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Abstract: Progression of actinic keratosis (AK) to cutaneous squamous cell carcinoma (cSCC)
is rare. Most cases of AK remain as intraepidermal lesions, owing to the suppression of the
epithelial-to-mesenchymal transition (EMT). Ovo-like transcriptional repressor 1 (OVOL1) and
ovo-like zinc finger 2 (OVOL2) are important modulators of EMT in some tumors, but their roles in
skin tumors remain elusive. This study elucidated the roles of OVOL1/2 in AK and cSCC using 30
AK/30 cSCC clinical samples, and an A431 human SCC cell line using immunohistochemistry and
molecular biological approaches. Immunohistochemically, OVOL1/2 were upregulated in AK and
downregulated in cSCC. Meanwhile, EMT-related factors, vimentin and zinc finger E-box binding
homeobox 1 (ZEB1) were downregulated in AK and upregulated in cSCC. Moreover, ZEB1 expression
was higher in tumors in which OVOL2 expression was low. Thus, we observed an inverse association
between OVOL2 and ZEB1 expression in AK and cSCC. Although knockdown of OVOL1 or OVOL2
increased the mRNA and protein levels of ZEB1, only OVOL2 knockdown increased the invasive
ability of A431. In conclusion, OVOL2 inhibits ZEB1 expression and may inhibit the promotion of AK
into cSCC. OVOL2/ZEB1 axis may be a potential target for preventing the development of cSCC.

Keywords: actinic keratosis; cutaneous squamous cell carcinoma; EMT; OVOL2; ZEB1; OVOL1;
Twist1; Snail; vimentin; E-cadherin

1. Introduction

Actinic keratosis (AK) and cutaneous squamous cell carcinoma (cSCC) are common types of
precancerous and cancerous skin lesions, whose prevalence is increasing in the context of population
aging [1]. A 2013 meta-analysis estimated that there were between 186,000 and 419,000 new cases of
SCC (excluding SCC in situ) in the Caucasian population in the United States in 2012 [2]. AK and
cSCC mainly arise on sun-exposed parts of the body in elderly people. Most cases of AK remain
intraepidermal lesions and the progression of AK to cSCC is rare [3,4]. AK is a precursor of cSCC
characterized by atypical keratinocytes within the epidermis. Early changes in AK start at the basal
layer in the interfollicular epidermis [1,5]. Although the rate of transformation of AK to cSCC is low,
0.1% to 0.6% per lesion per year, consequences of advanced cSCC can be devastating [3,4]. Therefore,
early-stage intervention and/or prophylaxis is essential. The transition from AK to cSCC is suggested
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to occur in one of two ways: through direct dermal invasion of the atypical cells found only in the basal
layer of AK, or through secondary dermal invasion after the atypical cells have extended throughout
the epidermis [5]. However, most AK cases are restricted to the epidermis for a long time, suggesting
the existence of a potent mechanism that suppresses the epithelial-to-mesenchymal transition (EMT).

Mesenchymal and epithelial cell phenotypes are not completely irreversible [6]. For example,
cells are thought to switch between these two states during embryonic development [6]. Moreover,
EMT and the reverse process—mesenchymal-to-epithelial transition (MET)—are regarded as crucial
processes in early organ development and wound healing [7,8]. In fact, a series of EMT and MET
conversions could affect the generation of numerous adult tissues and organs. Besides normal tissue
development, EMT plays important roles in stromal invasion by tumor cells [7]. During the EMT
process, cells with an epithelial phenotype are considered to lose their apicobasal polarity, apical
tight junctions, cell junctions, and cytoskeletal structures and subsequently acquire a mesenchymal
phenotype [7,9,10]. The phenotype change between EMT and MET was recently reported to be
important for several processes of cancer development [11,12]. Some signaling pathways and various
molecules, such as zinc finger E-box binding homeobox 1 (ZEB1), Slug, Twist, and Snail, are involved
in the progression of EMT. ZEB1 is a transcription factor located on human chromosome 10p11.22
and an essential regulator of EMT [13,14]. ZEB1 appears to play a critical role in the progression
of malignant cancers including renal clear cell carcinoma, lung adenocarcinoma, breast cancer, and
cervical squamous cell carcinoma [15]. In addition, ovo-like transcriptional repressor 1 (OVOL1) and
ovo-like zinc finger 2 (OVOL2) have been identified as important molecules to regulate EMT [16,17].

