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Background: The tumor microenvironment (TME) performs a crucial function in the tumorigenesis and response 

to immunotherapies of clear cell renal cell carcinoma (ccRCC). However, a lack of recognized pre-clinical TME- 

based risk models poses a great challenge to investigating the risk factors correlated with prognosis and treatment 

responses for patients with ccRCC. 

Methods: Stromal and immune contexture were assessed to calculate the TMErisk score of a large sample of 

patients with ccRCC from public and real-world cohorts using machine-learning algorithms. Next, analyses for 

prognostic efficacy, correlations with clinicopathological features, functional enrichment, immune cell distribu- 

tions, DNA variations, immune response, and heterogeneity were performed and validated. 

Results: Clinical hub genes, including INAFM2, SRPX, DPYSL3, VSIG4, APLNR, FHL5, A2M, SLFN11, ADAMTS4, 

IFITM1, NOD2, CCR4, HLA-DQB2, and PLAUR , were identified and incorporated to develop the TMErisk signature. 

Patients in the TME high risk group (category) exhibited a considerably grim prognosis, and the TMErisk model was 

shown to independently function as a risk indicator for the overall survival (OS) of ccRCC patients. Expression 

levels of immune checkpoint genes were substantially increased in TME high risk group, while those of the human 

leukocyte antigen (HLA) family genes were prominently decreased. In addition, tumors in the TME high group 

showed significantly high infiltration levels of tumor-infiltrated lymphocytes, including M2 macrophages, CD8 + 

T cells, B cells, and CD4 + T cells. In heterogeneity analysis, more frequent somatic mutations, including pro- 

tumorigenic BAP1 and PBRM1, were observed in the TME high group. Importantly, 19.3% of patients receiving 

immunotherapies in the TME high group achieved complete or partial response compared with those with immune 

tolerance in the TME low group, suggesting that TMErisk prominently differentiates prognosis and responses to 

immunotherapy for patients with ccRCC. 

Conclusions: We first established the TMErisk score of ccRCC using machine-learning algorithms based on a large- 

scale population. The TMErisk score can be utilized as an innovative independent prognosis predictive marker 

with high sensitivity and accuracy. Our discovery also predicted the efficacy of immunotherapy in ccRCC patients, 

indicating the intimate link between tumor immune microenvironment and intratumoral heterogeneity. 
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. Introduction 

Clear cell renal cell carcinoma (ccRCC) is the predominant histologi-
al subtype of renal cell carcinoma (RCC), representing 70% − 85% of all
idney cancers and approximately 3.5% − 4.2% of all newly diagnosed
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ancers. 1 It predominantly occurs in adults aged more than 60 years,
nd males are three times as likely to be affected as females. 1 Although
arly-stage localized ccRCC can be cured with surgical treatment, over a
hird of cases present with organ, bone, or lymphatic metastases at ini-
ial diagnosis or develop metastases after surgery. 2 Advanced ccRCC is
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iologically heterogeneous and is a major cause of mortality, with a 10%
-year rate of survival. 3 , 4 Hence, it is essential to deeply investigate the
umor microenvironment (TME) to understand tumor heterogeneity bet-
er and improve the effectiveness of treatment management strategies. 

The TME is defined as the cellular milieu surrounding tumor cells
onsisting of stromal cells, extracellular matrix, immune cells, and dif-
erent chemokines and cytokines, and the interaction of these compo-
ents is crucial to carcinogenesis and the response to immunotherapies
n ccRCC patients. 5 Genomic alterations within incipient ccRCC not only
ontribute to neoplastic progression but also affect the cellular compo-
ition in TME, including the high infiltration of CD8 + T cells, which is
inked to worse outcomes and response to immunotherapy. 6-9 Biallelic
nactivation of the VHL tumor suppressor gene on a background of a loss
f chromosome 3p is an important genetic event in most ccRCCs. 10 , 11 

ome epigenetic regulatory genes located at chromosome 3p, such as
BRM1, SETD2 , and BAP1 , are also identified as frequently mutated
enes and thought to interact with VHL inactivation to promote the tu-
origenesis of ccRCC. 12-14 Importantly, these most commonly mutated

enes were associated with variations in the TME and affected the effec-
iveness of immunotherapeutic regimens. 15 , 16 Therefore, to clarify the
umor heterogeneity, appropriate treatments, and prognosis of ccRCC,
t is of interest to study the molecular characteristics and subclassify
cRCC into prognostic risk groups. 

Several studies have well characterized the gene expression signa-
ures and suggested some potential therapeutic targets in ccRCC. 17 , 18 

he Cancer Genomic Atlas (TCGA) divided ccRCC with different somatic
utations into four molecular subtypes and differential survival rates

ased on extensive transcriptional profiles. 10 The m1 subtype showed
 frequent mutation in PBRM1 with the best outcome. The m3 sub-
ype with the worst outcome was characterized by PTEN mutation and
DK2NA delation. The m4 subtype showed a mutation in DNA repair-
elated genes, mTOR signaling pathway-related genes, and BAP1 , and
lso correlated with poor prognosis. 10 Our previous study on immune
nfiltration and prognosis of ccRCC also identified three immunopheno-
yping clusters, which demonstrated the prognostic significance of im-
unological contexture in ccRCC TME. Our data revealed that VHL and
BRM1 were the most commonly mutated genes in ccRCC, and mutation
ates of these genes were greater in Cluster A than in Cluster B and C.
urvival rates are much lower in immune-hot clusters B and C, which is
ndicative of pro-tumor immune infiltration, compared to immune-cold
luster A. 19 We also noticed the differences in myeloid infiltration score
stromal score) and immune infiltration score (immune score) among
ubgroups. Therefore, to further clarify how genomic changes alter the
ME in ccRCC, we established a TME-related risk model based on tran-
criptomic and proteomic data to predict ccRCC patients’ prognoses in
he present study. 

