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ABSTRACT
Triple negative breast cancer (TNBC) is a belligerent carcinoma that is unresponsive
to targeted receptor therapies. Development of new treatment strategies would benefit
from an expanded repertoire of in vitro cell culture systems, such as those that support
tridimensional growth in the presence of hydrogel scaffolds. To this end, we established
protocols for maintenance of the TNBC cell line HCC70 in monolayer culture and in a
commercially available basementmembranematrix hydrogel.We evaluated the general
morphology of cells grown in both conditions with light microscopy, and examined
their subcellular organization using transmission electron microscopy (TEM). Phase
contrast and confocal microscopy showed the prevalence of irregularly shaped flattened
cells in monolayer cultures, while cells maintained in hydrogel organized into multi-
layered spheroids. A quantitative ultrastructural analysis comparing cells from the two
culture conditions revealed that cells that formed spheroids comprised a greater number
of mitochondria, autophagic vacuoles and intercellular junctions than their monolayer
counterparts, within the equivalent area of sampled tissue. These observations suggest
that triple negative breast cancer cells in culture can alter their organelle content, as
well as their morphology, in response to their microenvironment. Methods presented
here may be useful for those who intend to image cell cultures with TEM, and for
investigators who seek to implement diverse in vitromodels in the search for therapeutic
molecular targets for TNBC.

Subjects Cell Biology, Anatomy and Physiology, Oncology, Pathology, Histology
Keywords Autophagy, Confocal microscopy, Hydrogel, Triple negative breast cancer, Tissue
engineering, Phase contrast microscopy, Ultrastructure, Monolayer culture, Tridimensional
culture, Transmission electron microscopy

INTRODUCTION
Triple negative breast cancer (TNBC) is an invasive cancer that spreads rapidly, weakens the
body and can cause discomfort and pain. TNBC can manifest at all ages and is prevalent in
women of African-American descent (Stead et al., 2009). Studies have unraveled molecular
features of TNBC and this type of breast cancer is so named because TNBC cells lack
receptors for estrogen, progesterone and human epidermal growth factor (Ovcaricek et al.,
2011). Genetic factors can impact disease progression. For example, mutations in BRCA
genes further increase the susceptibility of women to this disease (Meyer et al., 2012; Kuo
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et al., 2012; Atkinson et al., 2013). As a result, many current therapies are not effective
treatments for TNBCs, leading to lower survival rate in patients (Anders, Zagar & Carey,
2013). Poor prognosis and a high recurrence have also been linked with TNBC resistance to
chemotherapy and radiation therapy (Dent et al., 2007; Zhang et al., 2008; Atkinson et al.,
2010; Boyle, 2012). Some reports suggest that an increase in cancer stem cells and autophagy
may play a major role in imparting chemo- and radio-resistance to TNBC cells (Atkinson et
al., 2013; O’Reilly et al., 2015). The mandate for new treatments against TNBC is spurring
development of innovative approaches, such as the use of iron oxide nanoparticles and
temperature-sensitive liposomes conjugated with therapeutic drugs (Guo et al., 2014; Ou
et al., 2016).

In vitro cell culture models are widely used to study the pathology of cancer types,
including TNBC (Kao et al., 2009; Grigoriadis et al., 2012). Monolayer culture environ-
ments typically cause the cells to grow in an apical-basal polarity with only one surface
attached to the substrate, and this asymmetry alters cellular morphology and function
from what is observed in the tissue of origin (Baker & Chen, 2012; Lovitt, Shelper & Avery,
2014). For these reasons, 2D culture models have been critiqued as suboptimal systems
for predicting in vivo responses, in part because the microenvironment changes cell-to-cell
communication and signaling from the native state (Jorgensen & Tyers, 2004). In contrast,
three-dimensional (3D) culture systems provide a novel approach to assess the growth
and behavior of cells (Petropolis et al., 2014; Warnock et al., 2014; Nath & Devi, 2016).