In mammals, OVOL1 and OVOL2 are ubiquitously conserved genes that encode C2H2 zinc
finger transcription factors [18,19]. OVOL1 and OVOL2 are important for the growth of epithelial
tissue derived from reproductive cells in Caenorhabditis elegans and Drosophila melanogaster [18,20,21].
Of note, OVOL2 might inhibit EMT in lung adenocarcinoma by transcriptionally suppressing an
EMT-related gene, Twist1 [22]. OVOL2 protein is considered an antagonist of TGF-β signaling that
regulates EMT in breast cancer [23]. A relationship between OVOL2 and ZEB1 in osteosarcoma has
also been reported [14]. However, the expression of OVOL1 and OVOL2 as well as their functions
in skin neoplasms are poorly understood. Regarding cutaneous inflammatory diseases, Tsuji et al.
demonstrated that the activation of aryl hydrocarbon receptor is associated with filaggrin and OVOL1
expression in atopic dermatitis [24]. Moreover, we recently showed that human epidermis and hair
follicles express OVOL1 and OVOL2, and that OVOL1/2 are overexpressed in Bowen disease and
downregulated in cSCC [21,25]. Therefore, in this study, we further examined the functional roles of
OVOL1/2 in the transition from AK (cSCC precursor) to invasive cSCC. Using human clinical tumor
samples and a human SCC cell line, we found that the OVOL2/ZEB1 axis was crucially involved in the
development of cSCC.

2. Materials and Methods

We conducted this study in accordance with the concepts enshrined in the Declaration of
Helsinki. This study was approved by the Ethics Committee of Kyushu University Hospital (project
number: 30-363, approved on 27th November 2018). All patients provided written informed consent
to participate.

2.1. Tissue Samples

We examined 30 cSCC and 30 AK skin samples. All samples were taken from completely
independent patients. Thirteen perilesional normal skin in AK patients served as control.
All formalin-fixed (24 h in paraformaldehyde) and paraffin-embedded tissues were obtained from the
archives of our hospital. At least three experienced dermatopathologists confirmed the diagnoses.
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2.2. Immunohistochemical Analysis

Formalin-fixed, paraffin-embedded samples were cut into 4-µm-thick sections. We retrieved
antigens using Heat Processor Solution pH 6 (Nichirei Biosciences, Tokyo, Japan) at 100◦C for 40 min.
We blocked nonspecific binding using a supernatant of 5% skimmed milk. The primary antibodies
were diluted with Dako REAL Antibody Diluent (s2022; Dako Denmark A/S, Glostrup, Denmark).
The primary antibodies used were rabbit anti-human OVOL1 (1:100, HPA003984; Atlas Antibodies,
Bromma, Sweden), rabbit anti-human OVOL2 (1:100, NBP1-88754; Novus Biologicals, Littleton,
CO, USA), rabbit anti-human ZEB1 (1:200, HPA027524; Atlas Antibodies), and mouse anti-human
vimentin (prediluted by supplier, 722101; Nichirei Biosciences). We incubated sections with anti-OVOL1
overnight at 4 ◦C or with anti-OVOL2, anti-vimentin, or anti-ZEB1 for 2 h at room temperature. We then
incubated sections with N-Histofine Simple Stain AP MULTI (414261; Nichirei Biosciences) secondary
antibody for 30 min at room temperature. We detected immunoreactions using FastRed II (415261;
Nichirei Biosciences) as a chromogenic substrate and counterstained with hematoxylin. Sections
stained without primary antibody served as a negative control. Two independent dermatologists (M.M.
and T.I.), who were blinded to the patients’ clinical information, performed immunohistochemical
assessments. We captured images by microscopy (BX61VS; Olympus, Tokyo, Japan).

2.3. Cell Culture

We purchased a human SCC cell line, A431, from the American Type Culture Collection
(CRL-1555; Manassas, VA, USA). We cultured cells in Dulbecco’s modified Eagle medium (D6429;
Sigma-Aldrich, Tokyo, Japan) with a mixture of penicillin (100 units/mL), streptomycin (100 µg/mL),
glutamine (29.2 mg/mL) (10378-016; Invitrogen, Carlsbad, CA, USA), and 5% fetal bovine serum (FBS)
(CCP-FBS-BR; Cosmo Bio Co. Ltd., Tokyo, Japan) in 5% carbon dioxide (CO2) at 37◦C. We passaged
cells every 2–3 days until sub-confluence.

2.4. A Gene-Specific Small Interfering RNA (siRNA) Transfection

The following pre-designed OVOL1- and OVOL2-specific siRNAs (Silencer Select; Life
Technologies, Carlsbad, CA, USA) were used: OVOL1 (s9939, 5′-CAUAUCACCUCAUUUCUAAtt-3′)
and OVOL2 (s33860, 5′-AGAUCGAAAAUCAAGUUCAtt-3′), as well as a control siRNA (4390846) as
a non-targeting siRNA for transfection. We seeded the A431 cells into culture plates and transfected
them with siRNAs using HiPerFect Transfection Reagent (301704; Qiagen, Hilden, Germany).