The TME is a complex ecosystem that affects tumor occurrence, de-
elopment, and treatment resistance. However, a lack of recognized
re-clinical TME-related risk models of ccRCC poses great challenges
o investigating the risk factors correlated with patients’ prognosis and
reatment responses. To address these challenges, many studies have
nvestigated the interactions between immune cells or identified some
rognostic hub genes that alter the TME in ccRCC, but there have been
ew studies focused on investigating TME-related risk models based on
mmune and stromal features of ccRCC. We, therefore, sought to iden-
ify TME-related differential expression genes to establish a novel risk
core that can potentially enhance the prognostic reliability and lay the
onceptual groundwork for the development of targeted treatment op-
ions. 

. Materials and methods 

.1. Downloading and preprocessing of data 

The fragments per kilobase of exon model per million mapped frag-
ents (FPKM) gene expression level data, clinicopathological and sur-
237 
ival data, and gene mutation data of ccRCC patients were derived
rom the The Cancer Genome Atlas (TCGA) dataset, with gene IDs
ransfered from Ensembl ID format into the gene symbol matrix for-
at ( https://portal.gdc.cancer.gov ). Genes with missing values in more

han 30% samples were removed to minimize the effect of missing val-
es in gene expression data. RNA-seq data and related clinical data of
20 ccRCC patients were constructed after filtering the samples with
urvival times less than 30 days. Immune subtypes of cancer were ob-
ained from datasets from the previous study. 20 Treatment response and
orresponding RNA-seq data were obtained from the CheckMate cohorts
ublished previously. 21 Proteomic data of paired primary ccRCC tissues
nd adjacent normal tissues of 232 cases were enrolled from our previ-
us study cohort (FUSCC cohort). To evaluate the immune infiltration
nd landscape of TME, we used the “Immune ” model of the TIMER2.0
ataset ( http://timer.cistrome.org/ ), which utilizes six state-of-the-art
lgorithms to produce a more accurate estimation of the infiltration lev-
ls of immune cells. 

.2. Construction of stromal and immune risk signature 

To quantify the enrichment of immune and stromal cells in TME,
umor purity, stromal, and immune scores of 520 ccRCC cases were
omputed as per the gene expression levels using the ESTIMATE al-
orithm 

22 by R package “ESTIMATE ”. Patients were categorized as
aving low or high stromal/immune scores depending on the opti-
al cutoff point, which was computed with the “survminer ” R tool

 https://cran.r-project.org/web/packages/survminer/index.html ). The
aplan-Meier (KM) analysis was adopted to assess the prognosis of each
roup with overall survival (OS) as the prognostic endpoint, and the
ignificance of the difference (variation) was evaluated by means of the
og-rank test (Supplementary Fig. 2A and B). 

.3. Identification of differentially expressed genes 

Subsequently, differentially expressed genes (DEGs) between the
tromal and immune groups were identified with the “limma ” R pro-
ram, 23 with the screening criteria of false discovery rate (FDR) q-value
 0.05 and |log2FC| > log2(1.5). Compared to the low immune/stromal
roup, the overexpressed genes in the high stromal/immune group were
efined as “upregulated DEGs ”, and those with low expression in the
igh immune/stromal group were defined as “downregulated DEGs ”. 

.4. Establishment of WGCNA 

The R package “WGCNA ” was utilized to investigate the correlation
atterns among genes, and identify stromal and immune scores corre-
ated modules. 24 To ensure a signed scale-free co-expression gene net-
ork, we used soft-threshold values of power 𝛽 = 2 and a scale-free
 

2 = 0.83. Based on the optimal soft-threshold 7, the minimum module
ize of 30, and 31 coexpressed gene modules were discovered in total.
odules with a stromal or immune score correlation coefficient > 0.5

nd P < 0.05 were defined as modules associated with the stromal or
mmune score. 

.5. Construction of TMErisk model 

To find a set of prognostic genes, we conducted univariate Cox re-
ression analysis on the intersecting genes between stromal and immune
core-related DEGs and module genes. Subsequently, lasso regression
nalysis was performed to reduce the number of prognostic genes, fol-
owed by the multivariate Cox stepwise regression analysis to select the
MErisk genes by calculating the differences in the Akaike informa-
ion criterion (AIC) with the minimum AIC value of 1 779.72. Finally,
ach case’s TMErisk score was determined by applying the following
isk equation: Riskscore =ΣNi = 1(Exp i ∗ 𝛽 i) where “Exp i ” signifies the
xpression of each prognostic gene and “𝛽 i ” signifies each prognostic

https://portal.gdc.cancer.gov
http://timer.cistrome.org/
https://cran.r-project.org/web/packages/survminer/index.html
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ene’s coefficient (Supplementary Table 1). Patients were classified into
ow- and high-risk categories depending on their TMErisk scores, with
he optimum threshold of 0.7263283 computed using the “survminer ”
 program. 

.6. Evaluation and verification of the TMErisk model 

The survival analysis between the low- and high-risk categories of
ME was carried out using the KM technique. The TMErisk model’s abil-

ty to anticipate specificity and sensitivity was assessed utilizing the re-
eiver operating characteristic (ROC) curve. The tumor stage and the
-index of the TMErisk model were applied in conjunction with the

ggplot" R program to assess the stability of the model. 25 Moreover,
he TMErisk model’s significance as an independent prognosis predic-
ive indicator was examined via univariate analysis, and the findings
ere shown in a forest plot with the help of the “forestplot ” tool in R
 https://cran.r-project.org/web/packages/forestplot/index.html ). 