Previous studies conducted using human embryonic cells, hepatocytes, and melanoma
cells have established that 3D microenvironments allow cells to grow in multiple layers
by invading and penetrating the matrix scaffold and forming more natural intercellular
junctions, thereby leading to better cell-to-cell communication and signaling (Jorgensen &
Tyers, 2004;Ma et al., 2011; Baker & Chen, 2012; Leight et al., 2015). 3D cell culture systems
typically incorporate scaffold materials, such as hydrogels, due to their similarity to in vivo
conditions, especially to pathologies like cancer, as opposed to 2D models (Li, Fan &
Houghton, 2007; Whiteside, 2008; Tibbitt & Anseth, 2009; Pontes Soares et al., 2012; Lovitt,
Shelper & Avery, 2014;Xu et al., 2014). As a result, these 3D culturesmay provide a powerful
platform for anti-cancer drug screening (Herrmann et al., 2014; Xu, Farach-Carson & Jia,
2014; Zanoni et al., 2016; Cavo et al., 2016).

Determination of the similarity between cancer in vitro model systems, such as cells in
hydrogel cultures as compared with the native tumor state, requires cellular and molecular
analysis. In particular, because morphology is a prominent indicator of the invasive and
metastatic state of cancer cells, morphological analysis plays a key role in the validation of
experimental systems that aim to emulate the cancer tumor environment such as tumor
explants, scaffold-based or scaffold-free spheroids, and tumor-on-a-chip (Nath & Devi,
2016). Previous studies using cancer cell lines have demonstrated that breast cancer cells
display histopathological markers of invasion and metastasis such as tumor size, nuclear
and histological grade, and axillary lymph node status (Emerman, Burwen & Pitelka, 1979;
Weigelt, Geyer & Reis-Filho, 2010; Moosavi et al., 2014). Analysis of TNBC morphology
in response to hydrogel environment has received minimal attention, especially using
transmission electron microscopy (TEM) in conjunction with quantitative methods
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(O’Brien et al., 2013; Brand et al., 2014; Zhou et al., 2017). These observations prompted
our interest in using TEM to quantify ultrastructural features of TNBC cells cultured in
two conditions—monolayer and hydrogel.

In the present study, we established monolayer and 3D cell culture systems with the
TNBC cell line, HCC70. GeltrexTM, an extracellular basement membrane matrix, was
chosen for our 3D cell culture experiments because it is derived from a natural material—
Engelbreth-Holm-Swarm (EHS) tumors, and comprises essential proteins (e.g., laminin,
collagen IV, entactin) and carbohydrates (e.g., the heparin sulfate proteoglycans). We
compared cell growth in monolayer and hydrogel conditions through visualization of cell
cultures using light and confocal microscopy. We conducted quantitative morphological
analysis with TEM to evaluate the ultrastructural differences in cells grown in the two
environments.

Our results demonstrated distinct morphologies of HCC70 cells, when cultured on the
2D rigid substratum and the 3D basement membrane matrix. In monolayer culture, the
cells exhibited a characteristic phase-dark flat morphology and spread across the surface of a
tissue culture slide. In contrast, the cells in hydrogel cultures grew in close proximity to one
another and formed compact spheroidal structures. TEM highlighted the ultrastructural
features enhanced in hydrogel cultures. Quantitative analysis of TEM images revealed
that cells cultured in hydrogel comprised a higher number of mitochondria, autophagic
vacuoles and intercellular junctions than cells from monolayer cultures. Taken together,
these results suggest that cellular morphology and organelle abundance were influenced by
the culturemicroenvironment. Our hydrogel culturemethodsmay be useful for uncovering
mechanisms of therapeutic resistance and for screening of therapeutic drugs to treat TNBC
using novel methods such as nanodelivery of anti-cancer compounds (Guo et al., 2014; Ou
et al., 2016). Moreover, the implementation of a variety of monolayer and hydrogel culture
systems may be helpful for elucidating aspects of cancer pathology such as proliferation
and cell–cell communication.