2.5. Quantitative Reverse-Transcription Polymerase Chain Reaction (qRT-PCR) Analysis

A431 cells were seeded on 24-well plates (5 × 104 cells per well) and were transfected with siRNAs
(final concentration: 10 nM). We extracted total RNA using the RNeasy Mini Kit (74104; Qiagen) 48 h after
siRNA transfection and used 2.5 µg RNA for reverse transcription with the PrimeScript RT reagent Kit
(RR037A; Takara Bio Inc., Kusatsu, Japan). We performed qRT-PCR on a CFX Connect Real-time System
(Bio-Rad Laboratories Inc., Hercules, CA, USA) using SYBR Premix Ex Taq (RR820S; Takara Bio Inc.,
Tokyo, Japan). We performed PCR amplification under the following conditions: 95 ◦C for 30 s, followed
by 40 cycles of 95 ◦C for 5 s and 60 ◦C for 20 s. The levels of mRNA were normalized to that of β-actin.
We used the ∆∆Ct method to calculate the fold induction of each gene relative to that in the control
group. We used the following primers (Hokkaido System Science Co., Sapporo, Japan): OVOL1 forward,
5′-ACGATGCCCATCCACTACCTG-3′, OVOL1 reverse, 5′-TTTCTGAGGTGCTGGTCATCATTC-3′; OVOL2
forward, 5′-GGCAAGGGCTTCAACGACA-3′, OVOL2 reverse, 5′-CTTCAGGTGGGACTCCAGAGA-3′;
E-cadherin forward, 5′-TGCCCAGAAAATGAAAAAGG-3′, E-cadherin reverse, 5′-GTGTATGTGG
CAATGCGTTC-3′; vimentin forward, 5′-GAGAACTTTGCCGTTGAAGC-3′, vimentin reverse,
5′-GCTTCCTGTAGGTGGCAATC-3′; ZEB1 forward, 5′-GCACCTGAAGAGGACCAGAG-3′, ZEB1 reverse,
5′-TGCATCTGGTGTTCCATTTT-3′; ZEB2 forward, 5′-TTTCAGGGAGAATTGCTTGA-3′, ZEB2 reverse,
5′-CACATGCATACATGCCACTC-3′; Snail forward, 5′-GCCTAGCGAGTGGTTCTTCT-3′, Snail reverse,
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5′-TAGGGCTGCTGGAAGGTAAA-3′; Twist1 forward, 5′-AAGGCATCACTATGGACTTTCTCT-3′, Twist1
reverse, 5′-GCCAGTTTGATCCCAGTATTTT-3′; β-actinforward, 5′-ATTGCCGACAGGATGCAGA-3′,
β-actinreverse, 5′-GAGTACTTGCGCTCAGGAGGA-3′. We conducted assays in triplicate and repeated
them at least three times in separate experiments.

2.6. Western Blotting

A431 cells were seeded on six-well plates (2 × 105 cells per well) and were transfected with siRNAs
(final concentration: 10 nM). The cell proteins were extracted with lysis buffer (04719956001, Complete
Lysis M; Roche Applied Science, Penzberg, Germany) after siRNA transfection. We collected lysates
for OVOL1/2 protein detection 48 h post-transfection. Meanwhile, for vimentin, ZEB1, and E-cadherin
protein detection, we collected lysates 72 h post-transfection.

Protein levels were quantified with a BCA Protein Assay Kit (23227; Thermo Fisher Scientific,
Waltham, MA, USA). We first dissolved the proteins in NuPAGE LDS Sample Buffer (NP0007;
Invitrogen) and 10% NuPAGE Sample Reducing Agent (NP0009; Invitrogen) and heated them at
70◦C for 10 min. We then separated the sample lysates using NuPAGE 4–12% Bis-Tris Protein Gels
(NP0321BOX; Invitrogen) at 200 V, 200 W, and 180 mA for 23 min. The total amounts of protein
loaded per well were 60 µg for OVOL1 and OVOL2, and 40 µg for vimentin, ZEB1, and E-cadherin.
We subsequently transferred the sample proteins to polyvinylidene difluoride membranes (0.45-µm
pore size, IPSN07852; Invitrogen).