Using an anti-CCR4 antibody (1:500, ab216560, Abcam) and anti-
OD2 antibody (1:500, ab188646, Abcam), immunohistochemical

IHC) staining of CCR4 and NOD2 was implemented to validate the ex-
ression levels of CCR4 and NOD2 in 20 paired samples that were col-
ected from the FUSCC tissue bank. Two professional pathologists rated
he IHC staining for CCR4 and NOD2 separately, and any disagreements
ere discussed and resolved to establish a consensus. The proportion
f tumor cells that were covered by the stain was represented by a
core range of 0–4: 0%, 1–25%, 26–50%, 51–70%, and 76–100% re-
pectively. Levels of staining intensity spanned from 0 (no staining) to
 (very strong staining), with 3 signifying strong staining, 2 signifying
oderate staining, 1 signifying weak staining, and 0 signifying no stain-

ng. The cumulative IHC score (between 0 and 12) was determined by
ultiplying the staining degree value by the staining intensity. 

.7. Gene set enrichment analysis and functional enrichment analysis 

TME low- and high-risk subgroups were subjected to Gene Set En-
ichment Analysis (GSEA) to identify significant enrichment pathways,
hich were annotated by Gene Ontology (GO) and Kyoto Encyclopedia
f Genes and Genomes (KEGG) datasets. We defined highly enriched re-
ults in the GSEA as those with an FDR q-value < 0.05 and a normalized
nrichment score NES > 1. 

.8. Correlations between TMErisk model and immune characteristics 

Pearson correlation was applied to probe the link between the
MErisk model and the tumor purity, the immune and stromal scores,
nd the consensus measurement of purity estimations (CPE) score. A
ilcoxon rank-sum test was used to compare the expression patterns

f 39 immune checkpoint genes (ICGs) and 19 HLA family genes be-
ween the TME low- and high-risk categories. Heat maps of ICGs and
he HLA family associated with TMErisk and immune cell infiltration in
istinct TMErisk groups were visualized with the aid of the R “Complex-
eatmap ” tool. 26 

.9. Mutation analysis 

Multiple types of mutations were identified and categorized. Trans-
ation_Start_Site, Splice_Site, Nonstop_Mutation, Nonsense_Mutation,
issense_Mutation, In_Frame_Ins, In_Frame_Del, Frame_Shift_Ins, and

rame_Shift_Del, were further classified as non-synonymous mutations.
urthermore, synonymous mutations also included silent mutations as
ell as other mutation types such as 3 ′ Flank, 3 ′ UTR, 5 ′ Flank, 5 ′ UTR,
nd Intron. In 353 samples from the TCGA mutation cohort, genes with
ore than 20 mutations were defined as high-frequency mutant genes. 
238 
.10. Treatment response 

By employing the gene expression profiles for 520 TCGA cohort pa-
ients with ccRCC, the 50% inhibitory concentrations (IC 50 ) value of 138
rugs was extrapolated using the “pRRophetic ” tool in R and the value
as normality transformed. 27 Tumor immunodeficiency and exclusion

TIDE) scores were utilized to reflect the patient’s potential responsive-
ess to immunotherapeutic regimens ( http://tide.dfci.harvard.edu/ ).
ene expression data and treatment response data from CheckMate
ohorts 21 of 172 patients who had received Nivolumab were uti-
ized to assess the link between the TMErisk model and immune
esponse. 

.11. Culture of human ccRCC cells and derivation of lentiviral-transfected

ell lines 

The 786-O human ccRCC cell line was acquired from the Cell Bank
f Shanghai Institutes of Biological Sciences, Chinese Academy of Sci-
nces (Shanghai, China). The 786-O cells were grown in a humid cham-
er with 5% CO2 at 37 °C in RPMI 1640 solution (Gibco, CA, USA)
ith 10% fetal bovine serum (FBS; Gibco, Grand Island, NY) and 1%
enicillin-streptomycin mixture (Gibco, Grand Island, NY). A 70% con-
uent cell monolayer was reached after overnight incubation of cells

n 6-well plates before transfection. Using the instructed concentration
f Lipofectamine 3000 Transfection Reagent (Invitrogen, USA), 786-O
ells were transfected with NOD2-siRNA (General Biol) and an overex-
ression plasmid (GeneChem). 

.12. Western blotting assay 

In 6-well plates, 786-O cells (1 × 10 5 ) were seeded to start the experi-
ent. Following an incubation duration of 24 h, the cells were subjected

o treatment with DMSO (serving as the vehicle) or FHP01 or XAV939
serving as Merck) for the durations specified. CcRCC cells were trans-
ected and then rinsed using PBS, and total protein extracts were pre-
ared by introducing 80 μL of RIPA lysis buffer into the mixture. As
reviously described, 28 for the Western blotting, 10 μg of proteins gen-
rated from whole lysates were deposited onto 8% polyacrylamide gels
ith 1% Laemmli solution and separated by SDS-PAGE. The proteins
ere then transferred onto an Immobilon-P PVDF membrane (Millipore,

PVH00010) and examined with anti- 𝛽-actin antibody (15G5A11/E2,
nvitrogen, ThermoFisher) and NOD2 polyclonal antibody (PA5-19991,
nvitrogen, ThermoFisher, USA). ECL-plus TM western blotting chemilu-
inescence detection kits (BD Biosciences, New Jersey, USA) were then
tilized to visualize the bands. 