MATERIALS AND METHODS
Cell culture and experimental samples
HCC70, a cell line derived from primary ductal carcinoma of an African-American female
donor, was cultured in parallel in monolayer and in hydrogel scaffolds. HCC70 cells
were cultured using biosafety level 2 (BSL2) aseptic technique without antibiotics. All cell
culture reagents were either purchased sterile or filter-sterilized with 0.2 µm membrane
filters. HCC70 cells (ATCC R© CRL2315

TM
, Lot #58033362; ATCC, Manassas, VA, USA)

were cultured as per the manufacturer’s instructions (ATCC, Manassas, VA, USA). Stock
ampules (termed Passage 1) were prepared from the vendor’s vial when cells were received
on dry ice in a frozen vial as previously described (Jogalekar, Cooper & Serrano, 2017).
For each experiment, one Passage 1 stock ampule was seeded into two T25 flasks. Cells
were cultured in RPMI-1640 media (ATCC, Lot #62285353; Manassas, VA, USA) and
10% fetal bovine serum (FBS; Lot #1025354; Gibco, Carlsbad, CA, USA) in an incubator
maintained at 37 ◦C and 5% CO2. Once the cells reached 80% confluence, (∼48 h), they
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were trypsinized, titered, and seeded at a density of 4.5 ×104 cells per cm2 in two, 4-well
slides. Monolayer and hydrogel cultures were established on each slide with two chambers
designated for each condition. One slide was designated for light microscopy (VWR, Cat
#62407-294; Radnor, PA, USA) and the other was processed for TEM (Cat #62407-330;
Nalge Nunc International, Penfield, NY, USA).

Matrix preparation
GeltrexTM LDEV-Free Reduced Growth Factor Basement Membrane Matrix (Cat
#A1413202; Invitrogen, Carlsbad, CA, USA) was allowed to thaw at 4 ◦C. The matrix
was triturated gently with a pipette to prevent the formation of bubbles, prior to adding
100 µl of matrix per cm2 to the slides under sterile conditions. The Geltrex TM was allowed
to solidify in 37 ◦C incubator for 30 min, before the cells were seeded on top of the matrix.

Phase contrast microscopy
Prior to fixation for confocal microscopy, live cultures were imaged using 20× objective
of an inverted Nikon TE-2000 microscope equipped with a 2.8MP CoolSNAP MYO CCD
camera (Photometrics) and Metavue image capture software (Molecular Devices).

Sample preparation for confocal microscopy
Sample processing was carried out as described previously (Jogalekar, Cooper & Serrano,
2017). Live cultures were rinsed with 1× Phosphate buffered saline, pH 7.4 (PBS,
P3813; Sigma Aldrich, St. Louis, MO, USA) for 2 min and fixed for 10 min using 4%
paraformaldehyde (PFA; CAS #30525-89-4; Electron Microscopy Sciences, Hatfield, PA,
USA). The cells were washed twice with 1× PBS for 2 min each and treated with 0.2%
Triton X-100 (Cat #T8787; Sigma Aldrich, St. Louis, MO, USA) for 20 min. The cells were
rinsed briefly twice with 1× PBS, probed with 165 nM Alexa Fluor R© 488 phalloidin dye
(Cat #A12379; Invitrogen, Carlsbad, CA, USA) in 1% bovine serum albumin (BSA; Cat #
A2153; Sigma Aldrich, St. Louis, MO, USA), for 20 min in the dark. The cells were washed
briefly twice with 1× PBS and counterstained with 2 µg/ml Hoechst 33342 (Cat #H3570;
Invitrogen, Carlsbad, CA, USA) in 1× PBS, for 10 min in the dark. Equal amounts of 1%
BSA in 1× PBS was added to the auto-fluorescence controls. The cells were briefly rinsed
twice with 1× PBS and re-fixed in 4% PFA, before exposing them to SlowFade R© AntiFade
kit (Cat #S2828; Invitrogen, Carlsbad, CA, USA). Coverslips were placed on samples and
adhered to the slide with nail polish prior to imaging.

