macroscopic observations of colons of mice
treated with DSS-associated molecules [DSS = dextran sodium sulfate, D+S = dextran (1.49% w/v) in sulfate solution (2.6% w/v), D = dextran (1.49% w/
v), S = sulfate solution (2.6% w/v), and Glc+S = glucose (1.73% w/v) in sulfate solution (2.6% w/v)] were made using a mouse colonoscope.
Photographs were obtained from all treatment groups on the day of sacrifice. * P,0.05, ** P,0.01.
doi:10.1371/journal.pone.0032084.g002

Vesicle of DSS Complexed to MCAFs Induces Colitis

PLoS ONE | www.plosone.org 4 March 2012 | Volume 7 | Issue 3 | e32084



amphiphilic molecule as the surfactant of the secondary emulsion;

however, in the present study, PVA was used, which was

purchased from Aldrich (Milwaukee, WI) (Mw = 13,000–

23,000 g/mol, hydroxylated at 87–89%). Typically, a primary

water in oil emulsion (w/o) was prepared by mixing an organic

phase (4 mL dichloromethane) containing PLA (25 g/L) with an

internal aqueous phase (400 mL). The emulsion is stabilized by the

bovine serum albumin (BSA; 50 g/L) of the internal aqueous

phase. The internal phase also contains, or does not contain,

dextran (2.5 g/L, Mw = 40 kDa). The mixture was stirred for

2 min with a Vortex mixer (Maxi Mix II, Thermolyne, USA), then

sonicated (2 min, power 6, 50% active cycle, in an ice bath) using

a Sonifier 450 (Branson, USA). This primary emulsion was poured

into a second aqueous phase (8 mL) (external aqueous phase)

containing an amphiphilic molecule (PVA 20 g/L). The water in

oil in water emulsion (w/o/w) was then obtained by sonication

(same conditions as those used for the primary emulsion). This

double emulsion was then transferred to an aqueous 1022 M

NaNO3 dispersing phase (40 mL) and stirred for 5 min. The

organic solvent was evaporated under stirring and ambient air

conditions and the collected solid nanospheres were resuspended

in water then centrifuged again to remove the excess PVA. This

purification procedure was repeated twice. The final suspension

was then freeze-dried.

Particle size measurement
Diameters (nm) of NPs were measured by light scattering using

90 Plus/BI-MAS (Multi angle particle sizing, Brookhaven

Instruments Corporation, Holtsville, NY, USA). The average

and standard deviations of the diameters (nm) were calculated

using 3 runs. Each run is an average of 10 measurements.

The effect of encapsulated dextran-loaded NPs on in vivo
inflammation

To deliver the dextran-loaded NPs to C57BL/6 mice colonic

lumen, we encapsulated them into a biomaterial comprised of

alginate and chitosan at a ratio of 7/3 (wt/wt). We and others have

previously shown that the biomaterial collapses in intestinal

solution at pH 5 or 6, which is the colonic pH under inflamed

and non-inflamed states [38,39,40]. C57BL/6 mice (8 per group)

were gavaged daily for 4 days with encapsulated dextran-loaded or

empty NPs as a negative control.

Cell Culture
Caco2-BBE cells were cultured to confluency in 75-cm2 flasks at

37uC in a humidified atmosphere containing 5% CO2. The

culture medium used was DMEM/Ham’s F-12 medium (Invitro-

gen, USA) supplemented with L-glutamine (2 mM), penicillin

(100 units/mL), streptomycin (100 mg/mL), and heat-inactivated

fetal calf serum (10%) (Invitrogen, USA).

Statistical analysis
Data are presented as average values and standard deviations

from experiments performed in triplicate (n = 3), except in vivo

experiments (n = 8). ANOVA tests were performed to obtain

statistical comparisons between samples.

Results

Characterization of DSS-induced colitis in mice
The DSS-induced colitis murine model is commonly used to

address the pathogenesis of IBD [15,20,41] and to test the efficacy

of therapies such as nanotechnology-based drug release systems

Figure 3. DSS and DSS-associated molecules affect luminal intestinal osmolarity. (A) Macroscopic observations of the effects of DSS-
associated molecules [DSS = dextran sodium sulfate, D+S = dextran (1.49% w/v) in sulfate solution (2.6% w/v), D = dextran (1.49% w/v), S = sulfate
solution (2.6% w/v), and Glc+S = glucose (1.73% w/v) in sulfate solution (2.6% w/v)] on colonic epithelium were assessed using a mouse colonoscope.
Photographs were obtained from all treatment groups on the day of sacrifice. (B) Fecal relative osmolarity values (means6SEM, ANOVA statistical test,
* P,0.05).
doi:10.1371/journal.pone.0032084.g003