.13. Cell viability and transwell assays 

Transfected 786-O cells (either with siRNA or negative control) were
lated at a density of 3 × 10 3 cells/well in 100μl medium in 96-well
lates for the Cell Counting Kit-8 (CCK-8, KeyGEN BioTECH, Nanjing,
hina) test. Next, the cells were incubated in a serum-free medium
SFM) with 10% CCK8 for 2 h, as per the recommendations of the
anufacturer, after adhesion to the wall. Then, absorbance values at
50 nm OD were recorded on days 1, 2, 3, 4, and 5 utilizing an au-
omated microplate reader (TEAN, Swiss). The samples were analyzed
hree times independently. Specifically, 24-well plates equipped with
ranswell chambers (Corning Costar, Corning, NY, USA) were employed
o conduct the transwell tests. In brief, 1 × 10 5 cells in 100μl serum-free
MEM medium were seeded in the top chamber devoid of matrigel, and

he bottom chamber was then introduced with 800μl of DMEM medium
ith 20% FBS, and the cells were grown for 24 h in an incubator. The

ells in the bottom chamber were fixed, washed, and labeled with 0.5%
rystal violet before being counted in six separate randomized fields uti-
izing a light microscope (400 ×). 

https://cran.r-project.org/web/packages/forestplot/index.html
http://tide.dfci.harvard.edu/
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Fig. 1. Computational and experimental workflow for tumor microenvironment risk model. ccRCC, clear cell renal cell carcinoma. 
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.14. Statistical analysis 

In the statistical analyses, the variations across the two groups of
amples were evaluated using the Wilcox test, whereas the variations
cross multiple groups were evaluated by applying the Kruskal rank test.
oreover, the Pearson correlation test was adopted to examine the links

etween the groups. All analyses were completed in the R 3.5.2 version.
he R tools “ggplot2 ” and “ggpubr ” were employed to generate all of
he statistical graphs, whereas the “survival ” and “survminer ” tools were
mployed to generate all of the survival graphs. All hypothetical tests
ere two-sided, and a P -value of less than 0.05 indicated a significant

evel in all tests. 

. Results 

TME is linked to a variety of cancerous biological mechanisms, such
s oncogenesis, cellular metabolic irregularities, and aberrant immuno-
ogical modulation. This investigation into the prognosis-associated
MErisk model and its links to immune characteristics, gene mutations,
nd drug effectiveness was carried out in three stages ( Fig. 1 ). Firstly,
20 ccRCC cases with available RNA-seq data and respective clinical
ata from the TCGA cohort were enrolled to construct the TMErisk
odel using a machine-learning algorithm. Secondly, correlation anal-

ses were undertaken between the TMErisk model and clinical parame-
ers, HLA family genes, immune checkpoint-related genes, immune cell
nfiltrations, and gene mutations. Lastly, the TMErisk model was used to
redict responses to 138 drug efficacy and validate the immunotherapy
esponse for ccRCC patients in 172 cases who received Nivolumab. 

.1. Stromal and immune score landscape in ccRCC 

To begin with, we matched transcriptome data with clinical informa-
ion of ccRCC patients from the TCGA dataset and further obtained 520
ases for the next analyses. Also, the immune and stromal scores were
omputed by the “ESTIMATE ” method to indicate the level of immune
ells and stromal cells in the TME, respectively. In the subgroup analysis,
he stromal and immune scores revealed significant variations between
239 
he TCGA subtypes ( P < 0.0001) and immune subtypes ( P < 0.0001)
 Fig. 2 A, F). Besides, BAP1 gene mutation status also suggested a re-
arkable variation in the immune score ( P < 0.01), but not significant

n the stromal score. VHL, PBRM1 , and SETD2 mutation status was not
ignificant in both stromal and immune scores ( Fig. 2 B-E). In the clin-
copathological characteristics, higher pT stage ( P < 0.001), pM stage
 P < 0.01), tumor stage ( P < 0.0001), tumor grade ( P < 0.0001), and
ender ( P < 0.05) demonstrated substantial variations in the immune
cores however, only elevated pT stage ( P < 0.05) and tumor grade ( P <
.05) showed distribution significance in the stromal score ( Fig. 2 G-L). 

We conducted survival analysis between high- and low-
tromal/immune categories, and the findings illustrated that patients in
he high stromal ( P = 0.0130) and high immune ( P = 0.0018) categories
ad dismal prognoses in contrast with those in the low stromal and
mmune categories ( Fig. 3 A and B). Furthermore, the “ESTIMATE ”
echnique revealed that the stromal score ( R = − 0.85, P < 0.0001)
nd immune score ( R = − 0.92, P < 0.001) were inversely linked to
umor purity ( Fig. 3 C and D). CPE methods were utilized to further
alidate the significant contribution of tumor purity to the stromal
nd immune scores, and the findings indicated that tumor purity was
nversely linked to the stromal score ( R = − 0.63, P < 0.0001) and
mmune score ( R = − 0.7, P < 0.0001) as well ( Fig. 3 E and F). As shown
n the volcano plot, we screened out 571 stromal score-related DEGs
491 up-regulated, 80 down-regulated) and 573 immune score-related
EGs (530 up-regulated, 43 down-regulated) (Supplementary Fig. 1). 

.2. Development of the ccRCC coexpression modules 

Cluster analyses of 520 ccRCC samples from the TCGA dataset car-
ied out using WGCNA revealed the stromal and immune signature-
elated modules. In particular, we established the power value as 𝛽 = 2
scale free = 0.83) to construct a scale-free network, which impacted the
cale independence and mean connectivity of the coexpression module
Supplementary Fig. 2C and D). As per the outcomes of the WGCNA anal-
sis, genes exhibiting comparable expression profiles were clustered into
 module, and 31 coexpression gene modules were found (the genes clus-
ered in gray modules exhibited no coexpression) ( Fig. 3 G). The coex-
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Fig. 2. Correlations between stromal and immune scores and clinicopathological features in patients with clear cell renal cell carcinoma. (A) Distribution of stromal 

and immune scores between different TCGA subtypes. (B-E) Correlations between VHL, BAP1, PBRM1, SETD2 mutation status and stromal/immune score. (F) 

Distribution of stromal and immune score between different immune subtypes. (G-I) Correlations between pathological TNM stages and stromal/immune score. (J-L) 

Correlations between tumor stage, pathological grade, gender and stromal/immune score. Mut, mutant; ns, not siginificant; WT, wild type. 
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ression modules’ relationship to the stromal/immune score is depicted
n Fig. 3 H. Modules with R > 0.5 and P values < 0.05 were selected for
urther study, of which the modules colored in blue, royal blue, salmon,
ight cyan, dark red, and midnight blue had strong correlations with the
tromal score, while the modules colored in the salmon, dark orange,
an, light cyan, and saddle brown showed strong correlations with the
mmune score. 