Confocal microscopy
The digitized images of monolayer and 3D samples were captured using a TCS SP5 II
confocal microscope system (Leica Microsystems Inc., Buffalo Grove, IL, USA) using
a 40X objective (NA–0.70) and a pinhole of 1 Airy Unit. Alexa Fluor R© 488 phalloidin
was excited using the 65 mW Argon laser line and images were captured with Alexa 488
emission settings. Hoechst 33342 was excited using a 50 mW 405 diode UV laser line and
images were captured with DAPI emission settings. TIF image stacks were used for confocal
projection images.
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Sample processing for TEM
Samples were processed for TEM as described previously (Jogalekar, Cooper & Serrano,
2017). The cells were fixed overnight at 4 ◦C (∼16 hr) with a fixative containing 2.5%
glutaraldehyde (CAS #111-30-8; Electron Microscopy Sciences, Hatfield, PA, USA) and 0.1
M cacodylate buffer (#11650; ElectronMicroscopy Sciences, Hatfield, PA,USA) followed by
washing twice with 0.1 M cacodylate buffer, 10 min each. The post-fixation was completed
with 2% osmium tetroxide (CAS #20816-12-0; Electron Microscopy Sciences, Hatfield,
PA, USA) / 0.1 M cacodylate buffer for 2 hr. The cells were rinsed in double distilled water
(ddH2O) for 15 min and subjected to dehydration in a series of ethyl alcohols -50%, 70%
and 95% (twice, 10 min each) and 100% (thrice, 10 min each). Cells were incubated in
the transitional solvent containing a mixture of acetone: ethanol (2:3) thrice for 10 min
each. Infiltration was carried out with 1:1 and 1:3 proportion of absolute ethanol: EMbed
812 resin (#14120; Electron Microscopy Sciences, Hatfield, PA, USA) for 30 min each,
before incubating in pure resin for 15 min. Fresh resin was added to slides before they
were cured for 48 hr in a 60 ◦C oven. The chambers were detached from the slide and
immersed in liquid nitrogen to separate the resin blocks from the slide. The blocks were
double-embedded in fresh resin and cured for 48 hr in a 60 ◦C oven before preparing ultra
thin sections (∼70 nm) with a UC6 ultra-microtome (Leica Microsystems Inc., Buffalo
Grove, IL, USA). Sections collected on Formvar carbon grids (Cat #FF100-Cu; Electron
Microscopy Sciences, Hatfield, PA, USA) were stained with 2% uranyl acetate solution
(#22400; Electron Microscopy Sciences, Hatfield, PA, USA) for 10 min, then rinsed with
ddH2O, dried, and stored in grid boxes.

Transmission electron microscopy
A transmission electron microscope, H-7650 (Hitachi High-Technologies, Pleasanton, CA,
USA) and a CCD camera (AMT Corp., Woburn, MA, USA) were used to capture digital
images of 2,944×2,944 pixel frame size acquired with an 80 kV accelerating voltage.

Image analysis for TEM
Three grids were analyzed from each resin block and one image was captured for
each grid, yielding a total of six images per chamber. The number of mitochondria,
autophagic vacuoles and intercellular junctions was determined from all images at the
same magnification (15,000×, 80 kV) using the ‘count’ tool in Adobe Photoshop CS6
(Adobe Systems Inc., San Jose, CA, USA). Criteria for identifying the structures of
mitochondria, autophagic vacuoles and intercellular junctions were defined before the
scoring was undertaken (Fig. 1). The characteristic double-membrane enclosed structures
containing cristae or folds were scored as mitochondria (m, Fig. 1A). Several types of
intercellular junctions (ij, Figs. 1C,1D) were found to be present in HCC70 cells. They
were identified by the presence of electron-dense areas connecting the membranes. The
structures enclosed by double membranes and containing unwanted or damaged cellular
organelles, and partially digested material were considered as autophagic vacuoles (av, Fig.
1B) (Tu et al., 2011; Hale et al., 2013; Galluzzi & Kroemer, 2015).