Vesicle of DSS Complexed to MCAFs Induces Colitis

PLoS ONE | www.plosone.org 5 March 2012 | Volume 7 | Issue 3 | e32084



[39,40,42]. C57BL/6 mice were given 3% (w/v) DSS in drinking

water for 8 days. Significant weight loss was evident in the DSS-

treated group compared to the negative control (Figure 1A). About

20% of initial weight was lost after 8 days of DSS treatment

(Figure 1A). During this treatment, inflammation was enhanced, as

shown by rises in the extent of diarrhea and rectal bleeding.

Colonic inflammation was also examined by histology (Figure 1B);

hematoxylin-stained day 8 colon sections of DSS-treated mice

showed severe lesions throughout the mucosa, alteration of

epithelial structure, high-level neutrophil and lymphocyte infiltra-

tion into the mucosal and submucosal areas, and loss of crypts

(Figure 1B). All alterations observed were combined to obtain

histological scores (Figure 1C). The score calculated after DSS

treatment was significantly higher than that of control mice;

9.261.5 versus 0.260.4, respectively. Histological observations

were confirmed by macroscopic inflammation assessment using a

mouse colonoscope. Photographs were obtained on the day of

sacrifice (thus after 8 days of DSS treatment; Figure 1D); the colon

was inflamed. Colon photographs after DSS treatment revealed

bloody stools, diarrhea, ulcers, and mucosal inflammation; control

animals had healthy mucosa. Figure 1E shows the endoscopic

scores obtained upon analysis of the photographs; DSS-treated

mice scored significantly higher than did control animals

(10.661.3 versus 0.760.8). These macroscopic observations were

confirmed by estimation of biological parameters relevant to

inflammation. We measured expression of KC, a chemokine. DSS

significantly increases KC production [43,44,45]. Expression of

mRNA encoding KC was measured in DSS-treated and control

mice. The extent of KC mRNA expression was 300-fold higher in

DSS-treated animals compared to control animals (Figure 1F).

MPO enzymatic activity (an index of neutrophil infiltration into

the colonic mucosa) increased 20-fold in DSS-treated mice

compared to controls (Figure 1G). The mouse DSS-induced colitis

model can thus be used to address the pathogenesis of IBD.

Specificity of DSS for induction of colitis
We explored how DSS, a negatively charged polymer of glucose

with engrafted sulfate groups, induced colitis in mice. As DSS is

composed of successive glucose units substituted with sulfur groups

(2SO3H), we decided to test each DSS component separately.

Thus, we explored the effects of dextran dissolved in water,

dextran dissolved in a sulfate salt solution, sulfate salt dissolved in

water, glucose dissolved in water, and glucose dissolved in a sulfate

salt solution. To be consistent, the ratios of glucose, dextran, or

sulfate molecules were identical to those in DSS. All concentra-

tions were based on a 3% (w/v) DSS solution (mol. wt. 42 kDa;

17% by weight of engrafted sulfate groups). As shown in Figure 2A,

DSS given in drinking water for 8 days increased colonic

inflammation, as measured by body weight loss, however there

was no observable inflammation in the other treated groups. Also,

we did not observe diarrhea or rectal bleeding in mice treated with

DSS-associated molecules (data not shown). DSS induction of KC-

encoding mRNA was 300-fold higher than the control value

whereas the maximum increase afforded by ingestion of DSS-

associated molecules did not exceed 7-fold (Figure 2B). Determi-

nation of MPO enzymatic activity as an index of neutrophil

infiltration into intestinal mucosa revealed a 20-fold increase in

MPO activity in DSS-treated mice compared to controls

(Figure 2C). A 10-fold increase in MPO level after treatment with

DSS-associated molecules was observed compared to the control

Figure 4. DSS-associated molecules do not affect the resistance of Caco2-BBE monolayers. Confluent cultures of Caco2-BBE cells were
obtained after 48 h (dark lines) and epithelial resistance was assessed by conduct of continuous resistance measurements at pH 7.4 (cellular pH) and
pH 6.2 (colonic pH). Resistance (Ohm) of Caco2-BBE cells was measured at V= 500 Hz and V = 1 V by electrical impedance sensing method (ECIS) on
ECIS 8W1E electrodes. After confluence (colored lines), DMEM-based solutions containing glucose 17.33 g/L (Glc), dextran 14.9 g/L (D), dextran
14.9 g/L and sodium sulfate 25.99 g/L (D+S) and glucose 17.33 g/L and sulfate 25.99 g/L (Glc+S) were added at both pH. Data represent means of
n = 3/condition.
doi:10.1371/journal.pone.0032084.g004
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value (Figure 2C). Macroscopic features of inflammation were