.3. Construction of TMErisk model 

The Veen diagram shows the intersecting DEGs between stromal and
mmune-associated module genes, of which 442 stromal-related inter-
ecting genes and 455 immune-related intersecting genes were iden-
ified ( Fig. 4 A and B). Prognostic values of these intersecting genes
ere further assessed. Overall, 162 prognostic genes associated with the

tromal score and 165 associated with the immune score were found.
ig. 4 C and D displays the top 20 prognostic genes and hazard ratio
HR) with a 95% confidence interval (CI). Moreover, lasso regression
nalysis was used in reducing the number of prognostic genes, reduc-
ng overfitting between genes, and selecting 37 candidate stromal and
mmune-related prognostic genes ( Fig. 4 E and F). Also, we verified the
xpression patterns and prognostic significance of these 37 candidate
enes in our proteomic dataset (FUSCC cohort), and the results indi-
ated that a total of 8 corresponding proteins revealed significant differ-
240 
nces in both expression and prognosis, including COL5A3, COL11A1,
FITM1, CPA3, UNC13D, RNASE2, TCIRG1 and ALDH6A1 (Supplemen-
ary Fig. 3). Subsequently, the 37 candidate genes were incorporated
nto the multivariate analysis, and the prognostic genes consisting of IN-

FM2, SRPX, DPYSL3, VSIG4, APLNR, FHL5, A2M, SLFN11, ADAMTS4,

FITM1, NOD2, CCR4, HLA-DQB2 , and PLAUR were chosen to develop
he TMErisk model (TMErisk score =ΣNi = 1(Exp i ∗ 𝛽 i)). 

.4. Prognostic value of TMErisk model 

After computing the TMErisk score for each case, patients were clas-
ified into low- ( n = 143) and high-risk ( n = 377) categories as per the
ptimal threshold of the risk score. Survival studies showed a strong link
etween patients in the high-risk category and a grim prognosis ( P <
.0001) ( Fig. 4 G), and the ROC curve also indicated the high prediction
pecificity and sensitivity of the TMErisk model in the OS over 5 years
area under the curve [AUC] > 0.75) ( Fig. 4 H). C-index demonstrated
hat the TMErisk model had a higher predictive discrimination ability
han the traditional prognostic model tumor stage and the predictive
bility was further improved when the TMErisk model was integrated
ith the tumor stage ( Fig. 4 I). 

Further, the expression pattern and prognostic significance of CCR4
nd NOD2 in the FUSCC cohort were validated using IHC staining, as
he coefficients of CCR4 (coef = 0.737) and NOD2 (coef = 0.717) are the



A. Anwaier, W. Xu, W. Liu et al. Journal of the National Cancer Center 3 (2023) 236–249 

Fig. 3. Survival analysis of stromal/immune groups and identification of WGCNA co-expression modules. (A, B) Survival curves of low- and high-stromal (A) 

and -immune (B) groups. (C, D) Correlation between tumor purity and stromal/immune score. (E, F) Correlation between CPE score and stromal/immune score. 

(G) Clustering dendrograms of the gene modules based on the results of WGCNA analysis. Highly similar modules are identified by clustering and then merged 

dynamically. (H) A heatmap of the correlations between module eigengenes and stromal/immune score. The row represents distinct eigengene modules, and the 

column represents distinct signature. The corresponding correlation and P value are shown in each cell. CPE, consensus measurement of purity estimations. 
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Fig. 4. Construction of TMErisk model. (A) Intersection of stromal-related DEGs with WGCNA stromal-related modules. (B) Intersection of immune-related DEGs 

with WGCNA immune-related modules. (C, D) Forrest plot showed the results of univariate Cox regression analysis of stromal intersection genes (C) and immune 

intersection genes (D). (E, F) Lasso regression analysis of stromal-related prognostic genes (E) and immune-related prognostic genes (F). (G) Survival analysis between 

low- and high-TMErisk groups. (H) AUC curve for 1 to 5-year survival of TMErisk model. (I) C-index showed the prognostic predictive ability of tumor stage, TMErisk 

model and TMErisk model + tumor stage. AUC, area under the curve; DEGs, differentially expressed genes; TME, tumor microenvironment. 
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ighest in the TMErisk model. Fig. 5 A-D demonstrates that CCR4 and
OD2 expression levels were elevated in tumor tissues but lowered in
ormal tissues. Survival curves also indicated that the attenuated expres-
ion of CCR4 ( P = 0.002) and enhanced expression of NOD2 ( P = 0.0002)
ere considerably linked to unfavorable outcomes of ccRCC patients
 Fig. 5 E and F). To reveal malignant biological behaviors of hub onco-
ene NOD2 , we first validated the downregulation of NOD2 in the
iRNA-transfected group compared with the control group in 786-O cells
 Fig. 5 G). Cell viability test results demonstrated that ccRCC cell prolif-
rative capacity was considerably suppressed when NOD2 was down-
egulated ( P < 0.001; Fig. 5 H). Besides, a Transwell migration experi-
ent showed that ccRCC cell migration was remarkably attenuated due