Numbers for mitochondria, autophagic vacuoles and intercellular junctions were
normalized to tissue area values that were measured using ImageJ software (Schneider,
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Figure 1 Exemplar TEM images of mitochondria, autophagic vacuoles and intercellular junctions. (A)
The membrane enclosed structures containing filamentous cristae were identified as mitochondria (white
arrowheads, ‘m’). Both round and cylindrical mitochondria were observed. (B) Membrane-enclosed
structures comprising what appeared to be electron dense and partially digested cellular material,
were identified as autophagic vacuoles (white arrowheads, ‘av’). (C, D) Intercellular junctions (white
arrowheads, ‘ij’) were identified by the presence of electron-dense regions on the apposing membranes of
adjacent cells. Scale bar= 500 nm.

Full-size DOI: 10.7717/peerj.4340/fig-1

Rasband & Eliceiri, 2012). Briefly, the tissue area (µm2) of a TEM image was determined
using the free-hand drawing tool. The counts for the number of structures were then
divided by the tissue area of an image to calculate structures per unit area. Values were
reported as number of structures per 100 µm2 of tissue area (File S1).

Statistical analysis
The statistical analysis was carried out using Microsoft Excel 2011 for Macintosh (File S1).
The counts obtained from six images of each block were grouped and means and totals
were computed. A one-way Analysis of Variance (ANOVA) test was used to determine the
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statistical significance of the data collected from TEM images of monolayer and hydrogel
cultures.

Figure preparation
Phase contrast, confocal and TEM images were captured in TIFF format and saved at 300
dpi. Minimal image processing was carried out using ‘levels’ sliding bar, before labeling
and composing figures using Adobe Photoshop CS6 (Adobe Systems Inc., San Jose, CA,
USA). Microsoft Excel 2011 software for Macintosh was used for the preparation of graphs.

Responsible conduct
The human breast cancer cell line HCC70 (ATCC R© CRL2315TM; Lot #58033362; RRID:
CVCL_1270) was obtained from the American Type Culture Collection (ATCC, Manassas,
VA, USA) and cultured in the laboratory according to the vendor’s protocol. The use
of the HCC70 cell line in a Biosafety Level 2 tissue culture facility was approved by the
NewMexico State University Institutional Biosafety Committee (#1401SE2F0103). HCC70
is a commercial, publicly available cell line established using a mammary gland tissue
from primary ductal carcinoma of a female donor, age 49 years, as listed on the vendor’s
website (ATCC, Manassas, VA, USA). Consequently, HCC70 meets the exemption criteria
for review by the Institutional Review Board under the Code of Federal Regulations 45
CFR 46.101(b)(4) (‘‘Human Specimens, Cell Lines or Data | Research Involving Human
Subjects,’’ 2016). The vendor has confirmed that the cells are of epithelial origin and are
negative for three surface receptors: ER, PR and HER2.

RESULTS
Phase contrast and confocal microscopy of monolayer and hydrogel
cultures
The general morphology of HCC70 cells was examined using phase contrast microscopy
(Fig. 2). The monolayer and matrix cultures demonstrated strikingly different
morphologies. Monolayer cells formed a single layer on the rigid substrate, spread
horizontally, and appeared to contact neighboring cells (Fig. 2A). In contrast, HCC70
cells cultured with the basement membrane matrix GeltrexTM formed compact aggregates
and spheroidal structures (Fig. 2B).