After blocking using WesternBreeze Blocker/Diluents A and B (46-7003 and 46-7004; Invitrogen),
we probed the membranes with the following primary antibodies: mouse anti-human OVOL1
(1:100, ab74520; Abcam, Cambridge, UK), rabbit anti-human OVOL2 (1:500, ab83265; Abcam),
rabbit anti-human ZEB1 (1:2000, NBP1-05987; Novus Biologicals), rabbit anti-human vimentin
(1:1000, ab45939; Abcam), mouse anti-human E-cadherin (1:5000, 610181; BD Biosciences, San Jose,
CA, USA), and rabbit anti-human β-actin as a housekeeping protein (1:1000, 3700; Cell Signaling
Technology, Danvers, MA, USA). We diluted all primary antibodies with Signal Enhancer HIKARI
for western blotting and ELISA (02272-741; Nacalai Tesque Inc., Kyoto, Japan) and incubated them
with the membranes overnight at 4◦C. We subsequently washed the membranes three times with
Tris-buffered saline and Tween 20 (9997; Cell Signaling Technology) diluted into a 1:10 solution using
distilled-deionized H2O (0.1% TBST). Next, we added anti-rabbit IgG (1:1500, 7074S; Cell Signaling
Technology) or anti-mouse IgG (1:1500, 7076S; Cell Signaling Technology) secondary antibody diluted
with 0.1% TBST to the membranes, followed by incubation for 30 min at room temperature. We then
washed the membranes five times with 0.1% TBST. We detected protein expression using SuperSignal
West Pico PLUS Chemiluminescent Substrate (34577; Thermo Fisher Scientific) or Chemi-Lumi One
Super (02230-30; Nacalai Tesque Inc.) with the ChemiDoc touch imaging system (1708370; Bio-Rad
Laboratories Inc.). We conducted all assays in triplicate and repeated them at least three times in
separate experiments.

2.7. Matrigel Invasion Chamber Assay

Cell invasion assays were performed using Matrigel-coated Transwell cell culture inserts (8-µm
pore size, 354480, Corning BioCoat Matrigel Invasion Chamber; Corning Inc., Corning, NY, USA) and
control inserts without Matrigel coating (8-µm pore size, 353097, Falcon Cell Culture Insert; Corning
Inc.). We seeded A431 cells onto six-well plates (2× 105 cells per well) and transfected them with control
siRNA, OVOL1 siRNA, or OVOL2 siRNA for 48 h. We harvested the transfected cells and seeded
them in the upper Transwell chambers (4 × 104 cells) with serum-free culture medium. Meanwhile,
we added culture medium supplemented with 5% FBS to the lower chambers. After incubation at
37◦C in 5% CO2 for 22 h, we performed hematoxylin staining and counted the cells that translocated to
the lower surface of the culture inserts. We counted the cells that penetrated the membrane at ×200
magnification (ECLIPSE 80i; Nikon, Tokyo, Japan) for all areas of the membrane. We conducted all
assays in triplicate wells and repeated them at least three times in separate experiments.
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2.8. Wound Healing Assay

A431 cells were transfected with control siRNA, OVOL1 siRNA, or OVOL2 siRNA and were
seeded at 1× 104 cells per well on a 96-well ImageLock tissue culture microplate (4379; Essen Bioscience,
Ann Arbor, MI, USA) pre-coated with type I collagen (637-00653, Cellmatrix Type I-A; Nitta Gelatin Inc.,
Osaka, Japan). Forty-eight hours post-transfection, we scratched the cell monolayers with a wound
maker 96 (9600-0012; Essen Bioscience). The wound area of each well was automatically imaged every
2 h in a CO2 incubator using a live-cell imaging system (IncuCyteHD; Essen Bioscience). We measured
the wound area relative to that at 0 h using IncuCyte software (9600-0012, a set of wound markers;
Essen Bioscience). We conducted all assays by using 24 wells/condition and repeated them at least
three times in separate experiments.

2.9. Proliferation Assay

A431 cells transfected with control siRNA, OVOL1 siRNA, or OVOL2 siRNA were seeded at
5000 cells per well on 96-well plates. After 48 h of incubation, we treated cells with the Premix WST-1
Cell Proliferation Assay System (MK400; Takara Bio Inc.) for 2 h. We performed spectrophotometry
and measured the absorbance at 450 nm using a microplate reader (DTX 800; Beckman Coulter,
Brea, CA, USA). We conducted all assays in triplicate wells and repeated them at least three times in
separate experiments.

2.10. Colony Formation Assay

We performed colony formation assays using a Cytoselect 96-well cell transformation assay
kit (CBA-135; Cell Biolabs Inc., San Diego, CA, USA) according to the manufacturer’s instructions.
Briefly, we added a base agar matrix layer into each well of a sterile, 96-well, flat-bottomed microplate.
We transfected the cells with siRNAs and seeded the transfected cells onto the base agar matrix layer
(1 × 104 cells per well). After 6–8 days of incubation at 37◦C in 5% CO2, we confirmed colony formation
under a microscope. To quantify the colony-forming cells, we solubilized colony-containing agar
with Matrix Solubilization Solution and mixed it with MTT solution for 2–4 h at 37◦C in 5% CO2.
After confirming the formation of precipitate within the cells, we added detergent solution, followed
by 2–4 h of incubation at room temperature in the dark. We measured the absorbance at 570 nm using
a microplate reader. We conducted all assays in triplicate wells and repeated them at least three times
in separate experiments.