o NOD2 downregulation ( P < 0.001; Fig. 5 I). Taken together, the de-
reased NOD2 expression significantly restrained the potential of ccRCC
ells to proliferate and migrate in vitro. 
242 
As shown in Supplementary Fig. 4, the Forest plot indicated that, in
ge, tumor stage, pTNM stage, tumor grade, and gender stratification
nalyses, the TMErisk model served as a risk indicator to the OS in an
ndependent way. The TMErisk model suggested significant distribution
ifferences among the TCGA subtypes ( P < 0.0001), of which subtype
 was the group with the highest TMErisk score and the worst progno-
is among the four subtypes, illustrating that a higher TMErisk score is
orrelated with poor outcomes (Supplementary Fig. 5A). Besides, our
nalysis indicated that the TMErisk model also revealed significant dis-
ribution differences between immune subtypes ( P < 0.0001), with sub-
ype C6 having the highest TMErisk score and also being recognized as a
igh lymphocytic infiltration subtype with the worst outcome, which is
onsistent with our findings (Supplementary Fig. 5F). We also analyzed
he association of the TMErisk model with gene mutation status, and
he results showed that patients with the BAP1 mutation and the SETD2
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Fig. 5. External validation of the hub oncogenes CCR4 and NOD2 in FUSCC cohort. (A, B) Expression of CCR4 (A) and NOD2 (B) in tumor and normal tissues. 

Immunohistochemical score indicated the significantly different expression of CCR4 (C) and NOD2 (D) between tumor and normal tissues. (E, F) Survival analysis 

between CCR4 low- and high-expression groups (E) and between NOD2 low- and high-expression groups (F). (G) Expression levels of NOD2 in the control group 

and the siRNA-transfected group. (H) Down-regulated NOD2 expression significantly inhibited the proliferative ability of ccRCC cells than the control group. (I) 

Down-regulated expression of NOD2 significantly suppressed the migration capacity of ccRCC cells. 
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utation had higher TMErisk scores (Supplementary Fig. 5C and E). In
ddition, we noticed that elevated pT stage ( P < 0.0001), pN stage ( P <
.01), pM stage ( P < 0.0001), tumor stage ( P < 0.0001), and tumor grade
 P < 0.0001) were correlated with higher TME scores (Supplementary
ig. 5G-L). 

.5. Pathway enrichment analysis 

Comparative assessment of the functional annotations of those with
ow and high TMErisk was done by means of GSEA. The results showed
hat 55 KEGG terms in total (with the high- and low-TMErisk categories
ontaining 10 and 45 terms, correspondingly), 103 molecular functions
MF) terms (with the high- and low-TMErisk categories containing 25
nd 78 terms, correspondingly), 424 biological processes (BP) terms
with the high- and low-TMErisk categories containing 192 and 232
erms, respectively), 64 cellular components (CC) terms (with the high-
nd low-TMErisk categories containing 19 and 45 terms, correspond-
ngly) were significantly enriched (Supplementary Fig. 6). Details and
op ten terms of the clustering results were summarized in Supplemen-
ary Table 2. 

.6. Association of TMErisk model with immune features 

We examined links between the TMErisk groups and tumor cell com-
onents. High-TMErisk score was strongly linked to greater immune
cores and reduced tumor purity (Supplementary Fig. 5), suggesting that
he infiltration of immune cells was higher in the advanced tumor, while
he tumor cells were less abundant. 

The TMErisk model and the six major ICGs were then subjected to
omparison. As depicted in Fig. 6 A, LAG3 ( P < 0.0001), CTLA4 ( P <
243 
.0001), CCR4 ( P = 0.0002), TIGIT ( P = 0.0011), and CD27 ( P = 0.0079)
ere differently expressed between the low- and high-TMErisk cate-
ories. We then further analyzed the expression of 19 HLA family genes
nd 39 ICGs in the TMErisk model. Per the results of the Wilcoxon
est, the expression levels of 7 HLA family genes ( Fig. 6 B) and 23 ICGs
 Fig. 6 C) had significant variations in the high- and low-TMErisk cate-
ories. Besides, as reflected in Fig. 6 D, the heat map revealed the cor-
elations between TMErisk score and HLA family genes together with
CGs, of which CD44 ( R = 0.44, P < 0.0001), TNFRSF18 ( R = 0.39, P
 0.0001), TNFRSF8 ( R = 0.34, P < 0.0001) were the top three posi-

ively correlated genes, while HHLA2 ( R = − 0.38, P < 0.0001), HLA-E

 R = − 0.23, P < 0.0001), NPR1 ( R = − 0.19, P < 0.0001) were the top
hree negatively correlated genes. 

Three algorithms (TIMER, CIBERSORT, Xcell) were adopted to
emonstrate the infiltration status of immune and stromal cells in the
ME. Furthermore, the results were visualized in the heat map after nor-
alizing the infiltration fractions ( Fig. 7 ). Infiltration levels of B cells

 P < 0.01) and macrophages ( P < 0.05) were shown to be substantially
aried across the low- and high-TMErisk categories, as depicted by the
IMER method. Through the CIBERSORT algorithm, we noticed that T
ell follicular helper ( P < 0.0001), Tregs ( P < 0.0001), macrophage M2
 P < 0.001), mast cell activated ( P < 0.001), T cell CD4 + memory ac-
ivated ( P < 0.001), Macrophage M0 ( P < 0.001), T cell CD4 + memory
esting ( P < 0.05), NK cell activated ( P < 0.05) and B cell memory ( P
 0.05) had substantially varied infiltration levels between low- and
igh-TMErisk categories. Xcell algorithm indicated considerable varia-
ions in the infiltration levels of several stromal and immune cells be-
ween the two TMErisk groups, particularly in hematopoietic stem cells
 P < 0.0001), endothelial cells ( P < 0.0001), T cell CD4 + Th1 ( P <
.0001), T cell NK ( P < 0.0001), B cells ( P < 0.0001), B cell naïve ( P <
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Fig. 6. Correlation between TMErisk groups and immune checkpoint genes and the HLA family. (A) Differential expression of immune checkpoints, LAG3, CTLA-4, 