The morphology of monolayer and matrix cultures was further analyzed using laser
confocal microscopy to study the spatial arrangement of cells and localize actin filaments
and DNA. The two groups of cells were stained using Alexa Fluor R© 488 Phalloidin dye
specific for F-actin and Hoechst 33342, a DNA-specific probe (Fig. 3). Confocal images
of HCC70 cells in monolayer cultures indicated that cells were flattened and adhered
to the rigid glass substratum, while cells cultured in the hydrogel formed well-rounded,
multilayered structures. We noted that inter-nuclear distances between monolayer cells
(Figs. 3A–3C) were higher than those in matrix-organized cells (Figs. 3D–3F).

Ultra-structural analysis of monolayer cultures
TEM images of HCC70 cells cultured in a monolayer environment showed that cells
adhered to adjacent cells with the help of intercellular junctions (Figs. 4A–4C, *). A
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Figure 2 Phase contrast microscopy of HCC70 cells cultured in monolayer and hydrogel environ-
ments. (A) HCC70 cells cultured on rigid substratum showed the characteristic morphology described by
the vendor (ATCC; Manassas, VA). Cells showed horizontal spreading, and close association with neigh-
boring cells. (B) HCC70 cells formed spheroidal aggregates when cultured in the hydrogel. The data are
representative of two independent experiments. Scale bar= 50 µm.

Full-size DOI: 10.7717/peerj.4340/fig-2

Figure 3 Confocal microscopy of HCC70 cells cultured in monolayer and hydrogel environments.
The spatial arrangements of actin-based structures and cell nuclei in monolayer and hydrogel cultures
of HCC70 cells were visualized using confocal microscopy by labeling with fluorescent probes—Alexa
Fluor R©488 Phalloidin (green) for F-actin and Hoechst 33342 (blue) for DNA. (A–C) During confocal pro-
jections of labeled cells, monolayer cells appeared flat. The cells also appeared to be situated far from each
other. (D–F) In hydrogel environment, cells formed spheroids and the cells appeared to adhere closely to
one another. Scale bar= 10 µm.

Full-size DOI: 10.7717/peerj.4340/fig-3
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Figure 4 Exemplar TEM images of HCC70 cells cultured in monolayer environment. Cells cultured on
rigid substratum consisted of mitochondria (A–D,‘m’) and autophagic vacuoles (A, C,‘av’). The cells were
adhered to the neighboring cells with the help of intercellular junctions (A–C,‘*’). The data are representa-
tive of two independent experiments (A, B: Experiment 1; C, D: Experiment 2). Scale bar= 500 nm.

Full-size DOI: 10.7717/peerj.4340/fig-4

few mitochondria (Figs. 4A–4D, m) and autophagic vacuoles (Figs. 4A, 4C, av) were
observed inside the cells. The mitochondria had a variety of shapes such as round, oval,
and cylindrical. The sum of individual counts for mitochondria, autophagic vacuoles and
intercellular junctions is shown in Table 1 together with the sampled area.

Ultra-structural analysis of hydrogel cultures
TEM images of hydrogel cultures of HCC70 cells showed that cells formed multiple
intercellular junctions with neighboring cells (Figs. 5A, 5B, *). Cells in hydrogels comprised
autophagic vacuoles (Figs. 5A, 5C, av), as well as mitochondria with a variety of shapes
ranging from round to oval to cylindrical (Figs. 5A–5D, m). The sampled area, the sum
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Table 1 Quantitative analysis of TEM images captured frommonolayer and hydrogel cultures of
HCC70 cells. TEM images were captured from four blocks for each condition—monolayer and hydrogel.
The number of mitochondria, autophagic vacuoles and intercellular junctions were counted from six
images obtained from each block. The numbers shown in the table represent the sum of counts obtained
from six images.

Culture Type Analysis
Area (µm2)

Mitochondria Autophagic
Vacuoles

Intercellular
Junctions

Monolayer_Block 1 783.6 42 37 38
Monolayer_Block 2 780.3 32 14 40
Monolayer_Block 3 771.0 42 21 36
Monolayer_Block 4 788.7 25 29 24
Hydrogel_Block 1 785.9 88 47 57
Hydrogel_Block 2 800.4 80 60 61
Hydrogel_Block 3 800.2 80 70 71
Hydrogel_Block 4 776.7 71 45 65

of individual counts for mitochondria, autophagic vacuoles and intercellular junctions are
shown in Table 1.