2.11. Apoptosis Assay

We seeded A431 cells onto 12-well plates (1.2 × 105 cells per well), transfected them with control
siRNA, OVOL1 siRNA, or OVOL2 siRNA; and incubated them for 48 h at 37◦C in 5% CO2. We
determined the apoptotic status of the transfected cells using an Annexin V-FITC Apoptosis Detection
Kit (15342-54; Nacalai Tesque Inc.) according to the manufacturer’s instructions. Briefly, we harvested
the cells by trypsinization and suspended them in 1×Annexin V binding solution at 1.0 × 106 cells/mL.
We mixed 100 µL cell suspension with 5 µL Annexin V-FITC solution and 5 µL propidium iodide
solution and then incubated them for 15 min at room temperature in the dark. Then, we mixed the cells
with 400 µL 1×Annexin V binding solution and analyzed them using a FACSCanto II flow cytometer
(BD Biosciences). We determined the proportion of FITC-positive apoptotic cells among live cells
by using FlowJo software (663335; BD Biosciences). We conducted all assays in triplicate wells and
repeated them at least three times in separate experiments.

2.12. Statistical Analysis

GraphPad Prism version 8 (GraphPad Software, San Diego, CA, USA) was used for all statistical
analyses. We used Fisher’s exact test to analyze the relationship between OVOL1/2 expression and
ZEB1 or vimentin expression in AK and cSCC tissues. We collected quantitative data from at least
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three independent experiments and measurements. The results are expressed as mean ± standard
deviation. We determined differences between groups by the Mann–Whitney U-test. A p-value < 0.05
was assumed to indicate a statistically significant difference; * p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results

3.1. Immunohistochemistry

3.1.1. OVOL1/2 Expression in AK and cSCC

First, to clarify the clinical significance of OVOL1, OVOL2, ZEB1 and vimentin in AK and
cSCC, we examined their expression in 30 AK, 30 cSCC, and 13 perilesional normal skin using
immunohistochemical staining. Their representative hematoxylin and eosin staining was depicted
in Supplementary Figure S1. We calculated the percentages of OVOL1- or OVOL2-positive cells by
counting tumor cells in three random fields. The expression of OVOL1 in normal skin and AK was
comparable, whereas it was significantly decreased in cSCC (compared with normal; p = 0.0088 and
AK; p < 0.0001) (Figure 1A, Figure 2A, and Supplementary Figure S2A). The expression of OVOL2
was upregulated in the nuclei of AK cells than those of normal keratinocytes (p = 0.0159) (Figure 1B,
Figure 2B, Supplementary Figure S2B, and Supplementary Figure S3). In AK, cells budding into the
dermis, which were at the forefront of the EMT process, were strongly positive for OVOL2 (Figure 1B
and Supplementary Figure S3). Notably, the proportion of OVOL2-positive cells was significantly
lower in cSCC than AK (p = 0.0006), but not than normal epidermis (p = 0.324) (Figure 2B). These
results suggest that the loss of OVOL1 or OVOL2 protein may be associated with the transition from
AK to invasive cSCC.

3.1.2. ZEB1 and Vimentin Expression in AK and cSCC

As ZEB1 and vimentin are important EMT-promoting molecules in SCCs [11,15], we examined
ZEB1 expression in AK and cSCC. We considered samples to be positive for ZEB1 when nuclear
expression was observed in more than 5% of tumor cells [26]. Most normal keratinocytes and AK
cells exhibited faint or negative staining for ZEB1 in the examined specimens (Figures 1C and 2C).
In contrast, ZEB1 was overexpressed in many cSCC samples (compared with normal; p = 0.0143 and
AK; p = 0.0061) (Figure 1C, Figure 2C, and Supplementary Figure S2C).

We next examined vimentin expression. In normal epidermis, vimentin expression was not
detected in keratinocytes and was only positive in Langerhans cells and melanocytes. We considered
samples to be positive for vimentin when expression was observed in more than 10% of tumor cells [26].
Most AK cells exhibited faint or negative staining for vimentin in the examined specimens (Figures 1D
and 2D). In contrast to normal epidermis or AK, vimentin was overexpressed in many cSCC samples
(compared with normal; p = 0.0081 and AK; p = 0.0048) (Figure 1D, Figure 2D, and Supplementary
Figure S2D).
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Figure 1. Representative images of ovo-like transcriptional repressor 1 (OVOL1) and ovo-like zinc finger 2 (OVOL2), zinc finger E-box binding homeobox 1 (ZEB1),
and vimentin staining in normal skin (left), actinic keratosis (AK) (middle) and cutaneous squamous cell carcinoma (cSCC) (right). (A) Representative images of
OVOL1 staining, (B) OVOL2 staining, (C) ZEB1 staining, and (D) vimentin staining. Red arrows show the positive cells.
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Figure 2. OVOL1, OVOL2, ZEB1, and vimentin exhibit opposite protein expression patterns between
AK and cSCC. (A–D) OVOL1, OVOL2, ZEB1, and vimentin expression were examined in 30 AK,
30 cSCC, and 13 perilesional normal skins. (A) The percentage of cells positive for OVOL1 and (B)
the percentage of cells positive for OVOL2. Dots in the bars in (A) and (B) represent each clinical
sample. (C) The percentage of ZEB1-positive patient samples. Samples were considered positive for
ZEB1 when nuclear expression was observed in more than 5% of tumor cells. (D) The percentage of
vimentin-positive patient samples. Samples were considered positive for vimentin when expression
was observed in more than 10% of tumor cells. Mann–Whitney U-test; error bars represent mean
± standard deviation. p-values < 0.05 were assumed to indicate a statistically significant difference;
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3.1.3. Associations between OVOL1/2 and ZEB1 or Vimentin in AK and cSCC