assessed using a mouse colonoscope. In contrast to DSS, DSS-

associated molecules did not induce the common characteristics of

an inflamed colon (Figure 3A). However, whereas intestinal mucosa

treated with DSS-associated molecules was intact, hemorrhagic

vessels were observed in the submucosal layer after ingestion of all

DSS-associated molecules (Figure 3A). We hypothesize that a local

increase in osmolarity may affect the integrity of blood vessels

(Figure 3A). To verify this hypothesis, we measured the osmolarity

of feces. We found that mice treated with DSS and DSS-associated

molecules had higher fecal osmolarity than did control animals

(Figure 3B). This is consistent with the observed vessel degradation

and submucosal bleeding in such animals, and the subsequent

increase in neutrophil infiltration into the mucosa, as shown by

MPO measurement (Figure 2C). Together, the data show that DSS

is specific in terms of colitis induction in mice. No DSS-associated

molecule tested induced colitis after 1 week of treatment. However,

we suggest that DSS-associated molecules can cause development of

hemorrhagic vessels mainly because of the change of colonic

osmolarity in these groups.

DSS and DSS-associated molecules do not affect the
electrical resistance of Caco2-BBE cell monolayers

As shown in Figure 4, using ECIS, we obtained confluent

Caco2-BBE monolayer cells as assessed by attainment of a plateau

with a high resistance value (R = 36,000 V; dark lines of Figure 4).

After adding the DMEM-based solution containing glucose

17.33 g/L (Glc), dextran 14.9 g/L (D), dextran 14.9 g/L and

sodium sulfate 25.99 g/L (D+S) and glucose 17.33 g/L and sulfate

25.99 g/L (Glc+S) to the confluent Caco2-BBE monolayer of cells,

the resistance plateau values (R = 36 kV) did not decrease (colored

lines of Figure 4). Interestingly, no DSS-associated molecules

affected monolayer resistance when the extracellular medium was

at pH 7.4 or pH 6.2 (Figure 4). This shows that the in vivo ability of

DSS, compared to DSS-associated molecules, to induce colitis, is

lost in vitro. This suggests that some permissive in vivo ‘‘factor’’ must

be present to allow DSS to induce colitis. The lack of a DSS effect

on resistance in vitro suggests that DSS does not interact with an

intestinal epithelial receptor (Figure 5).

DSS sub-products produced by Escherichia coli action do
not affect Caco2-BBE cell monolayer resistance

When DSS is given to mice, DSS may interact with colonic

bacteria. We considered that DSS might be chemically modified

by such bacteria, producing a sub-product affecting intestinal

barrier function. To test this hypothesis, we supplemented

bacterial medium with 3% (w/v) DSS and grew Escherichia coli in

the medium for 48 h at 37uC at a high concentration (saturated

growth medium, 4.1011 CFU/mL, 16) and at diluted concentra-

tion (4.109 CFU/mL, 0.016). The culture supernatant was

collected and the pH adjusted to pH 7.4 or pH 6.2.

As shown in Figure 5, using ECIS, we obtained confluent

Caco2-BBE monolayer cells as assessed by attainment of a plateau

with a high resistance value (R = 42,000 V; dark lines of Figure 5).

Next, supernatant samples were added to confluent Caco2-BBE

monolayers and online measurement of epithelial resistance was

performed using ECIS (colored lines of Figure 5). As shown in

Figure 5, supernatant at pH 7.4 or 6.2, containing DSS and

presumably DSS sub-products, did not affect Caco2-BBE

monolayer resistance as the value of the resistance did not change.

Figure 5. DSS and DSS sub-products obtained when DSS is digested by E. coli do not affect the resistance of Caco2-BBE monolayers.
Confluent cultures of Caco2-BBE cells were obtained after 48 h (dark lines) and epithelial resistance was assessed by conduct of continuous resistance
measurements at pH 7.4 (cellular pH) and pH 6.2 (colonic pH). Resistance (Ohm) of Caco2-BBE cells was measured at V= 500 Hz and V = 1 V by
electrical impedance sensing method (ECIS) on ECIS 8W1E electrodes. After confluence (colored lines), DMEM-based solutions containing potential
sub-products of the digestion of DSS (3%) by Escherichia coli at high concentration (4.1011 CFU/mL, 16) or diluted (4.109 CFU/mL, 0.016) were added
at both pH. Data represent means of n = 3/condition.
doi:10.1371/journal.pone.0032084.g005

Vesicle of DSS Complexed to MCAFs Induces Colitis

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e32084



This showed that bacteria are not the permissive ‘‘factor’’

mediating the in vivo specificity of DSS in induction of colitis.