ANOVA analysis of ultrastructure data from the two growth conditions showed that
HCC70 cells cultured in hydrogel comprised a higher number of mitochondria (P value<

0.001), autophagic vacuoles (P value< 0.01) and intercellular junctions (P value< 0.001)
than those present in monolayer cells (Figs. 6B–6D). The tissue area used for quantitative
analysis was equivalent (P value > 0.05) for both culture conditions (Fig. 6A).

DISCUSSION
Markedmorphological differences were observed betweenHCC70monolayer and hydrogel
cultures with light microscopy, especially in the types of associations cells formed with one
another. Phase contrast (Fig. 2) and confocal (Fig. 3) images captured from cells cultured
in monolayer environments showed the characteristic morphology specified by the vendor
(ATCC, Manassas, VA, USA). Cells were phase-dark, indicating a flattened morphology,
and spread horizontally on the surface of a glass slide. In contrast, the cells cultured in hydro-
gel grew in stacked layers and formed spheroidal masses that resembled ‘mammospheres’
(Manuel Iglesias et al., 2013) and multicellular tumor spheroids (Nath & Devi, 2016).
When cells labeled with fluorescent probes for F-actin and nuclei were imaged with
confocal microscopy, we found that the monolayer cells were situated far from one other
as compared to HCC70 cells forming compact spheroids in hydrogel (Fig. 3).

Our results are consistent with previous studies conducted using breast cancer cell
lines where it has been shown that cells exhibit distinct morphologies in monolayer
versus hydrogel culture environments (Kenny et al., 2007; Vidi, Bissell & Lelièvre, 2013).
HCC70 cells that we cultured in the hydrogel scaffold GeltrexTM formed spheroids that
resembled the ‘‘Mass’’-like aggregates previously reported for this cell line when cultured
in a laminin-rich extracellular matrix hydrogel (Kenny et al., 2007). It is well established
that the aforementioned morphological changes elicited by hydrogels are not restricted to
cells of neoplastic origin. Non-cancerous mouse and human cell lines derived from normal
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Figure 5 Exemplar TEM images of HCC70 cells cultured in hydrogel.HCC70 cells grew adjacent to
each other in hydrogel and comprised several mitochondria (A–D,‘m’), autophagic vacuoles (A, C,‘av’)
and intercellular junctions (A, B,‘*’). The data are representative of two independent experiments (A, B:
Experiment 1; C, D: Experiment 2). Scale bar= 500 nm.

Full-size DOI: 10.7717/peerj.4340/fig-5

cardiac andmammary epithelial tissue also have been shown to be morphologically distinct
when cultured in hydrogel versus monolayer conditions, underscoring the global effect of
culture substratum and environment on cell differentiation, regardless of tissue provenance
(Emerman, Burwen & Pitelka, 1979; Streuli, Bailey & Bissell, 1991; Underwood et al., 2006;
Liao et al., 2007; Pontes Soares et al., 2012). Research conducted using normal mammary
gland epithelial cells and human breast cancer cells suggests that morphological changes
visible in hydrogels may be due to regulation of cell growth and migration by matrix
stiffness, and that cell viability decreases with increase in elasticity of hydrogels, with higher
cell proliferation rate in soft hydrogels (Bissell & Barcellos-Hoff, 1987; Cavo et al., 2016).
These intriguing observations raise questions about the mechanisms that promote HCC70
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Figure 6 Quantitative analysis of tissue area, mitochondria, autophagic vacuoles, and intercellular
junctions present in TEM images frommonolayer and hydrogel cultures of HCC70. The tissue area (A),
the number of mitochondria (B), number of autophagic vacuoles (C), and the number of intercellular
junctions were counted in images from resin blocks prepared from monolayer and hydrogel cultures (6
images/block; 4 blocks from each condition). The histograms compare the mean± S.D. computed from
the 4 means for each condition using values for the parameters that were normalized to 100 µm2 tissue
area. Statistical significance values were estimated with the Analysis of Variance (ANOVA) test. ** P ≤
0.01, *** P ≤ 0.001.