We subsequently analyzed the association between OVOL1/2 and ZEB1 or vimentin in AK plus
cSCC clinical samples. We considered samples to have high OVOL1 or OVOL2 expression when
the percentage of cells positive for either exceeded the median (i.e., 20% for OVOL1 and 40% for
OVOL2) (Figure 2A,B). There was no significant relationship between OVOL1 and ZEB1 expression
(Table 1). Moreover, there were no significant associations between vimentin and OVOL1 or OVOL2
expression (Table 2). On the other hand, tumors with low OVOL2 expression exhibited significantly
higher ZEB1 expression than tumors with high OVOL2 expression (p = 0.0105; Table 1). We then
evaluated the associations of OVOL1/2 with ZEB1 and vimentin expressions separately in AK and
cSCC (Supplementary Tables S1A and S1B, S2A and Table S2B). OVOL2 with ZEB1 tended to show an
association only in cSCC, but it did not reach the statistical significance (p = 0.0604) (Supplementary
Table S1B). Again, there were no significant associations among OVOL1 and ZEB1, OVOL1 and
vimentin, OVOL2 and ZEB1, and OVOL2 and vimentin in AK (Supplementary Table S1A and S2A).
No association of OVOL1 and ZEB1, OVOL1 and vimentin, or OVOL2 and vimentin was evident in
cSCC (Supplementary Table S1B and S2B).
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Table 1. Associations between OVOL1/2 and ZEB1 expression in AK and cSCC clinical samples.

Total OVOL1 p-Value

High Low

ZEB1 0.245
Positive 19 10 9

Negative 41 29 12

Total OVOL2 p-value

High Low

ZEB1 0.0105*
Positive 19 7 12

Negative 41 30 11

Fisher’s exact test. p-values < 0.05 were assumed to indicate a statistically significant difference; * p < 0.05; ZEB1,
zinc finger E-box binding 1; OVOL1, ovo-like transcriptional repressor 1; OVOL2, ovo-like zinc finger 2.

Table 2. Associations between OVOL1/2 and vimentin expression in AK and cSCC clinical samples.

Total OVOL1 p-Value

High Low

Vimentin 0.352
Positive 15 8 7

Negative 45 31 14

Total OVOL2 p-value

High Low

Vimentin 0.543
Positive 15 8 7

Negative 45 29 16

Fisher’s exact test. p-values < 0.05 were assumed to indicate a statistically significant difference.

3.2. In Vitro Assays Using an A431 Cell Line

3.2.1. Screening of EMT-Related Factors Influenced by OVOL1/2 Knockdown

To elucidate the molecular mechanisms between OVOL1/2 and EMT-related factors, we screened
the factors potentially influenced by OVOL1/2. Accordingly, we used siRNA approach to analyze
the mRNA levels of EMT-related factors—E-cadherin, vimentin, ZEB1, ZEB2, Snail, and Twist1—upon
knockdown of either OVOL1 or OVOL2 in the A431 human SCC cell line. We confirmed OVOL1 and
OVOL2 knockdown by qRT-PCR (Figure 3A). Among the EMT-related factors, OVOL1 knockdown
significantly increased the mRNA levels of vimentin (p = 0.0006) and ZEB1 (p = 0.0262) compared to
the control siRNA; there were no significant changes in the mRNA levels of E-cadherin (p = 0.163),
ZEB2 (p = 0.381), Snail (p = 0.902), or Twist1 (p = 0.0717) (Figure 3B). Similarly, compared to the control
siRNA, OVOL2 knockdown significantly increased the mRNA levels of vimentin (p = 0.0012) and ZEB1
(p = 0.0006) but significantly decreased that of E-cadherin (p = 0.0006); there were no significant changes
in the mRNA levels of ZEB2 (p = 0.709), Snail (p = 0.901), or Twist1 (p = 0.0956) (Figure 3B).