CCR4, TIGIT, CD27, IDO1 in TME low- and high-risk group. (B, C) Expression of immune checkpoint genes and HLA families in TME low- and high-risk groups. (D) 

Heat map of correlations between TMErisk and immune checkpoint genes and HLA family. HLA, human leukocyte antigen; TME, tumor microenvironment. 
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.0001), monocytes ( P < 0.001), B cell plasma ( P < 0.001), plasmacytoid
endritic cells ( P < 0.001), common lymphoid progenitors ( P < 0.01),
acrophage M1 ( P < 0.01), mast cells ( P < 0.01), myeloid dendritic

ells activated ( P < 0.05), T cell CD4 + Th2 ( P < 0.05), macrophage M2
 P < 0.05), T cell CD8 + effector memory ( P < 0.05), B cell memory ( P <
.05), and T cell CD4 + ( P < 0.05). Additionally, we also investigated the
istribution of tumor mutation burden (TMB), somatic mutations, and
linical characteristics of ccRCC and displayed them in the heat map
 Fig. 7 ). 

Prognostic analyses were also performed on cells that had signif-
cant differential infiltrations in the TMErisk groups, and the results
ere visualized in Fig. 8 . High infiltration of T cell follicular helper ( P
 0.0001), Tregs ( P = 0.0058), NK cell activated ( P = 0.0210), B cell
 P = 0.0004), monocyte ( P = 0.0230), B cell naïve ( P = 0.0033), T cell
D4 + Th1 ( P = 0.0002), T cell CD4 + Th2 ( P = 0.0280) were remarkably

inked to the favorable OS, but high infiltration of mast cell activated
 P = 0.0002), endothelial cell ( P = 0.0260), hematopoietic stem cell ( P
 0.0001) was substantially linked to with poor OS ( Fig. 8 A-N). 

.7. Analyses of somatic mutations of ccRCC 

To start with, we compared the mutation frequency between the
igh- and low-TMErisk categories. More somatic mutations, includ-
244 
ng synonymous and non-synonymous mutations, were observed in the
igh-TMErisk category ( P < 0.0001) ( Fig. 9 A-C). Next, we selected
enes with more than 20 mutations as high-frequency mutation genes
n ccRCC, including VHL (46% mutation), PBRM1 (40% mutation), TTN

19% mutation), SETD2 (13% mutation), BAP1 (10% mutation), MUC16

8% mutation), MTOR (8% mutation). The high-frequency mutation
ene BAP1 has prognostic efficacy and is a risk factor for mutation sta-
us prognosis ( P = 0.024) ( Fig. 9 D). Notably, we observed that BAP1

utations and PBRM1 mutations ( P < 0.01) were significantly mutu-
lly exclusive, and PBRM1 mutations significantly co-occurred with VHL

utations and SETD2 mutations ( P < 0.01) ( Fig. 9 E). In addition, we
iscovered that the high-TMErisk category showed higher co-mutation
ates (50.6% vs. 41.9%) of the seven high-frequency mutation genes.
oreover, the low-TMErisk patients showed greater single mutations

35.6% vs. 31.3%) and wild type (22.6% vs. 18.1%) than those in the
igh-TMErisk patients ( P < 0.0001) ( Fig. 9 F). We further compared the
ifferent mutation statuses of VHL, SETD2 , and PBRM1 , and the find-
ngs suggested that the high-TMErisk subgroup also showed elevated
roportions of VHL-PBRM1 (25.3% vs. 21.5%) and SETD2-PBRM1 (12%
s. 7%) co-mutations ( P < 0.0001) ( Fig. 9 F). The findings above elabo-
ated the high-TMErisk patients exhibited a greater probability of having
o-mutations, implying that co-mutations may be a high-risk factor in
cRCC. We also analyzed the mutation sites and mutation types of BAP1
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Fig. 7. Heat map of correlation between TMErisk group and immune cell infiltration. The heat map shows standardized fractions for immune and stromal cell 

infiltration. Blue represents cells with low levels of infiltration and red represents cells with higher levels of infiltration. 
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Fig. 8. Cell infiltration and survival differences in different TMErisk groups. Cells with significantly differential infiltration in low- and high-TMErisk groups and 

survival differences between low and high infiltrated cellular groups. TME, tumor microenvironment. 
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etween the high- and low-TMErisk categories, and the outcomes were
isplayed in Fig. 9 G. 

.8. Drug sensitivity and efficacy analysis 

We analyzed the IC 50 of 138 medications as per the gene expression
ata of ccRCC patients from TCGA, and the results were visualized in
ig. 10 A. Tumor immunodeficiency and exclusion (TIDE) scores were
tilized to reflect the patient’s potential response to immunotherapy, but
e did not observe the differential distribution of TIDE scores between
MErisk groups ( Fig. 10 B). Additionally, we analyzed the effectiveness
f immunotherapeutic regimens in 172 patients who were treated with
ivolumab. Accordingly, the results suggested that 19.3% of the high-
ME-risk patients achieved complete (CR) or partial response (PR) as
pposed to the low-TME-risk patients (13.3%) ( Fig. 10 C), showing that
igh-TME-risk individuals benefited significantly from immunotherapy.
evertheless, no significant variation was identified in TMErisk scores
etween patients with PR or CR and those with progressive disease (PD)
r stable disease (SD) ( P = 0.28) ( Fig. 10 D). 