Full-size DOI: 10.7717/peerj.4340/fig-6

cell division in GeltrexTM, a topic for future investigations using proliferation markers such
as Ki67 (Pan et al., 2017).

TEM images of monolayer and hydrogel cultures showed that cells comprised typical
subcellular organelles and structures (Figs. 4, 5). However, quantitative analysis of TEM
images from HCC70 cultures uncovered a higher number of mitochondria, intercellular
junctions and autophagic vacuoles in cells grown in hydrogel environments. It is notable
that organelle dysfunction and heterogeneity are emerging as features of disease states
such as neurodegeneration and cancer (Marshall, 2007;Mukherji & O’Shea, 2014; Chang &
Marshall, 2017). For example, Ren et al. (1990) found that the presence of a higher number
of mitochondria in rat mammary tumor tissues was representative of highly metastatic
tumors, suggesting that the TNBC hydrogel cultures may mimic the tumor state more
closely than monolayer systems with regard to mitochondrial role in cancer progression
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(Ren et al., 1990). Similarly, the increase in intercellular junctions may be attributed to
a greater requirement for robust cell–cell adhesion when spheroid masses are formed
as compared with more restricted cell–cell contact at flattened edges during monolayer
growth (Kenny et al., 2007). Autophagy also has been shown to play a key role in the
progression of many diseases such as cancer, neurodegenerative disorders and infectious
diseases (Galluzzi & Kroemer, 2015). For example, in cancer, autophagy can act as a tumor
suppressor during the initial stages of tumor progression, but may promote tumor cell
survival in later stages (Tu et al., 2011; Mah & Ryan, 2012; Kaminskyy et al., 2012; Huang
et al., 2014; Morgan et al., 2014; Galluzzi et al., 2015). Lefort et al. (2014) have shown that
autophagy-linked genes are upregulated in TNBC cell lines, including the HCC70 cell
line that was used in the current study, cultured in a laminin-rich extracellular matrix
(Lefort et al., 2014). Moreover, TNBC cell lines, including HCC70, appear to respond to
the suppression of the NEET family proteins, mitoNEET (mNT) and Nutrient-deprivation
autophagy factor-1 (NAF-1), with impaired ultrastructural mitochondrial morphology and
autophagosome accumulation (Sohn et al., 2013). Research undertaken with melanoma
cell lines suggests that higher autophagy is indicative of a more aggressive tumor state,
resistance to treatment, and poor patient survival (Ma et al., 2011). These findings point
to a critical role for autophagy in regulating cell survival and imparting drug-resistance to
cells (Zou et al., 2012). The greater incidence of autophagic vacuoles in cells cultured in
hydrogels may signify that the matrix environment is stimulating autophagy pathways in
the HCC70 cells.

CONCLUSION
In this study, we developed protocols for ultrastructural analysis of HCC70 cells grown
in hydrogel and monolayer culture conditions. These methods may be useful for other
researchers who seek to capture and analyze TEM image data from hydrogel cultures
of cancer and normal cell lines. Our results demonstrated that HCC70 cells grown in
a hydrogel microenvironment modified their morphology, cell–cell organization, and
organelle abundance in comparison with monolayer cultures in a manner consistent with
features of more aggressive tumors (Ren et al., 1990; Ma et al., 2011; Zou et al., 2012; Sohn
et al., 2013). Future experiments aim to uncover the molecular mechanisms underlying
the observed changes between monolayer and hydrogel cultures using molecular markers
and functional assays specific for mitochondria, autophagic vacuoles, and intercellular
junctions.
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