A high-fat diet increases the efficacy by which DSS
induces colitis in mice

The above experiments showed that DSS did not interact

directly with epithelial cells via a specific receptor, nor was

inflammation induced by sub-products generated from DSS by

bacterial degradation/modification. We next explored whether a

high fat diet affected the efficacy of DSS in terms of inducing

colitis in mice. As shown in Figure 6, ingestion of 3% (w/v) DSS

and a high-fat diet (60% [w/w] fat) worsened colitis, as assessed by

weight loss (Figure 6A), compared to use of DSS and the normal

mouse chow (,10% fat). The observed effect was caused by the

DSS/fatty diet combination because mice drinking regular

drinking water and eating the high-fat diet showed no significant

weight loss compared to mice with access to regular drinking water

and regular chow after 6 days of treatment (Figure 6A). Also,

ingestion of the high-fat diet increased the inflammation seen after

DSS treatment compared to that noted when DSS was given

together with regular diet. Thus, comparing the mice given a high-

fat diet and DSS versus a regular diet coupled with DSS, the colon

length was further reduced (28 mm versus 36 mm in Figure 6B)

and pro-inflammatory cytokine expression levels were increased

(46-fold increase in IL-1b mRNA level; 50-fold versus 25-fold in

TNFa mRNA level; 23-fold versus 3.7-fold in IL6 mRNA level;

58.6-fold versus 4.7-fold in INFc mRNA level; and 150-fold in KC

mRNA level versus 10-fold in mice given regular chow)

(Figure 6C). Interestingly, the high-fat diet acted in a manner

similar to a cofactor, exacerbating the effect of DSS. These results

were not observed when mice had access to regular water and a

high-fat diet (Figure 6; A, B, and C). The results suggest that fatty

acids specifically exacerbated DSS-induced colitis in mice. We

propose that a potential electrostatic association between fatty

acids and DSS, mediated via dicationic ions (Ca++, Mg+) or

positively charged molecules, could result in formation of DSS-

loaded vesicles which, via the hydrophobic domains, might fuse

with the membranes of colonic cells and subsequently deliver DSS

into such cells. Once in the cytosol, DSS would activate pro-

inflammatory cascades. Several examples of inflammation caused

by DSS have been reported. Interestingly, Miyazawa et al. [23]

showed that DSS caused disruption of biological mechanisms

Figure 6. A high-fat diet increases the efficacy by which DSS induces colitis in mice. (A) Body weight changes in C57BL/6 mice on regular
chow or a high-fat diet, drinking either a 3% (w/v) dextran or a 3% (w/v) DSS solution, for 6 days. Body weight changes are shown as means6SEMs.
* P,0.05, ** P,0.01. (B) Determination of colon length (an index of colonic inflammation). Results are expressed in mm and represent means6SEMs
of three independent determinations. * P,0.05. (C) Consumption of DSS and a high-fat diet significantly increases production of pro-inflammatory
cytokines and chemokine mRNAs compared to what is seen in animals consuming DSS but (otherwise) regular chow. * P,0.05, ** P,0.01,
*** P,0.001.
doi:10.1371/journal.pone.0032084.g006
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(such as inhibitory effects on reverse transcriptase activities that

affect major cellular functions), competing with poly(U) to this end

[23]. Previously, it was shown that dextran sulfate inhibited

ribonuclease action [24,25]. Other natural and synthetic poly-

anionic polymers play important roles in establishing the

association of mRNA with ribosomes and can disturb mRNA

translation [23].

DSS associated with fatty acids disrupts Caco2-BBE
monolayer resistance

Using ECIS, we showed that 3% (w/v) DSS did not affect in vitro

intestinal barrier function (Figure 4). We also checked that the

supplementation of the medium with 5% fetal bovine serum (FBS)

had no effect on the epithelial barrier disruption (data not shown).