In addition, compared to A431 cells treated with control siRNA, cells treated with OVOL1 or OVOL2
siRNA showed a tendency to convert to a spindle-like mesenchymal morphology (Supplementary
Figure S4). These results indicated that OVOL1 and OVOL2 negatively regulate the EMT genes
expression in A431 cells.
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Figure 3. Vimentin and ZEB1 mRNA levels are regulated by OVOL1/2 knockdown in a human SCC
cell line. (A) Relative mRNA levels of OVOL1 and OVOL2 in A431 cells treated with control siRNA,
OVOL1 siRNA, or OVOL2 siRNA for 48 h. (B) Relative mRNA levels of E-cadherin, vimentin, ZEB1,
ZEB2, Snail, and Twist1 in A431 cells treated with control siRNA, OVOL1 siRNA, or OVOL2 siRNA
for 48 h. Mann–Whitney U-test; error bars represent mean ± standard deviation. For interpretation
purposes, the control siRNA value was set to 1. p-values < 0.05 were assumed to indicate a statistically
significant difference; * p < 0.05, ** p < 0.01, and *** p < 0.001. Assays were conducted in triplicate and
repeated at least three times in separate experiments.

3.2.2. Impacts of OVOL1/2 Knockdown on Vimentin, ZEB1, and E-cadherin Protein Levels

To further examine the roles of OVOL1 and OVOL2, we investigated the vimentin, ZEB1, and
E-cadherin protein levels, which were changed in qRT-PCR, using western blotting upon OVOL1/2
knockdown. We confirmed the efficiency of OVOL1/2 knockdown at the protein level (Figure 4A,
Supplementary Figure S5A,B). Compared to the control siRNA, OVOL1 knockdown significantly
increased the protein levels of vimentin (p = 0.0286) and ZEB1 (p = 0.0286) (Figure 4B and Supplementary
Figure S5C). Similarly, OVOL2 knockdown significantly increased the protein level of ZEB1 (p = 0.0286)
(Figure 4B and Supplementary Figure S5C); it also increased the protein level of vimentin, albeit not
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significantly (p = 0.0571) (Figure 4B and Supplementary Figure S5C). OVOL1/2 knockdown did not
alter the protein level of E-cadherin (p = 0.700/p = 0.999) (Figure 4B and Supplementary Figure S5D).
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Figure 4. Vimentin and ZEB1 protein levels are regulated by OVOL1 and OVOL2 in a human SCC cell
line. (A) Relative protein expression levels of OVOL1 and OVOL2 in A431 cells treated with control
siRNA, OVOL1 siRNA, or OVOL2 siRNA for 48 h. (Left) Representative blot images and (right) relative
expression levels calculated from three independent experiments. (B) Relative protein expression
levels of vimentin, ZEB1, and E-cadherin in A431 cells treated with control siRNA, OVOL1 siRNA,
or OVOL2 siRNA for 72 h. (Upper) representative blot images and (lower) relative protein expression
levels calculated from three independent experiments. Mann–Whitney U-test; error bars represent
mean ± standard deviation. Protein expressions are relative to those of β-actin as a reference. The
control siRNA value was set to 1. p-values < 0.05 were assumed to indicate a statistically significant
difference; * p < 0.05.

3.2.3. Increased Invasion upon OVOL2 Knockdown

Given that OVOL1/2 inhibited the expression of EMT-related factors such as vimentin and
ZEB1, we hypothesized that knockdown of OVOL1 or OVOL2 may enhance tumor cell invasion.
We simultaneously performed the migration (non-coated control insert) and invasion (Matrigel-coated
Transwell insert) assay using A431 cells transfected with control siRNA, OVOL1 siRNA or OVOL2
siRNA (Figure 5A). Invasion ability was calculated by dividing the number of invaded cells through
Matrigel-coated Transwell inserts by the number of migrated cells through non-coated control inserts.
Notably, the invasion ability of OVOL2-knockdowned A431 cells was significantly increased compared
with control siRNA-transfected counterparts (p = 0.0260) (Figure 5B). A431 cells transfected with
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OVOL1 siRNA tended to exhibit higher invasion ability than those transfected with control siRNA,
however, it was not statistically significant (p = 0.394) (Figure 5B).