. Discussion 

The component of the ccRCC microenvironment can affect disease
evelopment, cellular metabolism, and immune regulation. There were
ifferences in prognosis and therapeutic efficacy between individuals,
hich may be due to the differences in the cell-type-specific TMEs. To

eveal the interactions between cells in the TME and identify hub genes
hat alter the TME in ccRCC, we constructed the TMErisk model and
nvestigated its significance in prognosis and correlations with the im-
une features, gene mutations, and drug efficacy. The TMErisk model
246 
ndicated that the high-TME-risk patients exhibited a grim prognosis,
nd our model also served as a risk indicator to the OS in an inde-
endent way. An increased risk score for TME was highly related to
 worse outcome in our study. At the same time, we found that the
MErisk model showed significant distribution differences among the
CGA subtypes of ccRCC, of which subtype 3 exhibited the worst prog-
osis and also had the highest TMErisk score, proving again that a
igher TMErisk score is correlated to poor outcomes. In addition, we
oticed that elevated tumor stage, pTNM stage, and tumor grade were
emarkably correlated to higher TME scores. Besides, our analysis in-
icated that the TMErisk model also revealed significant distribution
ifferences among immune subtypes. In particular, subtype C6 had the
ighest TMErisk score and also was recognized as a high lymphocytic
nfiltration subtype with the worst outcome, which is consistent with
ur findings. Angiogenesis may be induced by a range of vascular ac-
ive chemicals secreted by renal carcinoma tissues, which is also one
f the targets of advanced renal cancer treatment. 29 The immune sub-
ype C1 had elevated expression of angiogenic genes 20 and also cor-
elated with a higher TMErisk score in our analysis, indicating that
ur risk model conforms to the biological characteristics of kidney
ancer. 

With the increasing evidence of the effectiveness of immunotherapy
n the treatment of renal cancer, it is of interest to study the potential
olecular biomarkers that potentially affect the efficacy of immunother-

py. HLA family molecules and ICGs are implicated in the recognition,
ntigen presentation, and T cell-mediated apoptosis of malignant cells,
nd their impairment may promote tumor immune evasion. 30 In the
resent study, we identified that some HLA molecules, including HLA-
QB2, HLA-DQA2, HLA-E, and HLA-DOA, showed substantially low ex-
ression in the high-TMErisk category, and some immune checkpoint
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Fig. 9. Somatic mutations and correlation with TMErisk model. (A-C) The association between all mutation counts, synonymous mutation counts, non-synonymous 

mutation counts, and TMErisk score. Blue and gray represent low- and high-TMErisk group, respectively. (D) Forest plot indicate the prognostic ability of genes with 

more than 20 mutations. (E) Interaction of high-frequency mutated genes. (F) Distribution of mutation types of high frequency mutated genes, VHL-PBRM1 and 

SETD2-PBRM1 between low- and high-TMErisk group. (G) Lollipop plot of somatic mutation site in BAP1. TME, tumor microenvironment. 
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Fig. 10. Correlation between TMErisk model and immunotherapy. (A) IC 50 value for 138 drugs. (B) Correlation between TIDE score and TMErisk score. (C) Proportion 

of responses to immunotherapy in the low- and high-TMErisk group. (D) Differences in TMErisk score in the response and non-response groups. CR, complete response; 

IC 50 , 50% inhibition concentration; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease; TIDE, tumor immunodeficiency 

and exclusion; TME, tumor microenvironment. 
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nhibitors, including LAG3, CTLA4, CD44, and CD27, were shown to
e remarkably highly expressed in the high-TMErisk category. Existing
iterature also indicated that downregulated HLA molecules and some
pregulated ICGs were linked to lower objective response rates and poor
rognosis. 31 , 32 In mutation analyses, we found that more somatic mu-
ations were observed in the high-TMErisk category in contrast with
he low-TMErisk category, signifying that high mutation frequency may
ffect the TME, which may result in carcinogenesis and tumor devel-
pment. Notably, we also discovered that PBRM1 mutations frequently
o-occurred with VHL mutations and SETD2 mutations, whereas BAP1

utations were mutually exclusive with PBRM1 mutations. Immune re-
ponse analysis indicated that immunotherapy was more effective in the
igh-TMErisk patients, but no significant variation was identified in the
MErisk scores between patients with PR or CR and those with PD or
D, which may be attributed to the fewer patients in the high-TMErisk
ategory. 

This study constructed and validated the TMErisk model of ccRCC.
o additionally emphasize the link between the RCC microenvironment
nd patient prognosis, this model was shown to have excellent accuracy
nd sensitivity in predicting prognoses and may be used as a powerful
rognostic indicator in an independent way. We also scrutinized how the
MErisk model correlated with mutation status, immune checkpoints,

mmune cell infiltration, and the sensitivity to immunotherapeutic regi-
ens, suggesting that a high-TMErisk score was linked to a greater inci-
ence of deleterious mutations and immune cell infiltration that aided in
umorigenesis. Besides, there was solid evidence in this study depicting
hat the high-TMErisk score of ccRCC strongly predicted the responsive-
ess of patients to immunotherapy. 

Nonetheless, there were several drawbacks to this research. The
echanism of the genes implicated in the TMErisk model has not
een elucidated in this work. Our future research will focus on elu- s  

248 
idating the real biological functions of these genes and determining
ow they work with TME to promote oncogenesis. In addition, al-
hough the TMErisk model was developed and verified by several pub-
icly accessible and real-world datasets, additional multicenter inves-
igations and prospective studies are needed before they can be used
linically for patients with ccRCC, due to the limitation of retrospective
nalysis. 
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