Next, we investigated the effects of fatty acids (dodecanoate and

butyrate salts) on the ability of DSS to disrupt in vitro intestinal

barrier function. Caco2-BBE monolayer resistance in DMEM at

pH 7.4 (cellular pH) and pH 6.2 (colonic pH) was assessed by

ECIS. Butyrate did not significantly affect resistance (data not

shown). As shown in Figure 7A, dodecanoate alone (10 mM) had

no effect on epithelial resistance. However, addition of 3% (w/v)

DSS supplemented with dodecanoate (10 mM, pH 6.2) to Caco2-

BBE monolayers caused a rapid decrease (89%) in monolayer

resistance, from 47,790 V to 5,420 V after 3 h (Figure 7A).

Interestingly, under the same conditions but at pH 7.4, a slower

and smaller decrease in resistance was observed (a 77% decrease

after 23 h). This may be explained by variation in the

hydrophobicity of vesicles at pH 7.4 and pH 6.2. Vesicles at

pH 6.2 carry fewer negative charges than at pH 7.4 and can

therefore engage in a higher level of interaction with the plasma

membrane, which is generally negatively charged.

Next, we explored whether a mixture of DSS and fatty acids

could form vesicles. DSS mixed with dodecanoate but not

butyrate, in the presence of calcium, formed nanometer-sized

vesicles (Figure 7B) 262 nm and 168 nm in diameter, respectively,

when dodecanoate was used at 10 mM and 1 mM. No other

DSS/fatty acid combination tested formed vesicles. Smaller

vesicles were formed when DSS was complexed with calcium

only (diameter 70 nm) or butyrate only (115 nm). Our data

suggest that DSS (likely via the sulfate groups) engages in

electrostatic interactions with carboxylate groups of medium or

long fatty acids, involving bridging by Ca++ ions. Once vesicles are

formed, they fuse with cell membranes and deliver DSS into the

cytoplasm.

Dextran-loaded nanoparticles induce colitis
We thus showed that DSS/dodecanoate formed nanometer-

sized vesicles taken up by Caco2-BBE monolayers. We speculated

that the limiting step in in vivo colitis development induced by DSS

was formation of nanometric vesicles via association of DSS and

fatty acids. As dextran-loaded lipid vesicles are difficult to deliver

to the colon, we decided to investigate the effects of dextran-loaded

Figure 7. DSS and fatty acids form nano-lipocomplexes that disrupt Caco2-BBE monolayer resistance. (A) Confluent cultures were
obtained after 48 h of growth and epithelial resistance was assessed by continuous resistance measurement at pH 7.4 (cellular pH) or pH 6.2 (colonic
pH). The epithelial resistances of cultures treated with dodecanoate alone (10 mM) or with 3% (w/v) DSS (1 or 10 mM dodecanoate), at pH 6.2 or
pH 7.4, were assessed by ECIS. (B) Light scattering measurement of the diameters (nm) of particles formed by DSS (3% w/v) alone; DSS (3% w/v) with
Ca++ (1 mM); and DSS (3% w/v) with Ca++ (1 mM) and butyrate (1 or 10 mM) or dodecanoate (1 or 10 mM).
doi:10.1371/journal.pone.0032084.g007
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nanoparticles (NPs) in vivo. In previous studies, we have shown that

we can deliver such NPs into the colon [39,40,42,46]. We chose to

deliver dextran to the colon because dextran does not form vesicles

in the presence of dodecanoate and does not induce colitis in vivo.

We found that dextran-loaded NPs, but not free dextran, given by

gavage over 8 days, increased measures of inflammatory

parameters, such as weight loss (at day 7, 23% for mice given

dextran-loaded NPs versus 17% for those given 3% [w/v] DSS)

(Figure 8A), decreased colon length (Figure 8B) (to 28 mm versus

38 mm for DSS-treated mice), increased MPO activity (Figure 8C)

(312 MPO units/mg protein for dextran-loaded nanoparticle-

treated mice versus 96 MPO units/mg protein for DSS-treated

mice), and increased the levels of pro-inflammatory cytokines

(Figure 8D) (2.6-fold increase in IL-1b level and a 1.5-fold increase

in IL-6 level for mice treated with NPs versus DSS alone). Again,

all of these observations were confirmed by histology and

endoscopy (Figures 8E and 8F). Finally, induction of colitis was

more severe using dextran-loaded NPs compared to DSS alone

(Figure 8A to 8H). The results suggest that dextran may be the

active motif of the DSS molecule in terms of induction of colitis.