To investigate the other functional roles of OVOL1/2, we subsequently performed a wound healing
assay (Figure 6A), proliferation assay (Figure 6B), colony formation assay (Figure 6C), and apoptosis
assay (Figure 6D). There were no differences in cell migration status, cell proliferation, colony-formation
ability, or apoptotic status between the controls and OVOL1-knockdowned or OVOL2-knockdowned
A431 cells (Figure 6A–D). These results stress the particular importance of OVOL2 in attenuating the
invasive ability of SCC cells.
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Figure 5. OVOL2 regulates invasion ability in a human SCC cell line. (A) Representative images,
and (B) relative invasion ability of cells. A431 cells were transfected with control siRNA, OVOL1 siRNA,
or OVOL2 siRNA and cultured in Transwell plates. Cells that translocated through control inserts or
invaded Matrigel-coated inserts are stained on the membrane. Scale bar = 0.50 mm. Mann–Whitney
U-test; error bars represent mean ± standard deviation. For interpretation purposes, the control siRNA
value was set to 1. p-values < 0.05 were assumed to indicate a statistically significant difference;
* p < 0.05. Assays were conducted in triplicate and repeated at least three times in separate experiments.
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Figure 6. OVOL1/2 do not regulate wound healing, proliferation, colony formation, or apoptosis in a
human SCC cell line. (A) A431 cells were transfected with control siRNA, OVOL1 siRNA, or OVOL2
siRNA and submitted to a wound healing assay. Forty-eight hours post-transfection, cell monolayers
were scratched and tracked for cell migration until 10 h post-scratching. A representative result is
shown. (B) Cell proliferation was examined in siRNA-transfected cells using the WST-1 assay 48 h
post-transfection. (C) The colony-forming ability of siRNA-transfected cells was assessed using the
semi-solid agar and MTT assay. (D) The apoptotic status of siRNA-transfected cells was evaluated by
propidium iodide–Annexin V staining and measured by flow cytometry. (Left) Representative flow
cytometric images and (right) the percentages of apoptotic cells in all populations. Mann–Whitney
U-test; error bars represent mean ± standard deviation. p-values < 0.05 were assumed to indicate
a statistically significant difference. All of the experiments were independently repeated at least
three times.

4. Discussion

EMT is considered as being able to determine the architectural arrangement of tissue on the
basis of the formation of intercellular tight junctions and adherens junctions. EMT is also related to
stromal invasion by tumor cells [7]. Furthermore, the expression of EMT markers is associated with
carcinoma progression and metastasis. Regarding skin carcinoma, partial EMT, characterized by Twist1
expression without E-cadherin depletion, has been reported to be associated with the acquisition
of invasive traits in SCC, although this process is downregulated in lymph node metastases [26].
Meanwhile, OVOL1 and OVOL2 are considered critical inducers of EMT/MET in human cancers [16].
Accordingly, inhibition of OVOL1 or OVOL2 induces complete EMT, whereas their overexpression
leads to complete MET [27,28]. Thus, elevated OVOL2 expression might suppress hepatocellular
carcinoma cell invasion and metastasis by restricting EMT [28]. Moreover, it has been reported that
the OVOL2/ZEB1 circuit is related to epithelial regeneration and repair in adult mouse skin [29]. We
previously proposed that the OVOL1/2 axis is an important modulator in cSCC [25]. While OVOL1
and OVOL2 have been described as gatekeepers that prevent mesenchymal transdifferentiation and
maintain epithelial identity, their regulation is poorly understood.
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In the present study, knockdown of OVOL1 or OVOL2 increased the mRNA levels of vimentin
and ZEB1. Moreover, OVOL1 knockdown significantly increased the protein levels of vimentin and
ZEB1, while OVOL2 knockdown significantly increased that of ZEB1. Notably, both OVOL1 and
OVOL2 knockdown did not affect the expression of E-cadherin; the downregulation of which is another
epithelial marker for EMT [26,30]. Regarding this inconsistency, the EMT-associated traits of tumor
cells might vary depending on the type of tissue and malignancy. Of note, partial EMT, which is
characterized by the increased expression of mesenchymal markers without decreased E-cadherin
expression, has been proposed as a novel concept of EMT and may explain our findings [26,30].
OVOL1/2 may be related to the “partial EMT”. In addition, in vitro functional assays demonstrated
that loss of OVOL2, but not OVOL1, significantly augmented the invasive ability of SCC cells.

The importance of OVOL2/ZEB1 axis was supported by the immunohistochemical analysis using
AK and cSCC samples. The expression of OVOL1 and OVOL2 were upregulated in AK and significantly
downregulated in cSCC. In contrast, ZEB1 and vimentin were upregulated in cSCC, whereas most
AK cells were negative or faintly stained for them, suggesting that downregulation of OVOL1/2 and
upregulation of ZEB1 and vimentin may be associated with the progression of AK to cSCC. Further
statistical analysis indicated the significant negative association of OVOL2, but not OVOL1, with ZEB1
expression. In addition, there was no significant relationship among OVOL1, OVOL2 and vimentin.
These results collectively suggest that OVOL2 suppresses ZEB1 expression in human AK and cSCC
and that the OVOL2/ZEB1 axis may play a crucial role in regulating the promotion of AK to cSCC.

5. Conclusions

In conclusion, we found that OVOL2 might be an important modulator of EMT and the invasiveness
of human SCC cells. Furthermore, we propose that the loss of OVOL2 and reciprocal upregulation of
ZEB1 may be crucial for the promotion of AK to cSCC.
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