Discussion

During DSS treatment, inflammation is enhanced, as shown by

rises in the extent of diarrhea and rectal bleeding. Colonic

inflammation is also characterized by severe lesions throughout the

mucosa, alteration of epithelial structure, high-level neutrophil and

lymphocyte infiltration into the mucosal and submucosal areas,

and loss of crypts. We explored how DSS, a negatively charged

polymer of glucose with engrafted sulfate groups, induces colitis in

mice. We tested different components of the molecule of DSS such

as glucose, sulfate sodium, dextran and association of each. DSS-

associated molecules had no proinflammatory effects. We did not

observe any signs of inflammation (loss of barrier functions,

apoptosis, etc.) in vitro in Caco2-BBE monolayer cells nor during in

vivo study. Conversely, we showed that a high-fat diet increases the

Figure 8. Dextran-loaded nanoparticles but not free dextran induce colitis. Mouse body weight changes during treatment with DSS
supplemented with dextran-loaded NPs (‘‘dextran-loaded NPs’’) or empty NPs (‘‘DSS 3%’’) compared to those of control mice gavaged with empty
NPs suspended in water. C57BL/6 mice drank a 3% (w/v) DSS solution, or water, for the indicated numbers of days. (A) Body weight changes are
shown as means6SEMs. * P,0.05. (B) Colon length (mm) of DSS-treated mice given dextran-loaded or empty NPs, compared to that of control
animals (drinking water only). * P,0.05. (C) Determination of MPO enzymatic activity as an index of neutrophil infiltration into injured tissue. Results
are expressed as units of MPO per mg of protein, are compared to the values in control mice, and are means6SEMs of three independent
determinations. ** P,0.01, *** P,0.001. (D) Dextran-loaded NPs can significantly increase production of IL-1b and IL-6, compared to use of empty
NPs, in animals drinking DSS (3% w/v). mRNA expression was measured in test and control animals. * P,0.05. (E) Hematoxylin-stained colon sections
of mice receiving daily gavage with dextran-loaded or empty NPs (‘‘DSS’’) in the interval during which the drinking water contained DSS (3% w/v);
thus on day 7. (F) Histological scores. (G) Macroscopic inflammation was assessed using a mouse colonoscope. Photographs were obtained on the
day of sacrifice and, (H), endoscopic scores were calculated.
doi:10.1371/journal.pone.0032084.g008
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efficacy by which DSS induces colitis in mice. From those

observations, we tested the effect of DSS on Caco2-BBE

monolayer cells but with cell medium containing MCFAs (C12).

We showed the ability of DSS associated with MCFAs to disrupt in

vitro intestinal barrier function whereas butyrate (small chain fatty

acid) did not significantly affect resistance. Next, we showed that

DSS mixed with dodecanoate but not butyrate, in the presence of

calcium, formed nanometer-sized vesicles.

It has been shown in the literature that claudins have significant

interaction with MCFAs, and so could be involved in the

‘‘transport’’ of DSS through the epithelium, explaining the loss

of membrane integrity shown in our article. In vivo, several

MCFAs, particularly capric (C10) and lauric (C12) acids, have

been shown to increase rectal drug absorption, presumably by

causing alterations in intestinal TJ barrier function. C10 has also

been shown to lead to profound alterations in the barrier function

of the TJ and has been investigated as an agent to enhance viral-

mediated gene transfer [27].

Conclusion
In the present study we have made progress toward elucidating

the mechanism of action of DSS in terms of induction of colitis.

Our findings suggest that DSS associates with medium-chain-

length fatty acids (MCFAs) such as dodecanoate in the colonic

lumen prior to induction of colitis. Interestingly, it is known that

MCFAs are present at high concentrations in the colonic lumen

and that the colonic epithelium absorbs and partially metabolizes

MCFAs [47]. DSS complexed to MCFAs form nanometer-sized

vesicles ,200 nm in diameter that fuse with colonocyte mem-

branes. The arrival of such vesicles in the cytoplasm affects major

epithelial cell pathways and consequently reduces intestinal barrier

functions that initiate intestinal inflammatory signaling cascades.

We also suggest that the inflammatory activity of DSS is afforded

by the dextran moiety. This idea is supported by the fact that,

when dextran is delivered to the cytoplasm, intestinal inflamma-

tory signaling pathways are activated. The deleterious activity of

dextran may be explained by the molecule having an inhibitory

effect on reverse transcriptase activities that affect major cellular

functions. The deleterious effects of DSS are targeted principally

to the distal colon. It will be useful to chemically modify DSS

molecules, rendering the molecule beneficial to the colon, without

affecting targeting specificity.
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